首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease characterized by the aberrant proliferation of myeloid stem cells, reduced apoptosis and blockage in cellular differentiation. The present report describes the results of hematological, cytogenetic, and fluorescence in situ hybridization (FISH) analysis in a 25-year-old man diagnosed with AML-M2. Cytogenetic as well as FISH analysis revealed a complex translocation involving four chromosomes, with the karyotype 45,−Y,der(X)t(X;8)(p21;q22),der(8)t(8;21)(q22;q22),ins(15;21)(q15;q22.2q22.3),der(21)t(8;21)(q22;q22). The breakpoints at 8q22 and 21q22 suggested a rearrangement of the RUNX1T1 (alias ETO) and RUNX1 (previously AML1) genes, respectively. Using a dual-color FISH test with RUNX1T1 and RUNX1 probes, we demonstrated an RUNX1/RUNX1T1 fusion signal on the derivative chromosome 8, establishing this translocation as a novel complex variant of t(8;21)(q22;q22).  相似文献   

3.
4.
5.
6.
Acute promyelocytic leukemia (APL) is characterized by the t(15;17)(q22;q21), which results in the fusion of the promyelocytic leukemia (PML) gene at 15q22 with the retinoic acid alpha-receptor (RARalpha) at 17q21. The 2 chimeric genes PML/RARalpha and RARalpha/PML are thought to play a role in leukemogenesis. We report a case of APL in a patient carrying an apparently complex variant translocation identified as t(6;15;17) by R-banding and whole chromosome 15 and 17 painting. However, FISH analysis with a PML/RARalpha dual-color kit showed a more complex translocation, resulting presumably from a two-step rearrangement, with PML-RARalpha fusion gene located as expected on the der(15) but the residual 5'-RARalpha signal located on the der(6). The patient achieved complete remission with all-trans retinoic acid treatment associated with chemotherapy. This case illustrates the usefulness of combined cytogenetics, FISH, and molecular biology to evidence the PML/RARalpha fusion gene in complex cases.  相似文献   

7.
We report a case of childhood acute lymphoblastic leukemia with the simultaneous occurrence of a t(2;8)(p12;q24) typically associated with mature B cell or Burkitt leukemia, and a t(12;21)(p13;q22) exclusively associated with pre-B cell ALL. The lymphoblasts were characterized as L2 morphology by the French-American-British classification. However, there were atypical morphologic findings for L2 ALL, including vacuolization in some cells. The lymphoblasts were periodic acid-Schiff positive and myeloperoxidase negative. Immunophenotypic analysis revealed that the majority of lymphoblasts were TdT+, CD10+, CD19+, CD20-, and cytoplasmic mu+. These features were consistent with an immature pre-B cell leukemia phenotype with some characteristics of a mature B-cell leukemia. A t(2;8)(p12;q24)(p12;q24), characteristic of mature B-cell leukemia or Burkitt type leukemia, was detected by conventional cytogenetics with no other cytogenetic abnormalities. However, diagnostic peripheral blood and bone marrow specimens demonstrated simultaneous occurrence of a cryptic t(12;21)(p13;q22) by both FISH and RT-PCR. The simultaneous occurrence of these translocations in a pediatric patient have implications for the pathogenesis of leukemias with t(2;8)(p12;q24) as well as t(12;21)(p12;q22). Analysis of additional cases of leukemia with translocations involving the MYC locus on 8q24 will be required to determine the frequency of association with the cryptic t(12;21)(p13;22), and the prognostic significance of the simultaneous occurrence of the translocations.  相似文献   

8.
9.
10.
11.
12.
In acute myeloid leukemia (AML), nonrandom clonal chromosome aberrations are detectable in ~ 55% of adult cases. Translocation t(8;21)(q22;q22) resulting in the 5'RUNX1/3'RUNX1T1 fusion gene occurs in ~ 8% of AML cases. Also, ins(8;21) and ins(21;8) have been described that show a broad heterogeneity at the molecular level with inserted fragment sizes ranging from 2.4 to 44 Mb. Microarray-based comparative genomic hybridization (arrayCGH) in 49 intermediate-risk AML and RT-PCR-based screening in 532 AML cases allowed the detection of ins(21;8)/ins(8;21) in three cases; arrayCGH and subsequent RT-PCR revealed an ~ 0.5 Mb sized inserted fragment generating the 5'RUNX1/3'RUNX1T1 fusion gene in one case with a submicroscopic ins(21;8)(q22;q22q22) whereas the other two cases were identified by banding analysis and RT-PCR, respectively. Gene expression profiling (GEP) and a detailed review of the literature highlighted similar biological features of AML cases with ins(21;8)/ins(8;21) and t(8;21)(q22;q22). Our study demonstrates the potential of high-resolution array-based analysis and GEP and provides further evidence that AML with insertions generating the 5'RUNX1/3'RUNX1T1 fusion not only biologically resemble the t(8;21)(q22;q22) AML subgroup, but might also share its prognostically favorable clinical behavior. Thus, similar treatment options should be considered in these patients.  相似文献   

13.
We describe here a new case of therapy-related acute leukemia with t(1;21)(p36;q22). A 25-year-old man was admitted because of anemia and thrombocytopenia. Four years before, he had received combination chemotherapy including etoposide for seminoma. Bone marrow was hypercellular, with 49% myeloperoxidase (MPO) staining-negative blasts. Chromosome analysis showed 46,XY,t(1;21)(p36.3;q22)[11]/49,sl,+8,+16,+20[9]. Fluorescence in situ hybridization demonstrated that RUNX1 signals at 21q22 were split onto the der(1)t(1;21) and der(21)t(1;21). Immunophenotypic analyses revealed that blasts were positive for CD19, CD79a, and cytCD22, as well as MPO, CD13, and CD33, fulfilling the diagnostic criteria of mixed phenotype acute leukemia, B/myeloid. The patient died of disease progression after 10 months. Thus, acute leukemia with t(1;21) and RUNX1 rearrangement could be associated with B/myeloid mixed phenotype as well as previous topoisomerase II inhibitor therapy and poor prognoses.  相似文献   

14.
Duplications of the proximal segment of chromosome 22q are not uncommon, like Cat-eye syndrome and duplications due to familial (11;22) translocations. However, duplications of the distal long arm of chromosome 22 (22qter) seem to be exceedingly rare. So far, duplications of 22q12 or 22q13 to 22qter have been described in 21 patients, of whom 13 had a pure duplication 22qter. Here we report on three new cases with a pure duplication of the distal part of 22q. The first patient carries a duplication of terminal 22q due to a de novo unbalanced translocation, 46,XX,der(21)t(21;22) (p13;q13.2), detected by NOR-staining, while the other patients have a familial cryptic duplication of terminal 22q due to an unbalanced translocation, 46,XY,der(21)t(21;22)(p10;q13.3). The last two patients were initially thought to have a polymorphic variant of 21p, but additional subtelomeric screening using FISH showed the extra material was derived from chromosome 22. Terminal duplications of 22qter may be more common than generally assumed, but due to its small size, especially when located on an acrocentric chromosome and/or possibly relatively mild phenotype remain undetected thus far.  相似文献   

15.
16.
17.
Coexistence of two specific chromosomal translocations in the same clone is an infrequent phenomenon and has only rarely been reported in hematological malignancies. We report a combination of t(16;16)(p13;q22), the Philadelphia translocation t(9;22)(q34;q11.2), and deletion of the long arm of chromosome 7 in a patient with chronic myeloid leukemia in blast phase. Monotherapy treatment with imatinib mesylate resulted in the disappearance of the Ph-positive clone, but with persistence of t(16;16) and del(7) in all of the metaphases examined. The case illustrates that, although imatinib mesylate can be an effective treatment in eradication of the BCR–ABL fusion gene cells, the occurrence of additional specific abnormalities in Philadelphia-positive leukemias may pose a significant therapeutic challenge.  相似文献   

18.
19.
20.
We describe unusual cytogenetic findings in a 33-year-old male with blastic phase of Philadelphia chromosome (Ph)-positive chronic myeloid leukemia. In addition to the t(9;22)(q34;q11), which was detected in all metaphases, a t(11;19)(q23;p13.3) was also identified as an evolutional change in all 20 metaphases. Fluorescence in situ hybridization (FISH) analysis showed that fusion signals of the ABL/BCR probes were found in 95% of blastic cells. Southern blotting and FISH analysis also revealed involvement of the MLL gene on 11q23. Clinical course was aggressive and the patient responded poorly to therapy. These findings suggest an association between Ph and 11q23 with poor prognosis, and that t(11;19)(q23;p13.3) was the essential pathogenic factor in our case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号