首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterotoxigenic Escherichia coli (ETEC) diarrheal disease is a worldwide problem that may be addressed by transcutaneous delivery of a vaccine. In several human settings, protective immunity has been associated with immune responses to E. coli colonization factors and to the heat-labile toxin that induces the diarrhea. In this set of animal studies, transcutaneous immunization (TCI) using recombinant colonization factor CS6 and cholera toxin (CT) or heat-labile enterotoxin (LT) as the adjuvant induced immunoglobulin G (IgG) and IgA anti-CS6 responses in sera and stools and antibody responses that recognized CS6 antigen in its native configuration. The antitoxin immunity induced by TCI was also shown to protect against enteric toxin challenge. Although immunization with LT via the skin induced mucosal secretory IgA responses to LT, protection could also be achieved by intravenous injection of the immune sera. Finally, a malaria vaccine antigen, merzoite surface protein 1(42) administered with CT as the adjuvant, induced both merzoite surface protein antibodies and T-cell responses while conferring protective antitoxin immunity, suggesting that both antiparasitic activity and antidiarrheal activity can be obtained with a single vaccine formulation. Overall, our results demonstrate that relevant colonization factor and antitoxin immunity can be induced by TCI and suggest that an ETEC traveler's diarrhea vaccine could be delivered by using a patch.  相似文献   

2.
Colonization factor CS6 expressed by enterotoxigenic Escherichia coli (ETEC) is a nonfimbrial polymeric protein. A substantial proportion of ETEC strains isolated from patients in endemic settings and in people who travel to regions where ETEC is endemic are ETEC strains expressing CS6, either alone or in combination with fimbrial colonization factor CS5 or CS4. However, relatively little is known about the natural immune responses elicited against CS6 expressed by ETEC strains causing disease. We studied patients who were hospitalized with diarrhea (n = 46) caused by CS6-expressing ETEC (ETEC expressing CS6 or CS5 plus CS6) and had a disease spectrum ranging from severe dehydration (27%) to moderate or mild dehydration (73%). Using recombinant CS6 antigen, we found that more than 90% of the patients had mucosal immune responses to CS6 expressed as immunoglobulin (IgA) antibody-secreting cells (ASC) or antibody in lymphocyte supernatant (ALS) and that about 57% responded with CS6-specific IgA antibodies in feces. More than 80% of the patients showed IgA seroconversion to CS6. Significant increases in the levels of anti-CS6 antibodies of the IgG isotype were also observed in assays for ASC (75%), ALS (100%), and serum (70%). These studies demonstrated that patients hospitalized with the noninvasive enteric pathogen CS6-expressing ETEC responded with both mucosal and systemic antibodies against CS6. Studies are needed to determine if the anti-CS6 responses protect against reinfection and if protective levels of CS6 immunity are induced by vaccination.  相似文献   

3.
Transcutaneous immunization allows safe delivery of native heat-labile enterotoxin (LT) from Escherichia coli via application of a simple patch. Physical disruption of the stratum corneum can improve the efficiency of delivery. In the current study, the stratum corneum was disrupted using an electrocardiogram prep pad prior to patch application. The effects were quantified using transepidermal water loss (TEWL) and were correlated with the immune responses. Sixty adults received 50 microg of LT from three lots of LT (20 adults per group) administered in a patch on days 0 and 21. The immunizations were well tolerated. There were no differences in the anti-LT immunoglobulin G (IgG) titers between the three LT lots; the seroconversion rate was 100%, and the mean anti-LT IgG titer was 12,185 enzyme-linked immunosorbent assay units (EU) (a 24-fold increase). TEWL measurements obtained at the time of the second immunization were found to correlate with the day 42 individual increases in the anti-LT IgG titer (r = 0.59, P < 0.001). In a comparative assessment of the immune responses, sera after an LT+ ST+ (E2447A) oral ETEC challenge, which induced moderate to severe diarrhea in 81% of the recipients, had anti-LT IgG titers of 3,245 EU (a 10.8-fold increase). Similarly, the anti-LT IgG titer after administration of an oral cholera toxin B subunit-containing cholera vaccine, which cross-reacts with LT and protects against LT and LT/heat-stable toxin ETEC disease in the field, was 6,741 EU (a 3.3-fold increase). This study confirmed that a well-tolerated regimen for stratum corneum disruption before vaccine patch application results in robust immunity comparable to natural immunity and vaccine-induced immunity and that the magnitude of stratum corneum disruption correlates with the immune response.  相似文献   

4.
In order to test vaccines against enterotoxigenic Escherichia coli (ETEC)-induced diarrhea, challenge models are needed. In this study we compared clinical and immunological responses after North American volunteers were orally challenged by two ETEC strains. Groups of approximately eight volunteers received 10(9) or 10(10) CFU of E. coli B7A (LT+ ST+ CS6+) or 10(8) or 10(9) CFU of E. coli H10407 (LT+ ST+ CFA/I+). About 75% of the volunteers developed diarrhea after challenge with 10(10) CFU B7A or either dose of H10407. B7A had a shorter incubation period than H10407 (P = 0.001) and caused milder illness; the mean diarrheal output after H10407 challenge was nearly twice that after B7A challenge (P = 0.01). Females had more abdominal complaints, and males had a higher incidence of fever. Ciprofloxacin generally diminished or stopped symptoms and shedding by the second day of antibiotic treatment, but four subjects shed for one to four additional days. The immune responses to colonization factors CS6 and colonization factor antigen I (CFA/I) and to heat-labile toxin (LT) were measured. The responses to CFA/I were the most robust responses; all volunteers who received H10407 had serum immunoglobulin A (IgA) and IgG responses, and all but one volunteer had antibody-secreting cell (ASC) responses. One-half the volunteers who received B7A had an ASC response to CS6, and about one-third had serum IgA or IgG responses. Despite the differences in clinical illness and immune responses to colonization factors, the immune responses to LT were similar in all groups and were intermediate between the CFA/I and CS6 responses. These results provide standards for immune responses after ETEC vaccination.  相似文献   

5.
A vaccine against enterotoxigenic Escherichia coli (ETEC) is needed to prevent diarrheal illness among children in developing countries and at-risk travelers. Two live attenuated ETEC strains, PTL002 and PTL003, which express the ETEC colonization factor CFA/II, were evaluated for safety and immunogenicity. In a randomized, double-blind, placebo-controlled trial, 19 subjects ingested one dose, and 21 subjects ingested two doses (days 0 and 10) of PTL-002 or PTL-003 at 2 x 10(9) CFU/dose. Anti-CFA/II mucosal immune responses were determined from the number of antibody-secreting cells (ASC) in blood measured by enzyme-linked immunospot assay, the antibody in lymphocyte supernatants (ALS) measured by enzyme-linked immunosorbent assay (ELISA), and fecal immunoglobulin A (IgA) levels determined by ELISA. Time-resolved fluorescence (TRF) ELISA was more sensitive than standard colorimetric ELISA for measuring serum antibody responses to CFA/II and its components, CS1 and CS3. Both constructs were well tolerated. Mild diarrhea occurred after 2 of 31 doses (6%) of PTL-003. PTL-003 produced more sustained intestinal colonization than PTL-002 and better IgA response rates: 90% versus 55% (P = 0.01) for anti-CFA/II IgA-ASCs, 55% versus 30% (P = 0.11) for serum anti-CS1 IgA by TRF, and 65% versus 25% (P = 0.03) for serum anti-CS3 IgA by TRF. Serum IgG response rates to CS1 or CS3 were 55% in PTL-003 recipients and 15% in PTL-002 recipients (P = 0.02). Two doses of either strain were not significantly more immunogenic than one. Based on its superior immunogenicity, which was comparable to that of a virulent ETEC strain and other ETEC vaccine candidates, PTL-003 will be developed further as a component of a live, oral attenuated ETEC vaccine.  相似文献   

6.
The immunogenicity of different preparations of an oral inactivated enterotoxigenic Escherichia coli (ETEC) vaccine was evaluated in Swedish volunteers previously unexposed to ETEC infection. The vaccine preparations consisted of recombinant cholera toxin B subunit (CTB) and various amounts of formalin-killed whole bacteria expressing the most prevalent colonization factor antigens (CFAs). Significant immunoglobulin A (IgA) antibody-secreting cell (ASC) responses against CTB and the various CFA components were seen in a majority of volunteers after two doses of ETEC vaccine independent of the vaccine lot given. The IgA ASC responses against CTB were significantly higher after the second than after the first immunization, whereas the CFA-specific IgA ASC responses were almost comparable after the first and second doses of ETEC vaccine. Two immunizations with one-third of a full dose of CFA-ETEC bacteria induced lower frequencies of IgA ASC responses against all the different CFAs than two full vaccine doses, i.e., 63 versus 80% for CFA/I, 56 versus 70% for CS1, 31 versus 65% for CS2, and 56 versus 75% for CS4. The proportion of vaccinees responding with rises in the titer of serum IgA antibody against the various CFA antigens was also lower after immunization with the reduced dose of CFA-ETEC bacteria. These findings suggest that measurements of circulating IgA ASCs can be used not only for qualitative but also for quantitative assessments of the immunogenicity of individual fimbrial antigens in various preparations of ETEC vaccine.  相似文献   

7.
We have studied homologous (HoM) and cross-reacting (CR) immunoglobulin A (IgA) antibody responses to colonization factors (CFs) in Bangladeshi children with diarrhea due to enterotoxigenic E. coli (ETEC) strains of the CF antigen I (CFA/I) group (CFA/I, n = 25; coli surface antigen 4 [CS4], n = 8; CS14, n = 11) and the CS5 group (CS5, n = 15; CS7, n = 8), respectively. The responses to the HoM, CR, and heterologous (HeT) CF antigens in each group of patient were studied and compared to that seen in healthy children (n = 20). In the CFA/I group (CFA/I and CS14), patients responded with antibody-secreting cell (ASC) responses to HoM CFs (geometric mean, 156 to 329 ASCs/10(6) peripheral blood mononuclear cells [PBMCs]) and to CR CFs ( approximately 15 to 38 ASCs/10(6) PBMCs) but least of all to the HeT CS5 antigen (2 to 4 ASCs/10(6) PBMCs). For the CS5 group of patients with ETEC (CS5 and CS7), likewise, responses to HoM CFs (230 to 372 ASCs/10(6) PBMCs) and CR CFs (27 to 676 ASCs/10(6) PBMCs) were seen, along with lower responses to the HeT CFA/I antigen (9 to 38 ASCs/10(6) PBMCs). Both groups of patients responded with CF-specific IgA antibodies to HoM and CR antigens in plasma but responded less to the HeT CFs. The responses in patients were seen very soon after the onset of diarrhea and peaked around 1 week after onset. Vaccinees who had received two doses of the oral, killed whole-cell ETEC vaccine (CF-BS-ETEC) responded with plasma IgA antibodies to CFA/I, a component of the vaccine, but also to the CR CS14 antigen, which was not included in the vaccine, showing that antibody responses can be stimulated by a CFA/I-containing ETEC vaccine to a CR-reacting antigen in individuals in countries where ETEC is endemic.  相似文献   

8.
The immunogenicity of different preparations of an oral inactivated enterotoxigenic Escherichia coli (ETEC) vaccine was evaluated in Swedish volunteers previously unexposed to ETEC infection. The vaccine preparations consisted of recombinant cholera toxin B subunit (CTB) and various amounts of formalin-killed whole bacteria expressing the most prevalent colonization factor antigens (CFAs). Significant immunoglobulin A (IgA) antibody-secreting cell (ASC) responses against CTB and the various CFA components were seen in a majority of volunteers after two doses of ETEC vaccine independent of the vaccine lot given. The IgA ASC responses against CTB were significantly higher after the second than after the first immunization, whereas the CFA-specific IgA ASC responses were almost comparable after the first and second doses of ETEC vaccine. Two immunizations with one-third of a full dose of CFA-ETEC bacteria induced lower frequencies of IgA ASC responses against all the different CFAs than two full vaccine doses, i.e., 63 versus 80% for CFA/I, 56 versus 70% for CS1, 31 versus 65% for CS2, and 56 versus 75% for CS4. The proportion of vaccinees responding with rises in the titer of serum IgA antibody against the various CFA antigens was also lower after immunization with the reduced dose of CFA-ETEC bacteria. These findings suggest that measurements of circulating IgA ASCs can be used not only for qualitative but also for quantitative assessments of the immunogenicity of individual fimbrial antigens in various preparations of ETEC vaccine.  相似文献   

9.
An oral, microencapsulated anti-colonization factor 6 antigen (meCS6) vaccine, with or without heat-labile enterotoxin with mutation R192G (LT(R192G)) (mucosal adjuvant), against enterotoxigenic Escherichia coli (ETEC) was evaluated for regimen and adjuvant effects on safety and immunogenicity. Sixty subjects were enrolled into a three-dose, 2-week interval or four-dose, 2-day interval regimen. Each regimen was randomized into two equal groups of meCS6 alone (1 mg) or meCS6 with adjuvant (2 microg of LT(R192G)). The vaccine was well tolerated and no serious adverse events were reported. Serologic response to CS6 was low in all regimens (0 to 27%). CS6-immunoglobulin A (IgA) antibody-secreting cell (ASC) responses ranged from 36 to 86%, with the highest level in the three-dose adjuvanted regimen; however, the magnitude was low. As expected, serologic and ASC LT responses were limited to adjuvanted regimens, with the exception of fecal IgA, which appeared to be nonspecific to LT administration. Further modifications to the delivery strategy and CS6 and adjuvant dose optimization will be needed before conducting further clinical trials with this epidemiologically important class of ETEC.  相似文献   

10.
Enterohemorrhagic Escherichia coli (EHEC) strains are important human food-borne pathogens. EHEC strains elaborate potent Shiga toxins (Stx1, and/or Stx2) implicated in the development of hemorrhagic colitis (HC) or hemolytic-uremic syndrome (HUS). In this report, we evaluated the immunogenicity and protective efficacy of Stx1 subunit B (StxB1) administered by transcutaneous immunization (TCI). Three groups of Dutch Belted rabbits received patches containing StxB1, StxB1 in combination with Escherichia coli heat-labile enterotoxin (LT), or LT alone. An additional group of naïve rabbits served as controls. The protective efficacy following TCI with StxB1 was assessed by challenging rabbits with a virulent Stx1-producing strain, RDEC-H19A, capable of inducing HC and HUS in rabbits. Antibodies specific to StxB1 from serum and bile samples were determined by enzyme-linked immunosorbent assay and toxin neutralization test. Rabbits immunized with StxB1 demonstrated improved weight gain and reduced Stx-induced histopathology. Rabbits receiving StxB or StxB1/LT showed a significant increase in serum immunoglobulin G titers specific to StxB1 as well as toxin neutralization titers. These data demonstrated that the StxB delivered by TCI could induce significant systemic immune responses. Thus, Stx subunit B vaccine delivered by a patch for a high-risk population may be a practical approach to prevent (and/or reduce) Stx-induced pathology.  相似文献   

11.
Live attenuated oral enterotoxigenic Escherichia coli (ETEC) vaccines have been demonstrated to be safe and immunogenic in human volunteers and to provide a viable approach to provide protection against this important pathogen. This report describes the construction of new ETEC vaccine candidate strains from recent clinical isolates and their characterization. All known genes for ETEC toxins were removed, and attenuating deletion mutations were made in the aroC, ompC, and ompF chromosomal genes. An isolate expressing coli surface antigen 2 (CS2), CS3, heat-labile toxin (LT), heat-stable toxin (ST), and enteroaggregative Escherichia coli heat-stable toxin 1 (EAST1) was attenuated to generate ACAM2007. The subsequent insertion of the operon encoding CS1 created ACAM2017, and this was further modified by the addition of an expression cassette containing the eltB gene, encoding a pentamer of B subunits of LT (LTB), to generate ACAM2027. Another isolate expressing CS5, CS6, LT, ST, and EAST1 was attenuated to generate ACAM2006, from which a lysogenic prophage was deleted to create ACAM2012 and an LTB gene was introduced to form ACAM2022. Finally, a previously described vaccine strain, ACAM2010, had the eltB gene incorporated to generate ACAM2025. All recombinant genes were incorporated into the chromosomal sites of the attenuating mutations to ensure maximal genetic stability. The expression of the recombinant antigens and the changes in plasmids accompanying the deletion of toxin genes are described. Strains ACAM2025, ACAM2022, and ACAM2027 have been combined to create the ETEC vaccine formulation ACE527, which has recently successfully completed a randomized, double-blind, placebo-controlled phase I trial and is currently undergoing a randomized, double-blind placebo-controlled phase II challenge trial, both in healthy adult volunteers.  相似文献   

12.
The genes that encode the enterotoxigenic Escherichia coli (ETEC) CS4 fimbriae, csaA, -B, -C, -E, and -D', were isolated from strain E11881A. The csa operon encodes a 17-kDa major fimbrial subunit (CsaB), a 40-kDa tip-associated protein (CsaE), a 27-kDa chaperone-like protein (CsaA), a 97-kDa usher-like protein (CsaC), and a deleted regulatory protein (CsaD'). The predicted amino acid sequences of the CS4 proteins are highly homologous to structural and assembly proteins of other ETEC fimbriae, including CS1 and CS2, and to CFA/I in particular. The csaA, -B, -C, -E operon was cloned on a stabilized plasmid downstream from an osomotically regulated ompC promoter. pGA2-CS4 directs production of CS4 fimbriae in both E. coli DH5alpha and Shigella flexneri 2a vaccine strain CVD 1204, as detected by Western blot analysis and bacterial agglutination with anti-CS4 immune sera. Electron-microscopic examination of Shigella expressing CS4 confirmed the presence of fimbriae on the bacterial surface. Guinea pigs immunized with CVD 1204(pGA2-CS4) showed serum and mucosal antibody responses to both the Shigella vector and the ETEC fimbria CS4. Among the seven most prevalent fimbrial antigens of human ETEC, CS4 is the last to be cloned and sequenced. These findings pave the way for CS4 to be included in multivalent ETEC vaccines, including an attenuated Shigella live-vector-based ETEC vaccine.  相似文献   

13.
Enterotoxigenic Escherichia coli (ETEC) strains expressing only coli surface antigen 6 (CS6) have previously been isolated from patients with diarrhea, but the immunogenicity of CS6 has not been established in humans. We have detected CS6-specific immunoglobulin A responses in the feces and blood of patients convalescing from natural ETEC disease and of volunteers given an oral ETEC vaccine.  相似文献   

14.
The pathogenicity and immunogenicity induced in BALB/c mice by intranasal (i.n.) inoculation of enterotoxigenic Escherichia coli (ETEC) strains H10407 (O78:H11:CFA/I:LT(+):ST(+)) and B7A (O148:H28:CS6:LT(+):ST(+)) (two ETEC strains previously used in human challenge trials) were studied. The i.n. inoculation of BALB/c mice with large doses of ETEC strains H10407 and B7A caused illness and death. The H10407 strain was found to be consistently more virulent than the B7A strain. Following i.n. challenge with nonlethal doses of H10407 and B7A, the bacteria were cleared from the lungs of the mice at a steady rate over a 2-week period. Macrophages and neutrophils were observed in the alveoli and bronchioles, and lymphocytes were observed in the septa, around vessels, and in the pleura of the lungs in mice challenged with H10407 and B7A. In mice i.n. challenged with H10407, serum immunoglobulin G (IgG) and IgM antibodies were measured at high titers to the CFA/I and O78 lipopolysaccharide (LPS) antigens. In mice i.n. challenged with B7A, low serum IgG antibody titers were detected against CS6, and low serum IgG and IgM antibody titers were detected against O148 LPS. The serum IgG and IgM antibody titers against the heat-labile enterotoxin were equivalent in the H10407- and B7A-challenged mice. The CFA/I and O78 LPS antigens gave mixed T-helper cell 1-T-helper cell 2 (Th1-Th2) responses in which the Th2 response was greater than the Th1 response (i.e., stimulated primarily an antibody response). These studies indicate that the i.n. challenge of BALB/c mice with ETEC strains may provide a useful animal model to better understand the immunogenicity and pathogenicity of ETEC and its virulence determinants. This model may also be useful in providing selection criteria for vaccine candidates for use in primate and human trials.  相似文献   

15.
We assessed serologic responses to an oral, killed whole-cell enterotoxigenic Escherichia coli plus cholera toxin B-subunit (ETEC-rCTB) vaccine in 73 Egyptian adults, 105 schoolchildren, and 93 preschool children. Each subject received two doses of vaccine or placebo 2 weeks apart, giving blood before immunization and 7 days after each dose. Plasma antibodies to rCTB and four vaccine-shared colonization factors (CFs) were measured by enzyme-linked immunosorbent assay. Immunoglobulin A (IgA) antibodies to rCTB and CFA/I were measured in all subjects, and those against CS1, CS2, and CS4 were measured in all children plus a subset of 33 adults. IgG antibodies to these five antigens were measured in a subset of 30 to 33 subjects in each cohort. Seroconversion was defined as a >2-fold increase in titer after vaccination. IgA and IgG seroconversion to rCTB was observed in 94 to 95% of adult vaccinees, with titer increases as robust as those previously reported for these two pediatric cohorts. The proportion showing IgA seroconversion to each CF antigen among vaccinated children (range, 70 to 96%) and adults (31 to 69%), as well as IgG seroconversion in children (44 to 75%) and adults (25 to 81%), was significantly higher than the corresponding proportion in placebo recipients, except for IgA responses to CS2 in adults. IgA anti-CF titers peaked after one dose in children, whereas in all age groups IgG antibodies rose incrementally after each dose. Independently, both preimmunization IgA titer and age were inversely related to the magnitude of IgA responses. In conclusion, serologic responses to the ETEC-rCTB vaccine may serve as practical immune outcome measures in future pediatric trials in areas where ETEC is endemic.  相似文献   

16.
The heat-labile enterotoxin (LT) of Escherichia coli is immunologically and physiochemically related to cholera enterotoxin. A number of studies have been performed to determine the relationship of the ADP-ribosylating enzymatic activity of these enterotoxins to toxicity and adjuvanticity. These studies have generally examined the effect of abolishing the ADP-ribosyltransferase activity of A1 by a variety of chemical or genetic manipulations. In every case, loss of enzymatic activity was associated with loss of biological activity and also with the ability of the molecules to function as oral adjuvants. Consequently, we explored an alternate approach to detoxification of LT without altering its adjuvanticity. Specifically, we generated a novel mutant form of LT by genetic modification of the proteolytically sensitive residues that join the A1 and A2 components of the A subunit. This mutant contains a single amino acid substitution within the disulfide subtended region joining A1 and A2. This mutant toxin, designated LT(R192G), is not sensitive to proteolytic activation, has negligible activity on mouse Y-1 adrenal tumor cells, and is devoid of ADP-ribosyltransferase activity. Nonetheless, LT(R192G) retains the ability to function as a mucosal adjuvant, increasing the serum immunoglobulin G (IgG) and mucosal IgA responses to coadministered antigen (OVA) beyond that achieved with administration of that antigen alone. Further, LT(R192G) prevented the induction of tolerance to coadministered antigen and did not induce tolerance against itself, as demonstrated by the presence of significant serum anti-LT IgG and mucosal anti-LT IgA antibodies in immunized mice.  相似文献   

17.
In this study, the potential of the bare skin as a non-invasive route for vaccination was examined. Following application of heat-labile enterotoxin (LT) of Escherichia coli onto bare skin of BALB/c mice, strong serum anti-LT antibody responses were observed, and mucosal immunoglobulin A (IgA) and IgG antibodies were measured in vagina washes. In addition, LT enhanced the serum and mucosal antibody and proliferative T-cell responses to the model protein antigen beta-galactosidase (beta-gal) when coadministered onto bare skin, highlighting its potential to exert an adjuvant effect. When a peptide representing a T-helper epitope (aa 307-319) from the haemagglutinin of influenza virus was applied onto bare skin with LT or cholera toxin (CT), it primed effectively peptide- and virus-specific T cells, as measured in vitro by the interleukin-2 (IL-2) secretion assay. LT was shown to be as immunogenic as CT. Binding activity to GM1 gangliosides was essential for effective induction of anti-CT serum and mucosal antibody responses. Finally, mice immunized onto bare skin with LT were protected against intraperitoneal challenge with a lethal dose of the homologous toxin. These findings give further support to a growing body of evidence on the potential of skin as a non-invasive route for vaccine delivery. This immunization strategy might be advantageous for vaccination programmes in Third World countries, because administration by this route is simple, painless and economical.  相似文献   

18.
The capacity of an oral live attenuated Salmonella enterica serovar Typhi Ty21a vaccine to induce immune responses in patients who had undergone colectomies because of ulcerative colitis was evaluated, and these responses were compared with those of healthy volunteers. Purified CD4(+) and CD8(+) T cells from peripheral blood were stimulated in vitro by using the heat-killed Ty21a vaccine strain, and the proliferation and gamma interferon (IFN-gamma) production were measured before and 7 or 8 days after vaccination. Salmonella-specific immunoglobulin A (IgA) and IgG antibody responses in serum along with IgA antibody responses in ileostomy fluids from the patients who had undergone colectomies were also evaluated. Three doses of vaccine given 2 days apart failed to induce proliferative T-cell responses in all the six patients who had undergone colectomies, and increases in IFN-gamma production were found only among the CD8(+) cells from three of the patients. In contrast, both proliferative responses and increased IFN-gamma production were observed among CD4(+) and CD8(+) T cells from 3 and 6 of 10 healthy volunteers, respectively. Salmonella-specific IgA and/or IgG antibody responses in serum were observed for five (56%) of nine patients who had undergone colectomies and in 15 (88%) of 17 healthy volunteers. In ileostomy fluids, significant anti-Salmonella IgA antibody titer increases were detected in six (67%) of nine patients who had undergone colectomies. The impaired T- and B-cell immune responses found after vaccination in the circulation of patients who have undergone colectomies may be explained by a diminished colonization of the Ty21a vaccine strain due to the lack of a terminal ileum and colon.  相似文献   

19.
Immune responses against enterotoxigenic Escherichia coli (ETEC) were examined in Bangladeshi adults with naturally acquired disease and compared to responses in age-matched Bangladeshi volunteers who had been orally immunized with a vaccine consisting of inactivated ETEC bacteria expressing different colonization factor antigens (CFs) and the B subunit of cholera toxin. B-cell responses in duodenal biopsy samples, feces, intestinal washings, and blood were determined. Because most of the patients included in the study were infected with ETEC expressing CS5, immune responses to this CF were studied most extensively. Vaccinees and patients had comparable B-cell responses against this antigen in the duodenum: the median numbers of antibody-secreting cells (ASC) were 3,300 immunoglobulin A (IgA) ASC/10(7) mononuclear cells (MNC) in the patient group (n = 8) and 1,200 IgA ASC/10(7) MNC in the vaccinees (n = 13) (not a significant difference). Similarly, no statistically significant differences were seen in the levels of duodenal B cells directed against enterotoxin among vaccinees and patients. A comparison of the capacities of the various methods used to assess mucosal immune responses revealed a correlation between numbers of circulating B cells and antibody levels in saponin extracts of duodenal biopsy samples (r = 0.58; n = 13; P = 0.04) after vaccination. However, no correlation was seen between blood IgA ASC and duodenal IgA ASC after two doses of vaccine. Still, a correlation between numbers of CF-specific B cells in blood sampled from patients early during infection and numbers of duodenal B cells collected 1 week later was apparent (r = 0.70; n = 10; P = 0.03).  相似文献   

20.
Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea among Israeli soldiers serving in field units. Two double-blind placebo-controlled, randomized trials were performed among 155 healthy volunteers to evaluate the safety and immunogenicity of different lots of the oral, killed ETEC vaccine consisting of two doses of whole cells plus recombinantly produced cholera toxin B subunit (rCTB). The two doses of vaccine lot E005 and the first dose of vaccine lot E003 were well tolerated by the volunteers. However, 5 (17%) vaccinees reported an episode of vomiting a few hours after the second dose of lot E003; none of the placebo recipients reported similar symptoms. Both lots of vaccine stimulated a rate of significant antibody-secreting cell (ASC) response to CTB and to colonization factor antigen I (CFA/I) after one or two doses, ranging from 85 to 100% and from 81 to 100%, respectively. The rate of ASC response to CS2, CS4, and CS5 was slightly lower than the rate of ASC response induced to CTB, CFA/I, and CS1. The second vaccine dose enhanced the response to CTB but did not increase the frequencies or magnitude of ASC responses to the other antigens. The two lots of the ETEC vaccine induced similar rates of serum antibody responses to CTB and CFA/I which were less frequent than the ASC responses to the same antigens. Based on these safety and immunogenicity data, an efficacy study of the ETEC vaccine is under way in the Israel Defense Force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号