首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
He J  Hu B 《Journal of neurophysiology》2002,88(4):2152-2156
The medial geniculate body (MGB) of the auditory thalamus comprises lemniscal and nonlemniscal neurons that project to the primary auditory cortex and limbic structures, respectively. Here we show that in anesthetized guinea pigs, MGB responses to a noise-burst stimulus exhibit distinct and synaptic pathway-specific firing patterns. The majority of nonlemniscal MGB cells exhibited bursting responses, whereas lemniscal neurons discharged mainly single or spike doublets. The burst firing is delayed in nonlemniscal neurons and exhibited several features that are characteristics of those mediated by low-threshold Ca(2+) spikes. Such a synaptic pathway-specific allocation of bursting and single-spike firing patterns is consistent with the notion of parallel processing of auditory information in thalamocortical system.  相似文献   

2.
Corticofugal modulation on both ON and OFF responses in various nuclei in the medial geniculate body (MGB) was examined by locally activating the auditory cortex and looking for effects on the neuronal responses to acoustic stimuli. In contrast with a major corticofugal facilitatory effect on the ON neurons in the lemniscal nucleus of the MGB of the guinea pigs, of 132 ON neurons tested in three conditions with cortical activation through each of three implanted electrodes, the majority of the tested conditions (319/396) that were sampled from the nonlemniscal nuclei of the MGB received inhibitory modulation from the activated cortex. This inhibitory effect was >50% for 99 cases while the auditory cortex was activated. Most of the OFF and ON-OFF MGB neurons (44/54) showed a facilitatory effect of 111.4 +/- 99.9%, and three showed a small inhibitory effect of 25.7 +/- 5.8% on their OFF responses. Thirty neurons in the border region between the lemniscal and nonlemniscal MGB showed mainly facilitatory corticofugal effects on both ON and OFF responses. Meanwhile, cortical stimulation induced almost exclusive inhibitory effects on the ON response and facilitatory effects on the OFF response in the MGcm. It is suggested that the OFF response is produced as a disinhibition from the inhibitory input of the auditory stimulus. The present results provide a possible explanation for selective gating of the auditory information through the lemniscal MGB while switching off other unwanted sensory signals and the interference from the limbic system, leaving the other auditory cortex prepared to process only the auditory signal.  相似文献   

3.
Kaur S  Rose HJ  Lazar R  Liang K  Metherate R 《Neuroscience》2005,134(3):1033-1045
Auditory cortex neurons integrate information over a broad range of sound frequencies, yet it is not known how such integration is accomplished at the cellular or systems levels. Whereas information about frequencies near a neuron's characteristic frequency is likely to be relayed to the neuron by lemniscal thalamocortical inputs from the ventral division of the medial geniculate nucleus, we recently proposed that information about frequencies spectrally distant from characteristic frequency is mainly relayed to the neuron via "horizontal" intracortical projections from neurons with spectrally-distant characteristic frequencies [J Neurophysiol 91 (2004) 2551]. Here we test this hypothesis by using current source density analysis to determine if characteristic frequency and spectrally-distant non-characteristic frequency stimuli preferentially activate thalamocortical and horizontal pathways, respectively, in rat auditory cortex. Characteristic frequency stimuli produced current source density profiles with prominent initial current sinks in layers 3 and 4--the termination zone of lemniscal inputs from medial geniculate nucleus. In contrast, stimuli three octaves below characteristic frequency produced initial current sinks mainly in the infragranular layers. Differences between current source density profiles were only apparent for initial current sinks; profiles for longer-latency current sinks evoked by characteristic frequency and non-characteristic frequency stimuli overlapped to a greater degree, likely due to shared mechanisms of intracortical processing or to longer-latency thalamocortical contributions (lemniscal and nonlemniscal). To identify current source density profiles produced by activation of lemniscal thalamocortical inputs alone, we utilized the mouse auditory thalamocortical slice preparation. Electrical stimulation of the medial geniculate nucleus in vitro produced major current sinks in cortical layers 3/4, and excitation spread horizontally from this point throughout primary auditory cortex to produce current sinks in multiple cortical layers. These data support the hypothesis that relay of thalamocortical information throughout auditory cortex via horizontal intracortical projections may be the basis of broad spectral integration in vivo.  相似文献   

4.
Two fundamental issues in auditory cortical processing are the relative importance of thalamocortical versus intracortical circuits in shaping response properties in primary auditory cortex (ACx), and how the effects of neuromodulators on these circuits affect dynamic changes in network and receptive field properties that enhance signal processing and adaptive behavior. To investigate these issues, we developed a computational model of layers III and IV (LIII/IV) of AI, constrained by anatomical and physiological data. We focus on how the local and global cortical architecture shape receptive fields (RFs) of cortical cells and on how different well-established cholinergic effects on the cortical network reshape frequency-tuning properties of cells in ACx. We identify key thalamocortical and intracortical circuits that strongly affect tuning curves of model cortical neurons and are also sensitive to cholinergic modulation. We then study how differential cholinergic modulation of network parameters change the tuning properties of our model cells and propose two different mechanisms: one intracortical (involving muscarinic receptors) and one thalamocortical (involving nicotinic receptors), which may be involved in rapid plasticity in ACx, as recently reported in a study by Fritz and coworkers.  相似文献   

5.
Cholinergic modulation is essential for many brain functions and is an indispensable component of the prevalent models attempting to understand the neural mechanism responsible for learning-induced auditory plasticity. Unlike the cholinergic basal forebrain, the cholinergic pedunculopontine tegmental nucleus (PPTg) has received little attention. This study was designed to confirm whether the PPTg enables frequency-specific plasticity in the ventral division of the medial geniculate body of the thalamus (MGBv). Using the mouse model, we paired electrical stimulation of the PPTg with tone stimulation to help define the role of the PPTg. The receptive fields of MGBv neurons were examined before and after the paired stimulation; they were quantified in this study by best frequency (BF), response threshold, dynamic range, and spike number. We found that the electrical stimulation of the PPTg together with a tone presentation shifted the BFs of MGBv neurons upward when the frequency of the paired tone was higher than that of the control BF. Similarly, the BFs shifted downward when the frequency of the paired tone was lower than that of the control BF. The BFs of MGBv neurons, however, remained unchanged when the frequency of the paired tone was the same as that of the control BF. There was a linear relationship between the BF shift of MGBv neurons and the difference between the frequency of the paired tone and the control BF of MGBv neurons. Highly frequency specific changes were also observed in the response threshold, dynamic range, and spike number. This frequency-specific plasticity was largely eliminated by the microinjection of the muscarinic receptor antagonist atropine into the MGBv before the paired stimulation. Our findings suggest that the PPTg, like the cholinergic basal forebrain, is an important cholinergic source that enables frequency-specific plasticity in the central auditory system.  相似文献   

6.
Thalamic nuclei of the mammalian auditory system exhibit remarkable parallelism in their anatomical pathways and the patterns of synaptic signalling. This has led to the theory that lemniscal, or core thalamocortical projection, carries tonotopically organized and auditory specific information whereas the nonlemniscal thalamocortical pathway forms part of an integrative system that plays an important role in polysensory integration, temporal pattern recognition, and certain forms of learning. Recent experimental evidence derived from molecular, cellular and behavioural studies indeed supports the conjecture that lemniscal and nonlemniscal pathways are involved in distinctive auditory functions.  相似文献   

7.
Auditory conditioning (associative learning) or focal electric stimulation of the primary auditory cortex (AC) evokes reorganization (plasticity) of the cochleotopic (frequency) map of the inferior colliculus (IC) as well as that of the AC. The reorganization results from shifts in the best frequencies (BFs) and frequency-tuning curves of single neurons. Since the importance of the cholinergic basal forebrain for cortical plasticity and the importance of the somatosensory cortex and the corticofugal auditory system for collicular and cortical plasticity have been demonstrated, Gao and Suga proposed a hypothesis that states that the AC and corticofugal system play an important role in evoking auditory collicular and cortical plasticity and that auditory and somatosensory signals from the cerebral cortex to the basal forebrain play an important role in augmenting collicular and cortical plasticity. To test their hypothesis, we studied whether the amount and the duration of plasticity of both collicular and cortical neurons evoked by electric stimulation of the AC or by acoustic stimulation were increased by electric stimulation of the basal forebrain and/or the somatosensory cortex. In adult big brown bats (Eptesicus fuscus), we made the following major findings. 1) Collicular and cortical plasticity evoked by electric stimulation of the AC is augmented by electric stimulation of the basal forebrain. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 2) Collicular and cortical plasticity evoked by AC stimulation is augmented by somatosensory cortical stimulation mimicking fear conditioning. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 3) Collicular and cortical plasticity evoked by both AC and basal forebrain stimulations is further augmented by somatosensory cortical stimulation. 4) A lesion of the basal forebrain tends to reduce collicular and cortical plasticity evoked by AC stimulation. The reduction is small and statistically insignificant for collicular plasticity but significant for cortical plasticity. 5) The lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. 6) Collicular and cortical plasticity evoked by repetitive acoustic stimuli is augmented by basal forebrain and/or somatosensory cortical stimulation. However, the lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. These findings support the hypothesis proposed by Gao and Suga.  相似文献   

8.
Ji W  Suga N 《Journal of neurophysiology》2008,100(3):1384-1396
Experience-dependent plastic changes in the central sensory systems are due to activation of both the sensory and neuromodulatory systems. Nonspecific changes of cortical auditory neurons elicited by pseudoconditioning are quite different from tone-specific changes of the neurons elicited by auditory fear conditioning. Therefore the neural circuit evoking the nonspecific changes must also be different from that evoking the tone-specific changes. We first examined changes in the response properties of cortical auditory neurons of the big brown bat elicited by pseudoconditioning with unpaired tonal (CS(u)) and electric leg (US(u)) stimuli and found that it elicited nonspecific changes to CS(u) (a heart-rate decrease, an auditory response increase, a broadening of frequency tuning, and a decrease in threshold) and, in addition, a small tone-specific change to CS(u) (a small short-lasting best-frequency shift) only when CS(u) frequency was 5 kHz lower than the best frequency of a recorded neuron. We then examined the effects of drugs on the cortical changes elicited by the pseudoconditioning. The development of the nonspecific changes was scarcely affected by atropine (a muscarinic cholinergic receptor antagonist) and mecamylamine (a nicotinic cholinergic receptor antagonist) applied to the auditory cortex and by muscimol (a GABA(A)-receptor agonist) applied to the somatosensory cortex. However, these drugs abolished the small short-lasting tone-specific change as they abolished the large long-lasting tone-specific change elicited by auditory fear conditioning. Our current results indicate that, different from the tone-specific change, the nonspecific changes depend on neither the cholinergic neuromodulator nor the somatosensory cortex.  相似文献   

9.
10.
Response properties of auditory cortical neurons measured in anesthetized preparations have provided important information on the physiological differences between neurons in different auditory cortical areas. Studies in the awake animal, however, have been much less common, and the physiological differences noted may reflect differences in the influence of anesthetics on neurons in different cortical areas. Because the behaving monkey is gaining popularity as an animal model in studies exploring auditory cortical function, it has become critical to physiologically define the response properties of auditory cortical neurons in this preparation. This study documents the response properties of single cortical neurons in the primary and surrounding auditory cortical fields in monkeys performing an auditory discrimination task. We found that neurons with the shortest latencies were located in the primary auditory cortex (AI). Neurons in the rostral field had the longest latencies and the narrowest intensity and frequency tuning, neurons in the caudomedial field had the broadest frequency tuning, and neurons in the lateral field had the most monotonic rate/level functions of the four cortical areas studied. These trends were revealed by comparing response properties across the population of studied neurons, but there was considerable variability between neurons for each response parameter other than characteristic frequency (CF) in each cortical area. Although the neuronal CFs showed a systematic spatial organization across AI, no such systematic organization was apparent for any other response property in AI or the adjacent cortical areas. The results of this study indicate that there are physiological differences between auditory cortical fields in the behaving monkey consistent with previous studies in the anesthetized animal and provide insights into the functional role of these cortical areas in processing acoustic information.  相似文献   

11.
Repetitive acoustic stimulation, auditory fear conditioning, and focal electric stimulation of the auditory cortex (AC) each evoke the reorganization of the central auditory system. Our current study of the big brown bat indicates that focal electric stimulation of the AC evokes center-surround reorganization of the frequency map of the AC. In the center, the neuron's best frequencies (BFs), together with their frequency-tuning curves, shift toward the BFs of electrically stimulated cortical neurons (centripetal BF shifts). In the surround, BFs shift away from the stimulated cortical BF (centrifugal BF shifts). Centripetal BF shifts are much larger than centrifugal BF shifts. An antagonist (bicuculline methiodide) of inhibitory synaptic transmitter receptors changes centrifugal BF shifts into centripetal BF shifts, whereas its agonist (muscimol) changes centripetal BF shifts into centrifugal BF shifts. This reorganization of the AC thus depends on a balance between facilitation and inhibition evoked by focal cortical electric stimulation. Unlike neurons in the AC of the big brown bat, neurons in the Doppler-shifted constant-frequency (DSCF) area of the AC of the mustached bat are highly specialized for fine-frequency analysis and show almost exclusively centrifugal BF shifts for focal electric stimulation of the DSCF area. Our current data indicate that in the highly specialized area, lateral inhibition is strong compared with the less-specialized area and that the specialized and nonspecialized areas both share the same inhibitory mechanism for centrifugal BF shifts.  相似文献   

12.
Neurons in the center of cat primary auditory cortex (AI) respond to a narrow range of sound frequencies and the preferred frequencies in local neuron clusters are closely aligned in this central narrow bandwidth region (cNB). Response preferences to other input parameters, such as sound intensity and binaural interaction, vary within cNB; however, the source of this variability is unknown. Here we examined whether input to the cNB could arise from multiple, anatomically independent subregions in the ventral nucleus of the medial geniculate body (MGBv). Retrograde tracers injected into cNB labeled discontinuous clusters of neurons in the superior (sMGBv) and inferior (iMGBv) halves of the MGBv. Most labeled neurons were in the sMGBv and their density was greater, iMGBv somata were significantly larger. These findings suggest that cNB projection neurons in superior and iMGBv have distinct anatomic and possibly physiologic organization.  相似文献   

13.
Donishi T  Kimura A  Okamoto K  Tamai Y 《Neuroscience》2006,141(3):1553-1567
The rat auditory cortex is made up of multiple auditory fields. A precise correlation between anatomical and physiological areal extents of auditory fields, however, is not yet fully established, mainly because non-primary auditory fields remain undetermined. In the present study, based on thalamocortical connection, electrical stimulation and auditory response, we delineated a non-primary auditory field in the cortical region ventral to the primary auditory area and anterior auditory field. We designated it as "ventral" area after its relative location. At first, based on anterograde labeling of thalamocortical projection with biocytin, ventral auditory area was delineated as a main cortical terminal field of thalamic afferents that arise from the dorsal division of the medial geniculate body. Cortical terminal field (ventral auditory area) extended into the ventral margin of temporal cortex area 1 (Te1) and the dorsal part of temporal cortex area 3, ventral (Te3V), from 3.2-4.6 mm posterior to bregma. Electrical stimulation of the dorsal division of the medial geniculate body; evoked epicortical field potentials confined to the comparable cortical region. On the basis of epicortical field potentials evoked by pure tones, best frequencies were further estimated at and around the cortical region where electrical stimulation of the dorsal division of the medial geniculate body evoked field potentials. Ventral auditory area was found to represent frequencies primarily below 15 kHz, which contrasts with our previous finding that the posterodorsal area, the other major recipient of the dorsal division of the medial geniculate body; projection, represents primarily high frequencies (>15 kHz). The posterodorsal area is thought to play a pivotal role in auditory spatial processing [Kimura A, Donishi T, Okamoto K, Tamai Y (2004) Efferent connections of "posterodorsal" auditory area in the rat cortex: implications for auditory spatial processing. Neuroscience 128:399-419]. The ventral auditory area, as the other main cortical region that would relay auditory input from the dorsal division of the medial geniculate body to higher cortical information processing, could serve an important extralemniscal function in tandem with the posterodorsal area. The results provide insight into structural and functional organization of the rat auditory cortex.  相似文献   

14.
Summary The origin and laminar arrangement of the homolateral and callosal projections to the anterior (AAF), primary (AI), posterior (PAF) and secondary (AII) auditory cortical areas were studied in the cat by means of electrophysiological recording and WGA-HRP tracing techniques. The transcallosal projections to AAF, AI, PAF and AII were principally homotypic since the major source of input was their corresponding area in the contralateral cortex. Heterotypic transcallosal projections to AAF and AI were seen, originating from the contralateral AI and AAF, respectively. PAF received heterotypic commissural projections from the opposite ventroposterior auditory cortical field (VPAF). Heterotypic callosal inputs to AII were rare, originating from AAF and AI. The neurons of origin of the transcallosal connections were located mainly in layers II and III (70–92%), and less frequently in deep layers (V and VI, 8–30%). Single unit recordings provided evidence that both homotypic and heterotypic transcallosal projections connect corresponding frequency regions of the two hemispheres. The regional distribution of the anterogradely labeled terminals indicated that the homotypic and heterotypic auditory transcallosal projections are reciprocal. The present data suggest that the transcallosal auditory interconnections are segregated in 3 major parallel components (AAF-AI, PAF-VPAF and AII), maintaining a segregation between parallel functional channels already established for the thalamocortical auditory interconnections. For the intrahemispheric connections, the analysis of the retrograde tracing data revealed that AAF and AI receive projections from the homolateral cortical areas PAF, VPAF and AII, whose neurons of origin were located mainly in their deep (V and VI) cortical layers. The reciprocal interconnections between the homolateral AAF and AI did not show a preferential laminar arrangement since the neurons of origin were distributed almost evenly in both superficial (II and III) and deep (V and VI) cortical layers. On the contrary, PAF received inputs from the homolateral cortical fields AAF, AI, AII and VPAF, originating predominantly from their superficial (II and III) layers. The homolateral projections reaching AII originated mainly from the superficial layers of AAF and AI, but from the deep layers of VPAF and PAF. The laminar distribution of anterogradely labeled terminal fields, when they were dense enough for a confident identification, was systematically related to the laminar arrangement of neurons of origin of the reciprocal projection: a projection originating from deep layers was associated with a reciprocal projection terminating mainly in layer IV, whereas a projection originating from superficial layers was associated with a reciprocal projection terminating predominantly outside layer IV. This laminar distribution indicates that the homolateral auditory cortical interconnections have a feed-forward/feed-back organization, corresponding to a hierarchical arrangement of the auditory cortical areas, according to criteria previously established in the visual system of primates. The principal auditory cortical areas could be ranked into 4 distinct hierarchical levels. The tonotopically organized areas AAF and AI represent the lowest level. The second level corresponds to the non-tonotopically organized area AII. Higher, the tonotopically organized areas VPAF and PAF occupy the third and fourth hierarchical levels, respectively.Abbreviations AAF anterior auditory cortical area - AI primary auditory cortical area - AII secondary auditory cortical area - BF best frequency - C cerebral cortex - CA caudate nucleus - CL claustrum - D dorsal nucleus of the dorsal division of the MGB - ea anterior ectosylvian sulcus - ep posterior ectosylviansulcus - IC internal capsule - LGN lateral geniculate nucleus - LV pars lateralis of the ventral division of the MGB - LVe lateral ventricule - M pars magnocellularis of the medial division of the MGB - MGB medial geniculate body - MGBv ventral division of the MGB - OT optic tract - OV pars ovoidea of the ventral division of the MGB - PAF posterior auditory cortical area - PH parahippocampal cortex - PO lateral part of the posterior group of thalamic nuclei - PU putamen - RE reticular complex of thalamus - rs rhinal sulcus - SG suprageniculate nucleus of the dorsal division of the MGB - ss suprasylvian sulcus - TMB tetrametylbenzidine - VBX ventrobasal complex - VLa ventrolateral complex - VL ventro-lateral nucleus of the ventral division of the MGB - WGA-HRP wheat germ agglutinin conjugated to horse-radish peroxidase - WM white matter - VPAF ventro-posterior auditory cortical area  相似文献   

15.
Ma X  Suga N 《Journal of neurophysiology》2008,100(2):1127-1134
The central auditory system creates various types of neurons tuned to different acoustic parameters other than a specific frequency. The response latency of auditory neurons typically shortens with an increase in stimulus intensity. However, approximately 10% of collicular neurons of the little brown bat show a "paradoxical latency-shift (PLS)": long latencies to intense sounds but short latencies to weak sounds. These neurons presumably are involved in the processing of target distance information carried by a pair of an intense biosonar pulse and its weak echo. Our current studies show that collicular PLS neurons of the big brown bat are modulated by the corticofugal (descending) system. Electric stimulation of cortical auditory neurons evoked two types of changes in the PLS neurons, depending on the relationship in the best frequency (BF) between the stimulated cortical and recorded collicular neurons. When the BF was matched between them, the cortical stimulation did not shift the BFs of the collicular neurons and shortened their response latencies at intense sounds so that the PLS became smaller. When the BF was unmatched, however, the cortical stimulation shifted the BFs of the collicular neurons and lengthened their response latencies at intense sounds, so that the PLS became larger. Cortical electric stimulation also modulated the response latencies of non-PLS neurons. It produced an inhibitory frequency tuning curve or curves. Our findings indicate that corticofugal feedback is involved in shaping the spectrotemporal patterns of responses of subcortical auditory neurons presumably through inhibition.  相似文献   

16.
In the Jamaican mustached bat, Pteronotus parnellii parnellii, one of the subdivisions of the primary auditory cortex is disproportionately large and over-represents sound at approximately 61 kHz. This area, called the Doppler-shifted constant frequency (DSCF) processing area, consists of neurons extremely sharply tuned to a sound at approximately 61 kHz. We found that a focal activation of the DSCF area evokes highly specific corticofugal modulation in the inferior colliculus and medial geniculate body. Namely a focal activation of cortical DSCF neurons tuned to, say, 61. 2 kHz with 0.2-ms-long, 100-nA electric pulses drastically increases the excitatory responses of thalamic and collicular neurons tuned to 61.2 kHz without shifting their best frequencies (BFs). However, it decreases the excitatory responses of subcortical neurons tuned to frequencies slightly higher or lower than 61.2 kHz and shifts their BFs away from 61.2 kHz. The BF shifts are symmetrical and centrifugal around 61.2 kHz. These corticofugal effects are larger on thalamic neurons than on collicular neurons. The cortical electrical stimulation sharpens the frequency-tuning curves of subcortical neurons. These corticofugal effects named "egocentric selection" last 相似文献   

17.
目的研究猫内侧膝状体(medial geniculate body,MGB)的立体定位与主要亚核团的三维可视化及其与听皮层(auditory cortex,AC)的神经投射。方法在细胞构筑及采用辣根过氧化物酶(Horseradish Peroxidase,HRP)、生物素葡聚糖胺(biotinylated dextran amine,BDA)进行神经追踪基础上,建立猫内侧膝状体及听皮层冠状切片的二维数据库,通过软件Amira实现可视化及三维建模。结果1.猫内侧膝状体腹侧群(MGBv)、背侧群(MGBd)以及内侧群(MGBm)三个主要亚核团的重建模型真实、精确,再现了猫右脑半球内MGB各亚核团的自然形态及毗邻。2.内侧膝状体各亚核团的构成方式、听皮层的层状分布模式、广义听皮层内部各亚区之间的配布模式之间存在着相对应的组构格局。结论细胞构筑、神经示踪、组织化学染色和数字人图像处理技术相结合,实现了内侧膝状体主要亚核团的三维重建,对听觉通路的相关研究和小核团的数字解剖学研究具有重要意义。  相似文献   

18.
The auditory cortex of the rat is becoming an increasingly popular model system for studies of experience-dependent receptive field plasticity. However, the relative position of various fields within the auditory core and the receptive field organization within each field have yet to be fully described in the normative case. In this study, the macro- and micro-organizational features of the auditory cortex were studied in pentobarbital-anesthetized adult rats with a combination of physiological and anatomical methods. Dense microelectrode mapping procedures were used to identify the relative position of five tonotopically organized fields within the auditory core: primary auditory cortex (AI), the posterior auditory field (PAF), the anterior auditory field (AAF), the ventral auditory field (VAF), and the suprarhinal auditory field (SRAF). AI and AAF both featured short-latency, sharply tuned responses with predominantly monotonic intensity-response functions. SRAF and PAF were both characterized by longer-latency, broadly tuned responses. VAF directly abutted the ventral boundary of AI but was almost exclusively composed of low-threshold nonmonotonic intensity-tuned responses. Dual injection of retrograde tracers into AI and VAF was used to demonstrate that the sources of thalamic input from the medial geniculate body to each area were essentially nonoverlapping. An analysis of receptive field parameters beyond characteristic frequency revealed independent spatially ordered representations for features related to spectral tuning, intensity tuning, and onset response properties in AI, AAF, VAF, and SRAF. These data demonstrate that despite its greatly reduced physical scale, the rat auditory cortex features a surprising degree of organizational complexity and detail.  相似文献   

19.
Primary sensory cortical areas are characterized by orderly and largely independent representations of several receptive field properties. This is expressed in multiple, spatially overlaying parameter distributions, such as orientation preference, spatial frequency, and ocular dominance maps in the primary visual cortex. In the auditory cortex, two main and presumably independent representational parameters are the center frequency and the frequency extent of spectral tuning curves. Here we demonstrate interactions between cortical tonotopic gradient and spectral bandwidth modules in cat primary auditory cortex (AI). First, the spatial representation of spectral integration is not equally expressed across the whole frequency range in AI. Narrow-bandwidth modules are found only in the mid-frequency region (5-20 kHz). Thus spectral integration properties delineate three frequency regions (<5, 5-20, and >20 kHz) in cat AI. Second, the extent of spectral integration covaries with the local tonotopic gradient in the low- and mid-frequency ranges. Regions with a shallow frequency gradient tend to have narrower spectral integration than those with a steep gradient. These relationships between spectral selectivity and frequency gradient constrain forebrain models of thalamo- and corticocortical convergence and connectivity and may reflect the processing of behaviorally relevant stimulus constellations.  相似文献   

20.
In a search phase of echolocation, big brown bats, Eptesicus fuscus, emit biosonar pulses at a rate of 10/s and listen to echoes. When a short acoustic stimulus was repetitively delivered at this rate, the reorganization of the frequency map of the primary auditory cortex took place at and around the neurons tuned to the frequency of the acoustic stimulus. Such reorganization became larger when the acoustic stimulus was paired with electrical stimulation of the cortical neurons tuned to the frequency of the acoustic stimulus. This reorganization was mainly due to the decrease in the best frequencies of the neurons that had best frequencies slightly higher than those of the electrically stimulated cortical neurons or the frequency of the acoustic stimulus. Neurons with best frequencies slightly lower than those of the acoustically and/or electrically stimulated neurons slightly increased their best frequencies. These changes resulted in the over-representation of repetitively delivered acoustic stimulus. Because the over-representation resulted in under-representation of other frequencies, the changes increased the contrast of the neural representation of the acoustic stimulus. Best frequency shifts for over-representation were associated with sharpening of frequency-tuning curves of 25% of the neurons studied. Because of the increases in both the contrast of neural representation and the sharpness of tuning, the over-representation of the acoustic stimulus is accompanied with an improvement of analysis of the acoustic stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号