共查询到20条相似文献,搜索用时 15 毫秒
1.
Takeharu Kakiuchi Hiroyuki Ohba Shingo Nishiyama Kengo Sato Norihiro Harada Satoshi Nakanishi Hideo Tsukada 《Brain research》2001,916(1-2)
The effects of changes in regional cerebral blood flow (rCBF) with aging on muscarinic cholinergic receptor binding were evaluated with [15O]H2O and N-[11C]methyl-4-piperidyl benzilate (4-MPB) in the living brains of young (5.9±1.8 years old) and aged (19.0±3.3 years old) monkeys (Macaca mulatta) in the conscious state using high-resolution positron emission tomography (PET). For quantitative analysis of receptor binding in vivo with [11C]4-MPB, metabolite-corrected arterial plasma radioactivity curves were obtained as an input function into the brain, and graphical Patlak plot analysis was applied. In addition, two-compartment model analysis using the radioactivity curve in the cerebellum as an input function (reference analysis) was also applied to determine the distribution volume (DV=K1/k2′) for [11C]4-MPB. With metabolite-corrected arterial input, Patlak plot analysis of [11C]4-MPB indicated a regionally specific decrease in muscarinic cholinergic receptor binding in vivo in the frontal and temporal cortices as well as the striatum in aged compared with young animals, showing no correlation with the degree of reduced rCBF. In contrast, on the reference analysis with cerebellar input of [11C]4-MPB, all regions assayed except the pons showed a significant age-related decrease of DV, and the degree of reduction of DV was correlated with that of rCBF. These results demonstrated the usefulness of kinetic analysis of [11C]4-MPB with metabolite-corrected arterial input, not with reference region’s input, as an indicator of the aging process of cortical muscarinic cholinergic receptors in vivo measured by PET with less blood flow dependency. 相似文献
2.
H Tsukada T Kakiuchi S Nishiyama H Ohba K Sato N Harada K Takahashi 《Synapse (New York, N.Y.)》2001,41(3):248-257
Age-related changes in muscarinic cholinergic receptors were evaluated with the novel ligand (+)N-[(11)C]methyl-3-piperidyl benzilate ((+)3-MPB) in the living brains of young (5.9 +/- 1.8 years old) and aged (19.0 +/- 3.3 years old) monkeys (Macaca mulatta) in the conscious state using high-resolution positron emission tomography (PET). For quantitative analysis of receptor binding in vivo, metabolite-corrected arterial plasma radioactivity curves were obtained as an input function into the brain, and kinetic analyses using the three-compartment model and graphical Logan plot analysis were applied. Kinetic analyses of [(11)C](+)3-MPB indicated a regionally specific decrease in the receptor binding in vivo determined as binding potential (BP) = k(3)/k(4) in aged animals compared with young animals. Thus, the frontal and temporal cortices as well as the striatum showed age-related reduction of muscarinic cholinergic receptors in vivo, reflecting the reduced receptor density (B(max)) determined by Scatchard plot analysis in vivo. In the hippocampus, although BP of [(11)C](+)3-MPB indicated no significant age-related changes, it showed an inverse correlation with individual cortisol levels in plasma. When the graphical Logan plot analysis was applied, all regions assayed showed significant age-related decrease of [(11)C](+)3-MPB binding. These results demonstrate the usefulness of kinetic three-compartment model analysis of [(11)C](+)3-MPB with metabolite-corrected arterial plasma input as an indicator for the aging process of the cortical muscarinic cholinergic receptors in vivo as measured by PET. 相似文献
3.
Nishiyama S Tsukada H Sato K Kakiuchi T Ohba H Harada N Takahashi K 《Synapse (New York, N.Y.)》2001,40(3):159-169
We developed PET ligands (+)N-[(11)C]ethyl-3-piperidyl benzilate ([(11)C](+)3-EPB) and (+)N-[(11)C]propyl-3-piperidyl benzilate ([(11)C](+)3-PPB) for cerebral muscarinic cholinergic receptors. The distribution and kinetics of the novel ligands were evaluated for comparison with the previously reported ligand (+)N-[(11)C]methyl-3-piperidyl benzilate ([(11)C](+)3-MPB) in the monkey brain (Macaca mulatta) in the conscious state using high-resolution positron emission tomography (PET). At 60-91 min postinjection, regional distribution patterns of these three ligands were almost identical, and were consistent with the muscarinic receptor density in the brain as previously reported in vitro. However, the time-activity curves of [(11)C](+)3-EPB and [(11)C](+)3-PPB showed earlier peak times of radioactivity and a faster clearance rate than [(11)C](+)3-MPB in cortical regions rich in the receptors. Kinetic analysis using the three-compartment model with time-activity curves of radioactivity in metabolite-corrected arterial plasma as input functions revealed that labeling with longer [(11)C]alkyl chain length induced lower binding potential (BP = k(3)/k(4)), consistent with the rank order of affinity of these ligands obtained by an in vitro assay using rat brain slices and [(3)H]QNB. The cholinesterase inhibitor Aricept administered at doses of 50 and 250 microg/kg increased acetylcholine level in extracellular fluid of the frontal cortex and the binding of [(11)C](+)3-PPB with the lowest affinity to the receptors was displaced by the endogenous acetylcholine induced by cholinesterase inhibition, while [(11)C](+)3-MPB with the highest affinity was not significantly affected. Taken together, these observations indicate that the increase in [(11)C]alkyl chain length could alter the kinetic properties of conventional receptor ligands for PET by reducing the affinity to receptors, which might make it possible to assess the interaction between endogenous neurotransmitters and ligand-receptor binding in vivo as measured by PET. 相似文献
4.
Tsukada H Takahashi K Miura S Nishiyama S Kakiuchi T Ohba H Sato K Hatazawa J Okudera T 《Synapse (New York, N.Y.)》2001,39(2):182-192
The novel muscarinic cholinergic ligands (+)N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB) and its stereoisomer [11C](-)3-MPB were evaluated in comparison with [11C]4-MPB in the brains of conscious monkeys (Macaca mulatta) using high-resolution positron emission tomography (PET). The regional distribution patterns of [11C](+)3-MPB and [11C]4-MPB at 60-91 min postinjection were almost identical: highest in the striatum and occipital cortex; intermediate in the temporal and frontal cortices, cingulate gyrus, hippocampus, and thalamus; lower in the pons; and lowest in the cerebellum. The uptake of [11C](+)3-MPB in all regions was higher and the dynamic range of regional uptake differences of [11C](+)3-MPB was better than those of [11C]4-MPB. The levels of [11C](-)3-MPB were much lower in all regions of the brain than [11C](+)3-MPB and [11C]4-MPB. Administration of scopolamine, a muscarinic cholinergic antagonist, at a dose of 50 microg/kg reduced the radioactivity of [11C](+)3-MPB and [11C]4-MPB in all regions except the cerebellum. Time-activity curves of [11C](+)3-MPB peaked in all regions, while those of [11C]4-MPB showed gradual increases with time in all regions except the thalamus, pons, and cerebellum. Two graphical analyses (Logan plot and Patlak plot) with plasma radioactivity as an input function into the brain were applied to evaluate receptor binding in vivo. [11C](+)3-MPB showed linear regression curves on Logan plot analysis and nonlinear curves on Patlak plot in all regions, suggesting that [11C](+)3-MPB bound reversibly to the muscarinic receptors. The in vivo binding parameters as well as uptake at 60-91 min postinjection of [11C](+)3-MPB were consistent with muscarinic receptor density in the brain as reported in vitro. 相似文献
5.
Regional cerebral blood flow (rCBF) and regional cerebral metabolic rate of glucose (rCMRglc) were measured in aged and young monkeys by positron emission tomography (PET). Our purpose was to examine whether the age-related changes observed in the human brain also occur in the monkey brain. Studies were performed on six aged and six young-adult male rhesus monkeys (Macaca mulatta). rCBF and the rCMRglc were serially measured using PET with [(15)O]H(2)O and 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG), respectively. In order to minimize the bias induced by anesthesia, the PET emission scans were performed in the conscious state. ROIs were taken for the cerebellum, hippocampus with adjacent cortex, striatum, occipital cortex, temporal cortex, frontal cortex and cingulate. Group differences and correlations between rCBF and rCMRglc in each group were determined. Aged monkeys had significantly lower rCBF in the cerebellum, hippocampus with the adjacent cortex, striatum, occipital cortex, temporal cortex, frontal cortex, and significantly lower rCMRglc in the cerebellum, hippocampus with the adjacent cortex, striatum, occipital cortex, temporal cortex, frontal cortex and cingulate, compared to young monkeys. There were significant correlations between rCBF and rCMRglc in both the aged and young groups, but no significant difference was found in relationship between the two groups. Age-related changes were observed not only in rCMRglc, but also in rCBF in aged monkeys, while the coupling between rCBF and rCMRglc was maintained even in aged monkeys. These results demonstrated the potential of aged monkeys to serve as an aged human model using PET. 相似文献
6.
M B Skaddan M R Kilbourn S E Snyder P S Sherman 《Journal of cerebral blood flow and metabolism》2001,21(2):144-148
Although the inhibition of acetylcholinesterase remains the primary treatment of Alzheimer's disease, little is known of the results of increased acetylcholine levels on muscarinic receptor occupancy or function. Using N-(2-[18F]fluoroethyl)-4-piperidyl benzilate ([18F]FEPB), a moderate affinity (Ki = 1.7 nmol/L) nonsubtype-selective muscarinic receptor antagonist, the authors examined the sensitivity of equilibrium in vivo radioligand binding in rat brain with changes in endogenous acetylcholine levels produced by treatments with acetylcholinesterase inhibitors. Phenserine administration 30 minutes before resulted in a dose-dependent into muscarinic cholinergic receptors, reaching a maximum increase of 90% in the striatum at a dose of 5 mg/kg intraperitoneally. Constant infusion of physostigmine at a dosage of 250 microg/kg/min produced an identical increase in radioligand binding. This agonist-induced increase of in vivo mAChR radioligand binding offers a new method for monitoring of the efficacy of acetylcholinesterase inhibitors or other drugs to enhance acetylcholine actions at the muscarinic receptors. 相似文献
7.
We recently reported the synthesis and binding affinity of ligands for the muscarinic acetylcholine receptor (mAChR) based on both the pyrrolidyl and piperidyl benzilate scaffold. One of these, (R)-3-pyrrolidyl benzilate, was successfully radiolabeled with [(11)C]methyl triflate and the resulting compound, (R)-N-[(11)C]methyl-3-pyrrolidyl benzilate (3-[(11)C]NMPYB), was evaluated as a reversible, acetylcholine-sensitive tracer for the mAChR (K(i) of unlabeled 3-NMPYB is 0.72 nM). This compound displayed high, receptor-mediated retention in regions of the mouse and rat brain known to have high concentrations of mAChRs. Moreover, bolus studies in a pigtail monkey showed that this compound had superior clearance from the brain when compared to muscarinic radiotracers previously employed in human PET studies. Infusion studies in the same monkey revealed that it was possible to achieve equilibrium of radiotracer distribution for 3-[(11)C]NMPYB in both the striatum and cortex. Sensitivity to endogenous acetylcholine levels was evaluated by injecting phenserine (5 mg/kg) into rats prior to administration of 3-[(11)C]NMPYB in an equilibrium infusion protocol. This pretreatment produced a modest, statistically significant decrease (9-11%) in the distribution volume ratios for muscarinic receptor rich regions of the rat brain as compared to controls. 相似文献
8.
Mapping muscarinic receptors in human and baboon brain using [N-11C-methyl]-benztropine 总被引:1,自引:0,他引:1
S L Dewey R R MacGregor J D Brodie B Bendriem P T King N D Volkow D J Schlyer J S Fowler A P Wolf S J Gatley 《Synapse (New York, N.Y.)》1990,5(3):213-223
The muscarinic cholinergic system has been mapped in vivo in human and baboon brain using [N-11C-methyl]-benztropine and high resolution positron emission tomography (PET). [N-11C-methyl]-benztropine uptake was observed in frontal, parietal, occipital, and temporal cortices as well as in subcortical structures including the corpus striatum and thalamus. Uptake continued to increase in baboon and human brain in all areas over an 80 minute experimental period with the exception of the cerebellum where the accumulation of radioactivity began to decrease by 25 minutes postinjection. The ratio of incorporation of [N-11C-methyl]-benztropine between corpus striatum/cerebellum was 1.53 and 1.46 in humans and baboons, respectively, at 60 minutes. Blocking studies in baboons using the muscarinic cholinergic antagonists scopolamine and benztropine and the muscarinic cholinergic agonist pilocarpine combined with blocking studies in humans using benztropine indicate that the binding of this compound is specific for the muscarinic cholinergic system. Pretreatment with the potent dopamine reuptake blocker nomifensine produced no effect on the incorporation of radioactivity in any baboon brain region examined. Analysis of labelled plasma metabolites indicates that in humans, the rate of metabolism of [N-11C-methyl]-benztropine is slow (83.0% unchanged at 30 minutes postinjection) differing quite dramatically from the rate of metabolism observed in baboons (43.4% unchanged at 30 minutes postinjection). These data combined with postmortem studies in humans and primates demonstrate that [N-11C-methyl]-benztropine is a suitable muscarinic cholinergic ligand for use in humans and baboons with PET. 相似文献
9.
Harada N Nishiyama S Satoh K Fukumoto D Kakiuchi T Tsukada H 《Synapse (New York, N.Y.)》2002,45(1):38-45
In the present study, age-related changes in the striatal dopaminergic system were examined in the living brains of conscious young (6.2 +/- 1.5 years old) and aged (20.2 +/- 2.6 years old) monkeys (Macaca mulatta) using positron emission tomography (PET). L-[beta-(11)C]DOPA and [(11)C]beta-CFT were applied to determine dopamine presynaptic functions such as synthesis rate and transporter (DAT) availability, respectively. Striatal dopamine D(1)- (D(1)R) and D(2)-like receptor (D(2)R) binding were measured with [(11)C]SCH23390 and [(11)C]raclopride, respectively. Although the markers of presynaptic terminals showed parallel age-related declines, the reduction of dopamine synthesis rate measured with L-[beta-(11)C]DOPA was slightly smaller than that of DAT determined with [(11)C]beta-CFT. The binding of [(11)C]raclopride to D(2)R in vivo was significantly reduced with aging, while that of [(11)C]SCH23390 to D(1)R showed no such marked age-related reduction. When the DAT inhibitor GBR12909 (0.5 and 5 mg/kg) was administered, DAT availability, dopamine synthesis, and D(2)R binding were significantly decreased in a dose-dependent manner in both age groups; however, the degrees of the decreases in these parameters were significantly higher in young rather than in aged animals. Dopamine concentration in the striatal extracellular fluid (ECF), as measured by microdialysis, was increased by administration of GBR12909 in a dose-dependent manner and the degree of the increase in dopamine level decreased with age. These results demonstrate that age-related changes of dopamine neuronal functions were not limited to the resting condition but were also seen in the functional responses to the neurotransmitter modulation. 相似文献
10.
Rosa-Neto P Gjedde A Olsen AK Jensen SB Munk OL Watanabe H Cumming P 《Synapse (New York, N.Y.)》2004,53(4):222-233
Positron emission tomography (PET) studies with radiolabeled dopamine D2-like receptor ligands reveal d-amphetamine-evoked increases in the competition from endogenous dopamine. However, the corresponding effects of methylenedioxymethamphetamine (MDMA, "Ecstasy"), which releases catecholamines and also serotonin, are unknown. Using PET, we measured the binding potentials (pBs) of the benzamide [11C]raclopride and the butyrophenone N-[11C]methylspiperone ([11C]NMSP) in brain of living pigs first in a baseline condition and at 45 and 165 min after infusion of (+/-)-MDMA-HCl (1 mg/kg, i.v.). Concomitant studies of cerebral blood flow did not reveal significant perfusion changes in the cerebellum reference region or in striatum, supporting the present use of reference tissue methods for the mapping of MDMA-evoked pB changes. Relative to the baseline pB of [11C]raclopride for dopamine D(2/3) receptors in striatum (pB = 1.5-2.2), MDMA-treatment reduced pB by 35% in the first posttreatment scan and by 22% in the second posttreatment scan, comparable to changes typically evoked by d-amphetamine at a similar dose. In most previous studies, the in vivo binding of butyrophenones has been nearly insensitive to d-amphetamine-evoked dopamine release. However, we found the baseline pB of [11C]NMSP for dopamine D2-like receptors in striatum (pB = 4-5) was decreased by 30% in the first post-MDMA scan and by 50% in the second post-MDMA scan, irrespective of assumptions about the extent of equilibrium binding attained during the 90-min-long PET recordings. Distinct properties of MDMA such as simultaneous release of dopamine and serotonin in brain may account for the present finding of progressive decline in the availability of [11C]NMSP binding sites in striatum. 相似文献
11.
Xie G Gunn RN Dagher A Daloze T Plourde G Backman SB Diksic M Fiset P 《Synapse (New York, N.Y.)》2004,51(2):91-101
This work evaluated kinetic analysis methods for estimation of the receptor availability of the muscarinic receptor using dynamic positron emission tomography (PET) studies with [N-(11)C-methyl]-benztropine. The study also investigated the effect of propofol on central muscarinic receptor availability during general anesthesia. Six volunteers were scanned three times, once for baseline while awake, once during unconsciousness, and once after recovery to conscious level. An irreversible two-tissue compartment model was used to estimate the [N-(11)C-methyl]-benztropine specific binding rate constant k(3), a measure of muscarinic receptor availability. Two different estimation methods were used: 1) optimization with positivity constraints on all the parameters; 2) optimization with additional constraints determined from a one-tissue compartment fit to the cerebellum. In regions with low to middle muscarinic receptor density, the k(3) values from method (2) had lower standard errors than that for method (1) and gave a higher correlation with the density of muscarinic receptors measured in human tissue by in vitro studies (r(2) of 0.98 for Method 2 and r(2) of 0.72 for Method 1). But the k(3) values determined by Method 2 had higher errors for regions with high muscarinic receptor density compared to Method 1. For both methods the mean k(3) values during unconsciousness were generally lower than those during awake for most regions evaluated. Therefore, the method with additional constraints derived from the cerebellum (Method 2) was deemed superior for regions with low to middle muscarinic receptor density, while the method with positivity constraint is the better choice in the regions with high muscarinic receptor density. Our results also suggest the existence of propofol-related reductions in muscarinic receptor availability. 相似文献
12.
Jensen SB Smith DF Bender D Jakobsen S Peters D Nielsen EØ Olsen GM Scheel-Krüger J Wilson A Cumming P 《Synapse (New York, N.Y.)》2003,49(3):170-177
In vitro, the novel diazabicyclononane NS 4194 has several thousand-fold selectivity for blocking the transport into rat brain synaptosomes of [(3)H]-serotonin in comparison to [(3)H]-dopamine or [(3)H]-noradrenaline. We have prepared [(11)C]-NS 4194 in order to test its properties for PET imaging of brain serotonin transporters in comparison with the well-documented tracer [(11)C]-DASB. Both compounds had rapid clearance from blood to brain of living pigs. The apparent equilibrium distribution volumes in cerebellum were 35 ml g(-1) for [(11)C]-NS 4194 and 11 ml g(-1) for [(11)C]-DASB. Pretreatment of pigs with citalopram did not reduce the uptake of either tracer in cerebellum, validating the use of that tissue as a nonbinding reference tissue for kinetic analysis of specific binding. The binding potential (pB) calculated for [(11)C]-NS 4194 using arterial input models was close to 0.5 in the telencephalon, and was 60% displaced by citalopram. However, the reference tissue method of Lammertsma was unsuited to calculate pB for this tracer, apparently due to its excessive nonspecific binding. In contrast to the relatively homogeneous binding of [(11)C]-NS 4194, the pB of [(11)C]-DASB ranged from 0.6 in frontal cortex to 2 in the mesencephalon when calculated by the method of Lammertsma. Parametric maps of the pB of [(11)C]-DASB showed a pattern consistent with the known distribution of serotonin transporters in pig brain in vitro, and there was a uniform displacement of 80% of the specific binding after citalopram treatment in vivo. In conclusion, [(11)C]-DASB is in several respects superior to [(11)C]-NS 4194 for the detection of serotonin uptake sites by PET. 相似文献
13.
Hannah C. Kinney Ashok Panigrahy Luciana A. Rava W. Frost White 《The Journal of comparative neurology》1995,362(3):350-367
Acetylcholine has been implicated in brainstem mechanisms of cardiac and ventilatory control, arousal, rapid eye movement (REM) sleep, and cranial nerve motor activity. Virtually nothing is known about the developmental profiles of cholinergic perikarya, fibers, terminals, and/or receptors in the brainstems of human fetuses and infants. This study provides baseline information about the quantitative distribution of muscarinic cholinergic receptors in fetal and infant brainstems. Brainstem sections were analyzed from 6 fetuses (median age: 21. 5 postconceptional weeks), 4 premature infants (median age: 26 postconceptional weeks), and 11 infants (median age: 53 postconceptional weeks). One child and three adult brainstems were examined as indices of maturity for comparison. The postmortem interval in all cases was less than or equal to 24 hours (median: 10 hours). Muscarinic receptors were localized by autoradiographic methods with the radiolabeled antagonist [3H] quinuclidinyl benzilate ([3H] QNB). Computer-based methods permitted quantitation of [3H]QNB binding in specific nuclei and three-dimensional reconstructions of binding patterns. By midgestation, muscarinic cholinergic receptor binding is already present and regionally distributed, with the highest binding levels in the interpeduncular nucleus, inferior colliculus, griseum pontis, nucleus of the solitary tract, motor cranial nerve nuclei, and reticular formation. During the last half of gestation, [3H]QNB binding decreases in most, but not all, of the nuclei sampled. The most substantial decline occurs in the reticular formation of the medulla and pons, a change that is not fully explained by progressive myelination and lipid quenching. Binding levels remain essentially constant in the inferior olive and griseum pontis. Around the time of birth or shortly thereafter, the relative distribution of binding becomes similar to that in the adult, with the highest levels in the interpeduncular nucleus and griseum pontis, although binding levels are higher overall in the infant. In the rostral pontine reticular formation, paramedian bands of high muscarinic binding are present which do not correspond to a cytoarchitectonically, defined nucleus. By analogy to animal studies, these bands may comprise a major cholinoreceptive region of the human rostral pontine reticular formation involved in REM sleep. In the human interpeduncular nucleus in all age periods examined, muscarinic binding localizes to the lateral portions bilaterally, indicative of a heterogeneous chemoarchitecture. Muscarinic binding is high in the arcuate nucleus, a component of the putative respiratory chemosensitive fields along the ventral surface of the infant medulla. This observation is consistent with the known effects of muscarinic agents on chemosensitivity and ventilatory responses applied to the ventral medullary surface in animal models. The nonuniform distribution of muscarinic binding in the caudorostral plane in individual brainstem nuclei, as illustrated by three-dimensional reconstructions, underscores the need for rigorous sampling at precisely matched levels in quantitative studies. This study provides basic information toward understanding the neurochemical basis of brainstem disorders involving dysfunction of autonomic and ventilatory control, arousal, and REM sleep in preterm and full-term newborns and infants and for developing cholinergic drugs for such disorders in the pediatric population. © 1995 Wiley-Liss Inc. 相似文献
14.
Hideo Tsukada Hiroyuki Ohba Shingo Nishiyama Takeharu Kakiuchi 《Synapse (New York, N.Y.)》2011,65(1):84-89
It has been reported that stress and facilitation of dopamine neuronal system are closely related. In the present study, the effects of stress on the binding of antagonist‐based [11C]raclopride and agonist‐based (R)‐2‐CH3O‐N‐n‐ propylnorapomorphine ([11C]MNPA) to D2/D3 receptors were evaluated in the striatum of conscious monkey brain. The stress state assessed from plasma cortisol level was negatively correlated with [11C]raclopride binding as expected. It was noteworthy that [11C]MNPA binding exhibited a positive correlation with stress state; thus, the animals with higher cortisol levels showed higher binding to D2/D3 receptors. Synapse 65:84–89, 2011. © 2010 Wiley‐Liss, Inc. 相似文献
15.
Two-phase [11C]L-methionine PET in childhood brain tumors 总被引:1,自引:0,他引:1
L A O'Tuama P C Phillips L C Strauss B C Carson Y Uno Q R Smith R F Dannals A A Wilson H T Ravert S Loats 《Pediatric neurology》1990,6(3):163-170
Thirteen children (1.8-15.8 years of age) with brain tumors were studied with [11C]L-methionine positron emission tomography (METPET). Patients were injected intravenously with tracer before a baseline PET scan was obtained. To assess the sensitivity of [11C]L-methionine uptake to competitive inhibition, 10 patients received oral L-phenylalanine (100 mg/kg); 1 hour later, a second METPET was obtained. Subjective assessment of [11C]L-methionine uptake closely paralleled results of quantitative examination (r = 0.81). [11C]L-methionine uptake in tumor-containing brain was increased in 11 patients (mean ratio of [11C] radioactivity in tumor to normal brain: 1.5 +/- 0.57; range: 1.13-2.98). Increased tracer uptake occurred in ependymomas (3), medulloblastoma (1), and astrocytomas (5), but was less intense in low-grade tumors. L-phenylalanine reduced L-methionine uptake (25-69%) in 70% of studies. L-methionine uptake was not sensitive to competitive inhibition in brain radiation injury. Two-phase METPET is of potential value in difficult clinical situations evident in children with brain tumors, including the differential diagnosis of tumor recurrence and cerebral radiation injury. 相似文献
16.
K A Frey R A Koeppe G K Mulholland D Jewett R Hichwa R L Ehrenkaufer J E Carey D M Wieland D E Kuhl B W Agranoff 《Journal of cerebral blood flow and metabolism》1992,12(1):147-154
Cerebral muscarinic cholinergic receptors were imaged and regionally quantified in vivo in humans with the use of [11C]scopolamine and positron emission tomography. Previous studies in experimental animals have suggested the utility of radiolabeled scopolamine for in vivo measurements, on the bases of its maintained pharmacologic specificity following systemic administration and the exclusion of labeled metabolites from the brain. The present studies describe the cerebral distribution kinetics of [11C]scopolamine in normal subjects following intravenous injection. Scopolamine is initially delivered to brain in a perfusion-directed pattern. After 30 to 60 min, activity is lost preferentially from cerebral structures with low muscarinic receptor density including the cerebellum and thalamus. Activity continues to accumulate throughout a 2 h postinjection period in receptor-rich areas including cerebral cortex and the basal ganglia. The late regional concentration of [11C]scopolamine does not, however, accurately parallel known differences in muscarinic receptor numbers in these receptor-rich areas. Tracer kinetic analysis of the data, performed on the basis of a three-compartment model, provides receptor binding estimates in good agreement with prior in vitro measurements. Kinetic analysis confirms significant contributions of ligand delivery and extraction to the late distribution of [11C]scopolamine, reconciling the discrepancy between receptor levels and tracer concentration. Finally, a novel dual-isotope method for rapid chromatographic processing of arterial blood samples in radiotracer studies is presented. The combination of rapid chromatography and compartmental analysis of tracer distribution should have broad utility in future in vivo studies with short-lived radioligands. 相似文献
17.
H W Müller-G?rtner A A Wilson R F Dannals H N Wagner J J Frost 《Journal of cerebral blood flow and metabolism》1992,12(4):562-570
A method to image muscarinic acetylcholine receptors (muscarinic receptors) noninvasively in human brain in vivo was developed using [123I]4-iododexetimide ([123I]IDex), [123I]4-iodolevetimide ([123I]ILev), and single photon emission computed tomography (SPECT). [123I]IDex is a high-affinity muscarinic receptor antagonist. [123I]ILev is its pharmacologically inactive enantiomer and measures nonspecific binding of [123I]IDex in vitro. Regional brain activity after tracer injection was measured in four young normal volunteers for 24 h. Regional [123I]IDex and [123I]ILev activities were correlated early after injection, but not after 1.5 h. [123I]IDex activity increased over 7-12 h in neocortex, neostriatum, and thalamus, but decreased immediately after the injection peak in cerebellum. [123I]IDex activity was highest in neostriatum, followed in rank order by neocortex, thalamus, and cerebellum. [123I]IDex activity correlated with muscarinic receptor concentrations in matching brain regions. In contrast, [123I]ILev activity decreased immediately after the injection peak in all brain regions and did not correspond to muscarinic receptor concentrations. [123I]IDex activity in neocortex and neostriatum during equilibrium was six to seven times higher than [123I]ILev activity. The data demonstrate that [123I]IDex binds specifically to muscarinic receptors in vivo, whereas [123I]ILev represents the nonspecific part of [123I]IDex binding. Subtraction of [123I]ILev from [123I]IDex images on a pixel-by-pixel basis therefore reflects specific [123I]IDex binding to muscarinic receptors. Owing to its high specific binding, [123I]IDex has the potential to measure small changes in muscarinic receptor characteristics in vivo with SPECT. The use of stereoisomerism directly to measure nonspecific binding of [123I]IDex in vivo may reduce complexity in modeling approaches to muscarinic acetylcholine receptors in human brain. 相似文献
18.
Xuefeng Yan Sanjay Telu Rachel M Dick Jeih-San Liow Paolo Zanotti-Fregonara Cheryl L Morse Lester S Manly Robert L Gladding Stal Shrestha Walter Lerchner Yuji Nagai Takafumi Minamimoto Sami S Zoghbi Robert B Innis Victor W Pike Barry J Richmond Mark AG Eldridge 《Journal of cerebral blood flow and metabolism》2021,41(10):2571
Previous work found that [11C]deschloroclozapine ([11C]DCZ) is superior to [11C]clozapine ([11C]CLZ) for imaging Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). This study used PET to quantitatively and separately measure the signal from transfected receptors, endogenous receptors/targets, and non-displaceable binding in other brain regions to better understand this superiority. A genetically-modified muscarinic type-4 human receptor (hM4Di) was injected into the right amygdala of a male rhesus macaque. [11C]DCZ and [11C]CLZ PET scans were conducted 2–24 months later. Uptake was quantified relative to the concentration of parent radioligand in arterial plasma at baseline (n = 3 scans/radioligand) and after receptor blockade (n = 3 scans/radioligand). Both radioligands had greater uptake in the transfected region and displaceable uptake in other brain regions. Displaceable uptake was not uniformly distributed, perhaps representing off-target binding to endogenous receptor(s). After correction, [11C]DCZ signal was 19% of that for [11C]CLZ, and background uptake was 10% of that for [11C]CLZ. Despite stronger [11C]CLZ binding, the signal-to-background ratio for [11C]DCZ was almost two-fold greater than for [11C]CLZ. Both radioligands had comparable DREADD selectivity. All reference tissue models underestimated signal-to-background ratio in the transfected region by 40%–50% for both radioligands. Thus, the greater signal-to-background ratio of [11C]DCZ was due to its lower background uptake. 相似文献
19.
Takeharu Kakiuchi Shingo Nishiyama Kengo Sato Hiroyuki Ohba Satoshi Nakanishi Hideo Tsukada 《Brain research》2000,883(1):984
Age-related alterations of serotonin (5-hydroxytryptamine; 5-HT) type 2A receptors (5-HT2A) in the living brains of young (6.0±1.3 years old) and aged (19.2±3.0 years old) monkeys (Macaca mulatta) were evaluated with [11C]MDL100,907 in the conscious state using high-resolution positron emission tomography (PET). For quantitative analysis of 5-HT2A binding in vivo, PET scan of [11C]MDL100,907 was performed with arterial blood sampling in each animal, and the metabolic-corrected arterial input function was used for Logan graphical analysis. Higher cerebral binding of [11C]MDL100,907 was observed in the hippocampus, cingulate gyrus, frontal, temporal and occipital cortices, regions known to contain high densities of 5-HT2A, by in vitro assay. Binding was intermediate in the striatum and thalamus, and lower in the pons and cerebellum in both young and aged monkeys. The age-related decrease in [11C]MDL100,907 binding to 5-HT2A receptors was prominent in the hippocampus, cingulate gyrus, frontal, temporal and occipital cortices, but not in the striatum, thalamus and pons. These observation demonstrated the usefulness of [11C]MDL100,907 as an labeled compound for assessment of the aging process of the cortical 5-HT2A measured by PET. 相似文献
20.
目的 研究脑乙酰胆碱酯酶(AChE)活性PET显像剂[11C]4-乙酰氧基-N-甲基哌啶(MP4A)的纯化及其鉴定方法.方法 用半制备高效液相色谱(HPLC)法,用强极性半制备柱Platinum EPS C-18分离纯化[11C]MP4A粗产品,流动相使用乙酸铵-乙醇二元体系,一步法收集[11C]MP4A.用UV串联电化学(ECD)法和同位素法检测鉴定终产物[11C]MP4A的化学纯度及放射性纯度.结果 用此纯化方法,前体(P4A)的保留时间为(2.5±0.3)min;MP4A的保留时间为(9.0±0.3)min;MP4A与P4A及其他杂质完全分离.纯化后的[11C]MP4A终产物经ECD和同位素法检测鉴定,其化学纯度达99%以上,放射纯度达100%.结论 用半制备HPLC法可获得高纯度的[11C]MP4A,用ECD和同位素法鉴定准确率高,且本纯化、鉴定方法耗时短,有助于提高[11C]MP4A的质量和产量. 相似文献