共查询到20条相似文献,搜索用时 15 毫秒
1.
A Mangerich S Veith O Popp J Fahrer R Martello VA Bohr A Bürkle 《Mechanisms of ageing and development》2012,133(8):575-579
Werner syndrome is a disorder characterized by a premature aging phenotype. The disease is caused by mutations in the WRN gene which encodes a DNA helicase/exonuclease which is involved in multiple aspects of DNA metabolism. Current methods mostly rely on radiometric techniques to assess WRN exonuclease activity. Here we present an alternative, quantitative approach based on non-radioactive isotope dilution mass spectrometry (LC-MS/MS). A oligoduplex substrate mimicking the telomeric sequence was used for method development. Released nucleotides, which correlate with the degree of oligoduplex degradation, were dephosphorylated, purified, and quantified by LC-MS/MS. Heavy-isotope-labeled internal standards were used to account for technical variability. The method was validated in terms of reproducibility, time-course and concentration-dependency of the reaction. As shown in this study, the LC-MS/MS method can assess exonuclease activity of WRN mutants, WRN's substrate and strand specificity, and modulatory effects of WRN interaction partners and posttranslational modifications. Moreover, it can be used to analyze the selectivity and processivity of WRN exonuclease and allows the screening of small molecules for WRN exonuclease inhibitors. Importantly, this approach can easily be adapted to study nucleases other than WRN. This is of general interest, because exonucleases are key players in DNA metabolism and aging mechanisms. 相似文献
2.
The human premature aging protein Werner (WRN), deficient in Werner syndrome (WS), is localized mainly to the nucleolus in many cell types. DNA damage or replication arrest causes WRN to redistribute from the nucleolus to the nucleoplasm into discrete foci. In this study, we have investigated DNA damage specific cellular redistribution of WRN. In response to agents causing DNA double strand breaks or DNA base damage, WRN is re-distributed from the nucleolus to the nucleoplasm in a reversible manner. However, after ultraviolet (UV) irradiation such redistribution of WRN is largely absent. We also show that WRN is associated with the insoluble protein fraction of cells after exposure to various kinds of DNA damage but not after UV irradiation. Further, we have studied the DNA damage specific post-translational modulation of WRN. Our results show that WRN is acetylated after mytomycin C or methyl methane-sulfonate treatment, but not after UV irradiation. Also, DNA damage specific phosphorylation of WRN is absent in UV irradiated cells. Inhibition of phosphorylation fails to restore WRN localization. Thus, our results suggest that the dynamics of WRN protein trafficking is DNA damage specific and is related to its post-translational modulation. The results also indicate a preferred role of WRN in recombination and base excision repair rather than nucleotide excision repair. 相似文献
3.
Koutaro Yokote Sirisak Chanprasert Lin Lee Katharina Eirich Minoru Takemoto Aki Watanabe Naoko Koizumi Davor Lessel Takayasu Mori Fuki M. Hisama Paula D. Ladd Brad Angle Hagit Baris Kivanc Cefle Sukru Palanduz Sukru Ozturk Antoinette Chateau Kentaro Deguchi T.K.M Easwar Antonio Federico Amy Fox Theresa A. Grebe Beverly Hay Sheela Nampoothiri Karen Seiter Elizabeth Streeten Raul E. Piña‐Aguilar Gemma Poke Martin Poot Renata Posmyk George M. Martin Christian Kubisch Detlev Schindler Junko Oshima 《Human mutation》2017,38(1):7-15
4.
Huang S Lee L Hanson NB Lenaerts C Hoehn H Poot M Rubin CD Chen DF Yang CC Juch H Dorn T Spiegel R Oral EA Abid M Battisti C Lucci-Cordisco E Neri G Steed EH Kidd A Isley W Showalter D Vittone JL Konstantinow A Ring J Meyer P Wenger SL von Herbay A Wollina U Schuelke M Huizenga CR Leistritz DF Martin GM Mian IS Oshima J 《Human mutation》2006,27(6):558-567
The International Registry of Werner syndrome (www.wernersyndrome.org) has been providing molecular diagnosis of the Werner syndrome (WS) for the past decade. The present communication summarizes, from among 99 WS subjects, the spectrum of 50 distinct mutations discovered by our group and by others since the WRN gene (also called RECQL2 or REQ3) was first cloned in 1996; 25 of these have not previously been published. All WRN mutations reported thus far have resulted in the elimination of the nuclear localization signal at the C-terminus of the protein, precluding functional interactions in the nucleus; thus, all could be classified as null mutations. We now report two new mutations in the N-terminus that result in instability of the WRN protein. Clinical data confirm that the most penetrant phenotype is bilateral ocular cataracts. Other cardinal signs were seen in more than 95% of the cases. The median age of death, previously reported to be in the range of 46-48 years, is 54 years. Lymphoblastoid cell lines (LCLs) have been cryopreserved from the majority of our index cases, including material from nuclear pedigrees. These, as well as inducible and complemented hTERT (catalytic subunit of human telomerase) immortalized skin fibroblast cell lines are available to qualified investigators. 相似文献
5.
The mismatch repair pathway is responsible for maintaining genomic stability by correcting base-base mismatches and insertion/deletion loops that arise mainly via replication errors. Additionally, the mismatch repair pathway performs a central role in the cellular response to both alkylation and reactive oxygen species induced DNA damage. An important step in mismatch processing is the recruitment of hEXO1, a 5' to 3' exonuclease, by hMSH2-hMSH6 to remove the nascent DNA strand. However, very little is currently known about the capacity of hEXO1 to exonucleolytically process damaged DNA bases. Therefore, we examined whether hEXO1 can degrade double-stranded DNA substrates containing alkylated or oxidized nucleotides. Our results demonstrated that hEXO1 is capable of degrading duplex DNA containing an O6-methylguanine (O6-meG) adduct paired with either a C or a T. Additionally, the hMSH2-hMSH6 complex stimulated hEXO1 exonuclease activity on the O6-meG/T and O6-meG/C DNA substrates. In contrast, hEXO1 exonuclease activity was significantly blocked by the presence of an 8-oxoguanine adduct in both single and double stranded DNA substrates. Further, hMSH2-hMSH6 was not able to alleviate the nucleolytic block caused by the 8-oxoguanine adduct in heteroduplex DNA. 相似文献
6.
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by genomic instability. WRN gene encodes one of the RecQ helicase family proteins, WRN, which has ATPase, helicase, exonuclease and single stranded DNA annealing activities. There is accumulating evidence suggesting that WRN contributes to the maintenance of genomic integrity through its involvement in DNA repair, replication and recombination. The role of WRN in these pathways can be modulated by its post-translational modifications in response to DNA damage. Here, we review the functional consequences of post-translational modifications on WRN as well as specific DNA repair pathways where WRN is involved and discuss how these modifications affect DNA repair pathways. 相似文献
7.
T Tsurumi 《Virology》1992,189(2):803-807
Epstein-Barr virus (EBV) DNA polymerase possesses a proofreading 3'-to-5' exonuclease activity (Tsurumi, T. (1991) Virology 182, 376-381). The 3'-to-5' exonuclease activity can be selectively inhibited by ribonucleoside 5'-monophosphates, while no inhibition of the DNA polymerase activity can be observed even when the template/primer concentrations are rate-limiting. Deoxynucleoside monophosphates except 5'dGMP have almost no effect on the exonuclease activity. Of the four ribonucleoside monophosphates, 5'GMP is the most potent (62% inhibition at 5 mM). The kinetic study shows that 5'-GMP inhibits the exonuclease activity competitively with respect to DNA template/primer. During DNA polymerization process the EBV DNA polymerase catalyzes the DNA-dependent conversion of complementary deoxynucleoside triphosphate to monophosphate form. With poly(dT).oligo(rA) as a template primer, selective inhibition of the exonuclease activity by 5'-GMP results in a decrease in the amount of free dAMP generated which is complementary to the template DNA, suggesting the functional relationship between the editing exonuclease activity and the chain elongation activity of the EBV DNA polymerase molecule. 相似文献
8.
Comparative alignment of the 3'untranslated regions (3'UTRs) of tick-borne flaviviruses has previously revealed short direct repeat sequences about 25-70 nucleotides long [Gritsun, T.S., Venugopal, K., Zanotto, P.M., Mikhailov, M.V., Sall, A.A., Holmes, E.C., Polkinghorne, I., Frolova, T.V., Pogodina, V.V., Lashkevich, V.A., Gould, E.A., 1997. Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5' and 3'-UTRs. Virus Res. 49 (1) 27-39; Wallner, G., Mandl, C.W., Kunz, C., Heinz, F.X., 1995. The flavivirus 3'-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. Virology, 213 (1) 169-178]. We now show that these short sequences appear to have originated from longer repeat sequences (LRSs) that are present both in the 3'UTR and the open reading frame of the genome. We propose that the 3'UTR, and possibly the open reading frame, evolved through multiple duplications, deletions and mutations of a primordial sequence element. 相似文献
9.
Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington's disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. 相似文献
10.
11.
Requirement of yeast Rad1-Rad10 nuclease for the removal of 3'-blocked termini from DNA strand breaks induced by reactive oxygen species 下载免费PDF全文
Guzder SN Torres-Ramos C Johnson RE Haracska L Prakash L Prakash S 《Genes & development》2004,18(18):2283-2291
The Rad1-Rad10 nuclease of yeast and its human counterpart ERCC1-XPF are indispensable for nucleotide excision repair, where they act by cleaving the damaged DNA strand on the 5'-side of the lesion. Intriguingly, the ERCC1- and XPF-deficient mice show a severe postnatal growth defect and they die at approximately 3 wk after birth. Here we present genetic and biochemical evidence for the requirement of Rad1-Rad10 nuclease in the removal of 3'-blocked termini from DNA strand breaks induced on treatment of yeast cells with the oxidative DNA damaging agent H(2)O(2). Our genetic studies indicate that 3'-blocked termini are removed in yeast by the three competing pathways that involve the Apn1, Apn2, and Rad1-Rad10 nucleases, and we show that the Rad1-Rad10 nuclease proficiently cleaves DNA modified with a 3'-phosphoglycolate terminus. From these observations, we infer that deficient removal of 3'-blocking groups formed from the action of oxygen free radicals generated during normal cellular metabolism is the primary underlying cause of the inviability of apn1Delta apn2Delta rad1Delta and apn1Deltaapn2Delta rad10Delta mutants and that such a deficiency accounts also for the severe growth defects of ERCC1- and XPF-deficient mice. 相似文献
12.
13.
14.
15.
16.
17.
18.
The tissue concentration of cyclic 3'5′-guanosine monophosphate (cGMP) has been shown to increase in the small intestine when net fluid secretion is evoked by the heat-stable enterotoxine of Escherichia coli. Lipophilic cGMP analogues are also known to elicit intestinal fluid secretion. It is therefore believed that an increase in intracellular cGMP concentration in enterocytes mediates this secretion. The present study reports that the fluid secretion, elicited by placing two different cGMP analogues, di-butyryl-cGMP and 8-Br-cGMP, in the intestinal lumen of anaesthetized rats in vivo, is significantly inhibited by atropine, hexamethonium and lidocaine. It is proposed that cGMP activates a reflex in the enteric nervous system which, in part, explains the observed fluid secretion. 相似文献
19.