首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thioacetamide (TA), a potent centrilobular hepatotoxicant, undergoes a two-step bioactivation mediated by microsomal CYP2E1 to TA sulfoxide (TASO), and further to TA-S,S-dioxide (TASO2), a reactive metabolite that initiates cellular necrosis. Our earlier studies showed that bioactivation-mediated liver injury of TA is not dose-proportional. The objective of this study was to examine whether increasing doses of TA lead to enzyme saturation, thereby resulting in lack of dose-response for injury: bioactivation of TA --> TASO --> TASO2 may follow zero-order kinetics. A 12-fold dose range of TA (50, 300, and 600 mg/kg i.p.) was injected into male Sprague-Dawley rats. TA and TASO were quantified in plasma, liver, and urine by high-performance liquid chromatography. With increasing doses, the apparent elimination half-lives of TA and TASO increased linearly, indicating that TA bioactivation exhibits saturation kinetics. Increasing TA dose resulted in greater-than-proportional increases in plasma TA and TASO levels. The TASO/TA ratio was inversely proportional to the dose of TA. Covalent binding of 14C-TA-derived radiolabel to liver macromolecules showed a less-than-dose-proportionate increase with a 12-fold higher dose. Less than dose-proportional covalent binding was confirmed in liver microsomal incubations with 14C-TA. Three-fold higher excretion of TASO was seen in urine at the highest dose (600 mg/kg) compared with the lowest dose (50 mg TA/kg). Incubation of TA with rat liver microsomes and purified baculovirus-expressed rat and human CYP2E1 Supersomes, over a concentration range of 0.01 to 10 mM, revealed saturation of TA conversion to TASO at and above 0.05 mM TA concentration, comparable to in vivo plasma and liver levels achieved upon administration of higher doses. Calculated K(m) values for TA (0.1 mM) and TASO (0.6 mM) suggest that the second step of TA bioactivation is 6-fold less efficient. Collectively, the findings indicate saturation of CYP2E1 at the first (TA to TASO) and second (TASO to TASO2) steps of TA bioactivation.  相似文献   

2.
Thioacetamide (TA) undergoes saturation toxicokinetics in ad libitum (AL) fed rats. Diet restriction (DR) protects rats from lethal dose of TA despite increased bioactivation-mediated liver injury via CYP2E1 induction. While a low dose (50 mg TA/kg) produces 6-fold higher initial injury, a 12-fold higher dose produces delayed and mere 2.5-fold higher injury. The primary objective was to determine if this less-than-expected increase in injury is due to saturation toxicokinetics. Rats on AL and DR for 21 days received either 50 or 600 mg TA/kg i.p. T(1/2) and AUCs for TA and TA-S-oxide were consistent with saturable kinetics. Covalent binding of (14)C-TA-derived-radiolabel to liver macromolecules after low dose was 2-fold higher in DR than AL rats. However, following lethal dose, no differences were found between AL and DR. This lack of dose-dependent response appears to be due to saturation of bioactivation at the higher dose. The second objective was to investigate the effect of phenobarbital pretreatment (PB) on TA-initiated injury following a sub-lethal dose (500 mg/kg). PB induced CYP2B1/2 approximately 350-fold, but did not increase covalent binding of (14)C-TA, TA-induced liver injury and mortality, suggesting that CYP2B1/2 has no major role in TA bioactivation. The third objective was to investigate the role of CYP2E1 using cyp2e1 knockout mice (KO). Injury was assessed over time (0-48 h) in wild type (WT) and KO mice after LD(100) dose (500 mg/kg) in WT. While WT mice exhibited robust injury which progressed to death, KO mice exhibited neither initiation nor progression of injury. These findings confirm that CYP2E1 is responsible for TA bioactivation.  相似文献   

3.
The hepatotoxicity of thioacetamide (TA) has been known since 1948. In rats, single doses cause centrolobular necrosis accompanied by increases in plasma transaminases and bilirubin. To elicit these effects, TA requires oxidative bioactivation, leading first to its S-oxide (TASO) and then to its chemically reactive S,S-dioxide (TASO(2)), which ultimately modifies amine-lipids and proteins. To generate a suite of liver proteins adducted by TA metabolites for proteomic analysis and to reduce the need for both animals and labeled compounds, we treated isolated hepatocytes directly with TA. Surprisingly, TA was not toxic at concentrations up to 50 mM for 40 h. On the other hand, TASO was highly toxic to isolated hepatocytes as indicated by LDH release, cellular morphology, and vital staining with Hoechst 33342/propidium iodide. TASO toxicity was partially blocked by the CYP2E1 inhibitors diallyl sulfide and 4-methylpyrazole and was strongly inhibited by TA. Significantly, we found that hepatocytes produce TA from TASO relatively efficiently by back-reduction. The covalent binding of [(14)C]-TASO is inhibited by unlabeled TA, which acts as a "cold-trap" for [(14)C]-TA and prevents its reoxidation to [(14)C]-TASO. This in turn increases the net consumption of [(14)C]-TASO despite the fact that its oxidation to TASO(2) is inhibited. The potent inhibition of TASO oxidation by TA, coupled with the back-reduction of TASO and its futile redox cycling with TA, may help explain phenomena previously interpreted as "saturation toxicokinetics" in the in vivo metabolism and toxicity of TA and TASO. The improved understanding of the metabolism and covalent binding of TA and TASO facilitates the use of hepatocytes to prepare protein adducts for target protein identification.  相似文献   

4.
Diabetes is known to potentiate thioacetamide (TA)-induced liver injury via enhanced bioactivation. Little attention has been given to the role of compensatory tissue repair on ultimate outcome of hepatic injury in diabetes. The objective of this study was to investigate the effect of diabetes on TA-induced liver injury and lethality and to investigate the underlying mechanisms. We hypothesized that hepatotoxicity of TA in diabetic rats would increase due to enhanced bioactivation-mediated liver injury and also due to compromised compensatory tissue repair, consequently making a nonlethal dose of TA lethal. On day 0, male Sprague-Dawley rats (250-300 g) were injected with streptozotocin (STZ, 60 mg/kg ip) to induce diabetes. On day 10 the STZ-induced diabetic rats and the nondiabetic rats received a single dose of TA (300 mg/kg ip). This normally nonlethal dose of TA caused 90% mortality in the STZ-induced diabetic rats. At various times (0-60 h) after TA administration, liver injury was assessed by plasma alanine aminotransferase (ALT), sorbitol dehydrogenase (SDH), and liver histopathology. Liver function was evaluated by plasma bilirubin. Cell proliferation and tissue repair were evaluated by [(3)H]thymidine ((3)H-T) incorporation and proliferating cell nuclear antigen (PCNA) assays. In the nondiabetic rat, liver necrosis peaked at 24 h and declined thereafter toward normal by 60 h. In the STZ-induced diabetic rat, however, liver necrosis was significantly increased from 12 h onward and progressed, culminating in liver failure and death. Liver tissue repair studies showed that, in the liver of nondiabetic rats, S-phase DNA synthesis was increased at 36 h and peaked at 48 h following TA administration. However, DNA synthesis was approximately 50% inhibited in the liver of diabetic rats. PCNA study showed a corresponding decrease of cell-cycle progression, indicating that the compensatory tissue repair was sluggish in the diabetic rats. Further investigation of tissue repair by employing equitoxic doses (300 mg TA/kg in the non-diabetic rats; 30 mg TA/kg in the diabetic rats) revealed that, despite equal injury up to 24 h following injection, the tissue repair response in the diabetic rats was much delayed. The compromised tissue repair prolonged liver injury in the diabetic rats. These studies suggest that the increased TA hepatotoxicity in the diabetic rat is due to combined effects of increased bioactivation-mediated liver injury of TA and compromised compensatory tissue repair.  相似文献   

5.
Previously, we reported that an ordinarily non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic rats due to inhibited liver tissue repair, whereas 30 mg TA/kg allows 100% survival due to stimulated although delayed tissue repair. Objective of this investigation was to test whether prior administration of a low dose of TA (30 mg/kg) would lead to sustainable stimulation of liver tissue repair in type 1 diabetic rats sufficient to protect from a subsequently administered lethal dose of TA. Therefore, in the present study, the hypothesis that preplacement of tissue repair by a low dose of TA (30 mg TA/kg, ip) can reverse the hepatotoxicant sensitivity (autoprotection) in type 1 diabetic rats was tested. Preliminary studies revealed that a single intraperitoneal (ip) administration of TA causes 90% mortality in diabetic rats with as low as 75 mg/kg. To establish an autoprotection model in diabetic condition, diabetic rats were treated with 30 mg TA/kg (priming dose). Administration of priming dose stimulated tissue repair that peaked at 72h, at which time these rats were treated with a single ip dose of 75 mg TA/kg. Our results show that tissue repair stimulated by the priming dose enabled diabetic rats to overexpress, calpastatin, endogenous inhibitor of calpain, to inhibit calpain-mediated progression of liver injury induced by the subsequent administration of lethal dose, resulting in 100% survival. Further investigation revealed that protection observed in these rats is not due to decreased bioactivation. These studies underscore the importance of stimulation of tissue repair in the final outcome of liver injury (survival/death) after hepatotoxicant challenge. Furthermore, these results also suggest that it is possible to stimulate tissue repair in diabetics to overcome the enhanced sensitivity of hepatotoxicants.  相似文献   

6.
The effect of Type 1 diabetes on the toxicity of thioacetamide was investigated in a murine model. In streptozotocin-induced diabetic C57BL6 mice a LD90 dose of thioacetamide (1000 mg/kg, ip in saline) caused only 10% mortality. Alanine aminotransferase activity revealed approximately 2.7-fold less liver injury in the diabetic (DB) mice compared to the non-DB controls, at 36 h after thioacetamide (TA) administration, which was confirmed via histopathological analysis. HPLC analyses revealed lower plasma t(1/2) of TA in the DB mice. Covalent binding of [(14)C]TA to liver tissue was lower in the DB mice, suggesting lower bioactivation of TA. Compensatory hepatic S-phase stimulation as assessed by [(3)H]thymidine incorporation occurred much earlier and was substantially higher in the DB mice compared to the non-DB cohorts. Morphometric analysis of cells in various phases of cell division assessed via immunohistochemical staining for proliferating cell nuclear antigen revealed more cells in G(1), S, G(2), and M phases in the DB mice, indicating robust tissue repair in concordance with the findings of [(3)H]thymidine pulse labeling studies. The importance of tissue repair in the resistance of DB mice was further investigated by blocking cell division in the DB mice by colchicine (1 mg/kg, ip) at 40 h after TA administration, well after the bioactivation of TA. Antimitotic action of colchicine, confirmed by decreased S-phase stimulation, led to progression of liver injury and increased mortality in DB mice. These findings suggest that lower bioactivation of TA and early onset of liver tissue repair are the pivotal underpinnings for the resistance of DB mice.  相似文献   

7.
Previously, we reported high hepatotoxic sensitivity of type 2 diabetic (DB) rats to three dissimilar hepatotoxicants. Additional work revealed that a normally nonlethal dose of CCl4 was lethal in DB rats due to inhibited compensatory tissue repair. The present study was conducted to investigate the importance of compensatory tissue repair in determining the final outcome of hepatotoxicity in diabetes, using another structurally and mechanistically dissimilar hepatotoxicant, thioacetamide (TA), to initiate liver injury. A normally nonlethal dose of TA (300 mg/kg, ip), caused 100% mortality in DB rats. Time course studies (0 to 96 h) showed that in the non-DB rats, liver injury initiated by TA as assessed by plasma alanine or aspartate aminotransferase and hepatic necrosis progressed up to 48 h and regressed to normal at 96 h resulting in 100% survival. In the DB rats, liver injury rapidly progressed resulting in progressively deteriorating liver due to rapidly expanding injury, hepatic failure, and 100% mortality between 24 and 48 h post-TA treatment. Covalent binding of 14C-TA-derived radiolabel to liver tissue did not differ from that observed in the non-DB rats, indicating similar bioactivation-based initiation of hepatotoxicity. S-phase DNA synthesis measured by [3H]-thymidine incorporation, and advancement of cells through the cell division cycle measured by PCNA immunohistochemistry, were substantially inhibited in the DB rats compared to the non-DB rats challenged with TA. Thus, inhibited cell division and compromised tissue repair in the DB rats resulted in progressive expansion of liver injury culminating in mortality. In conclusion, it appears that similar to type 1 diabetes, type 2 diabetes also increases sensitivity to dissimilar hepatotoxicants due to inhibited compensatory tissue repair, suggesting that sensitivity to hepatotoxicity in diabetes occurs in the absence as well as presence of insulin.  相似文献   

8.
Earlier studies have shown highly exaggerated mechanism-based liver injury of thioacetamide (TA) in rats following moderate diet restriction (DR) and in diabetes. The objective of the present study was to investigate the mechanism of higher liver injury of TA in DR rats. Since both DR and diabetes induce CYP2E1, we hypothesized that hepatic CYP2E1 plays a major role in the bioactivation-based liver injury of TA. When male Sprague-Dawley rats (250-275 g) were maintained on diet restriction (DR, 35% of ad libitum fed rats, 21 days) the total hepatic microsomal cytochrome P450 (CYP450) was increased 2-fold along with a 4.6-fold increase in CYP2E1 protein, which corresponded with a 3-fold increase in CYP2E1 activity as measured by chlorzoxazone hydroxylation. To further test the involvement of CYP2E1, 24 and 18 h after pretreatment with pyridine (PYR) and isoniazid (INZ), specific inducers of CYP2E1, male Sprague-Dawley rats received a single administration of 50 mg of TA/kg (i.p.). TA liver injury was >2.5- and >3-fold higher at 24 h in PYR + TA and INZ + TA groups, respectively, compared with the rats receiving TA alone. Pyridine pretreatment resulted in significantly increased total CYP450 content accompanied by a 2.2-fold increase in CYP2E1 protein and 2-fold increase in enzyme activity concordant with increased liver injury of TA, suggesting mechanism-based bioactivation of TA by CYP2E1. Hepatic injury of TA in DR rats pretreated with diallyl sulfide (DAS), a well known irreversible in vivo inhibitor of CYP2E1, was significantly decreased (60%) at 24 h. CCl(4) (4 ml/kg i.p.), a known substrate of CYP2E1, caused lower liver injury and higher animal survival confirming inhibition of CYP2E1 by DAS pretreatment. The role of flavin-containing monooxygenase (FMO) in TA bioactivation implicated by previous in vitro studies, and consequent increased TA-induced liver injury in DR rats was tested in vivo with a relatively selective inhibitor of FMO, indole-3-carbinol, and then treated with 50 mg of TA/kg. FMO activity and alanine aminotransferase levels measured at different time points revealed that TA liver injury was not decreased although FMO activity was significantly decreased, suggesting that hepatic FMO is unlikely to bioactivate TA. These findings suggest induction of CYP2E1 as the primary mechanism of increased bioactivation-based liver injury of TA in DR rats.  相似文献   

9.
To evaluate the different contributions of either microsomal FAD- containing (FADM) or cytochrome P-450 dependent monooxygenases in the bioactivation and liver toxicity of thioacetamide-S-oxide (TASO) (a proximate metabolite of the liver toxin and carcinogen thioacetamide), this compound: (i) was given to rats pretreated with methimazole (a substrate and inhibitor of FADM), SKF 525-A (an inhibitor of cytochrome P-450) and cobalt protoporphyrin IX (a synthetic porphyrin which induces a long-lasting depletion of the hepatic cytochrome P-450); and (ii) was added to liver microsomes performing oxidation of model FADM or cytochrome P-450 substrates. Whereas the prior administration of methimazole alleviated the TASO induced liver necrosis, SKF 525-A was almost ineffective. Also pretreatment with cobalt protoporphyrin IX prevented liver necrosis. However, this porphyrin derivative was found to depress both cytochrome P-450 dependent and the FADM dependent biotransformations. On the other hand, addition of TASO to liver microsomes in vitro induces changes in the kinectics of S-oxidation of thiobenzamide and of N-oxidation of dimethylaniline, whereas the O-deethylation of ethoxycoumarin was unchanged. The overall results show the necessity of TASO bioactivation by mixed-function monooxygenases for the toxic action to be apparent; at the same time, the findings suggest FADM as the system mainly involved in TASO metabolism.  相似文献   

10.
Previously we reported that a nonlethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats because of irreversible acute liver injury owing to inhibited hepatic tissue repair, primarily due to blockage of G(0) to S phase progression of cell division cycle. On the other hand, DB rats receiving 30 mg TA/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic (NDB) rats receiving 300 mg TA/kg, resulting in a delay in recovery from liver injury and survival. The objective of the present study was to test the hypothesis that impaired cyclin-regulated progression of G(1) to S phase of the cell cycle may explain inhibited liver tissue repair, hepatic failure, and death, contrasted with delayed liver tissue repair but survival observed in the DB rats receiving 300 in contrast to 30 mg TA/kg. In the TA-treated NDB rats sustained MAPKs and cyclin expression resulted in higher phosphorylation of retinoblastoma (pRb), explaining prompt tissue repair and survival. In contrast, DB rats receiving the same dose of TA (300 mg/kg) exhibited suppressed MAPKs and cyclin expression that led to inhibition of pRb, inhibited tissue repair, and death. On the other hand, DB rats receiving 30 mg TA/kg exhibited delayed up regulation of MAPK signaling that delayed the expression of CD1 and pRb, explaining delayed stimulation of tissue repair observed in this group. In conclusion, the hepatotoxicant TA has a dose-dependent adverse effect on cyclin-regulated pRb signaling: the lower dose causes a recoverable delay, whereas the higher dose inhibits it with corresponding effect on the ultimate outcomes on hepatic tissue repair; this dose-dependent adverse effect is substantially shifted to the left of the dose response curve in diabetes.  相似文献   

11.
It is well known that diabetes imparts high sensitivity to numerous hepatotoxicants. Previously, we have shown that a normally non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats due to inhibited tissue repair allowing progression of liver injury. On the other hand, DB rats exposed to 30 mg TA/kg exhibit delayed tissue repair and delayed recovery from injury. The objective of this study was to investigate the mechanism of impaired tissue repair and progression of liver injury in TA-treated DB rats by using cDNA microarray. Gene expression pattern was examined at 0, 6, and 12 h after TA challenge, and selected mechanistic leads from microarray experiments were confirmed by real-time RT-PCR and further investigated at protein level over the time course of 0 to 36 h after TA treatment. Diabetic condition itself increased gene expression of proteases and decreased gene expression of protease inhibitors. Administration of 300 mg TA/kg to DB rats further elevated gene expression of proteases and suppressed gene expression of protease inhibitors, explaining progression of liver injury in DB rats after TA treatment. Inhibited expression of genes involved in cell division cycle (cyclin D1, IGFBP-1, ras, E2F) was observed after exposure of DB rats to 300 mg TA/kg, explaining inhibited tissue repair in these rats. On the other hand, DB rats receiving 30 mg TA/kg exhibit delayed expression of genes involved in cell division cycle, explaining delayed tissue repair in these rats. In conclusion, impaired cyclin D1 signaling along with increased proteases and decreased protease inhibitors may explain impaired tissue repair that leads to progression of liver injury initiated by TA in DB rats.  相似文献   

12.
Moderate dietary or caloric restriction (DR) modulates animal physiology in a beneficial fashion. Previously, we have reported an equitoxic dose experiment where liver injury in DR male Sprague-Dawley rats exposed to a low dose of thioacetamide (TA, 50 mg/kg) was similar to that observed in ad libitum fed (AL) rats exposed to a 12-fold higher dose (600 mg/kg). Paradoxically, the AL rats experienced 90% mortality while all of the DR rats, with the same amount of initial bioactivation-mediated liver injury, survived. The protection observed in the DR rats was due to efficient compensatory liver tissue repair, which was delayed and attenuated in the AL rats, leading to progression of liver injury. The objective of the present study was to investigate the molecular mechanisms of the enhanced tissue repair in the DR rats upon equitoxic challenge with TA. Promitogenic mechanisms and mediators such as proinflammatory cytokines (TNF-alpha and IL-6), growth factors (TGF-alpha and HGF), and inducible nitric oxide synthase (iNOS) were estimated over a time course after equitoxic challenge (50 mg/kg to DR vs. 600 mg/kg to AL rats). Except for TNF-alpha, all other molecules were expressed earlier and in greater amount in the DR rats. IL-6 was 10-fold greater and peaked 12 h earlier; HGF also peaked 12 h sooner in the DR rats, when it was 2.5-fold greater than the value in the AL rats. TGF-alpha expression in livers of DR rats increased after TA administration and peaked at 24 h. In the AL rats, it was lower and peaked at 36 h. Diet restriction alone induced iNOS 2-fold in the DR rats and remained elevated until 12 h after TA administration, then declined thereafter. The lower iNOS activity in the AL rats further decreased after TA injection. DR rats exhibited higher apoptosis after thioacetamide administration, which further increased the efficiency of tissue repair. Taken together, these data indicate that even though the liver injury is near equal in AL and DR rats, sluggish signal transduction leads to delayed liver regeneration, progression of liver injury, and death in the AL rats. The equitoxic dose experiment indicates that stimulation of tissue repair is independent of the extent of initial liver injury and is governed by physiology of diet restriction. DR stimulates promitogenic signaling leading to a quick and timely response upon liver injury, arrest of progressive injury on one hand, and recovery from injury on the other, paving the way for survival of the DR rats.  相似文献   

13.
Zhao Y  Zhai D  Chen X  Yang J  Song X  He H  Yu Q  Xing Y 《Toxicology》2007,230(2-3):145-150
A pharmacokinetic study was carried out in rats to investigate the effects of experimental hepatic injury on the liver glucuronidation and bile excretion of ketoprofen (KP) and its glucuronides (KPGs). In vivo, KP (20 mg/kg b.w.) was intravenously administered to carbon tetrachloride (CCl4) or alpha-naphthylisothiocyanate (ANIT) induced hepatic injury male rats. Concentrations of KP and its glucuronides (S-KPG and R-KPG) in plasma and bile were determined by RP-HPLC. It was observed that there was significant difference in the accumulative bile excretion of KPGs between the CCl4 intoxicated rats and the normal rats (54 ± 18.3% versus 90 ± 6.9%), while it was extremely inhibited in ANIT intoxicated rats (2.0 ± 3.1% versus 90 ± 6.9%). As the result of reduction of KPGs excreted in bile, the area under the curve (AUC(0–∞)) of KP and KPGs were higher in blood in CCl4 and ANIT hepatic injury rats than those of the normal rats. Specifically, ANIT caused approximately 10-fold elevation of AUC(0–∞) of plasma S-KPG. In microsomal incubations experiment, the glucuronyltransferase activity was impaired in CCl4 and ANIT intoxicated rats. It suggested that the glucuronyltransferase activity was impaired in CCl4 and ANIT intoxicated rats, while the bile excretion function was suppressed extremely in ANIT intoxicated rats.  相似文献   

14.
A novel formulation of curcumin in combination with the phospholipids was developed to overcome the limitation of absorption and to investigate the protective effect of curcumin–phospholipid complex on carbon tetrachloride induced acute liver damage in rats. The antioxidant activity of curcumin–phospholipid complex (equivalent of curcumin 100 and 200 mg/kg body weight) and free curcumin (100 and 200 mg/kg body weight) was evaluated by measuring various enzymes in oxidative stress condition. Curcumin–phospholipid complex significantly protected the liver by restoring the enzyme levels of liver glutathione system and that of superoxide dismutase, catalase and thiobarbituric acid reactive substances with respect to carbon tetrachloride treated group (P < 0.05 and <0.01). The complex provided better protection to rat liver than free curcumin at same doses. Serum concentration of curcumin obtained from the complex (equivalent to 1.0 g/kg of curcumin) was higher (Cmax 1.2 μg/ml) than pure curcumin (1.0 g/kg) (Cmax 0.5 μg/ml) and the complex maintained effective concentration of curcumin for a longer period of time in rat serum. The result proved that curcumin–phospholipid complex has better hepatoprotective activity, owe to its superior antioxidant property, than free curcumin at the same dose level.  相似文献   

15.
The sensitivity of developing rodents to toxic metals differs considerably from that of adults. In the present study, we investigated the in vivo and in vitro effects of inorganic mercury and lead on δ-aminolevulinic acid dehydratase (ALA-D) from brain, liver, kidney and blood of young rats. Eight day-old rats were injected with one or five doses of lead acetate (0, 3.5, or 7.0 mg/kg) or HgCl2 (0, 2.5, or 5.0 mg/kg). In vitro, the IC50 for mercury inhibition of cerebral, renal and hepatic ALA-D was in the 124 to 160 μM range, while values for lead acetate was in the 7 to 12 μM range. The IC50 of blood enzyme for lead (0.8 μM) and mercury (6.5 μM) was significantly lower than that observed for the other tissues. A single dose of lead did not affect the enzyme activity, but a single dose of HgCl2 (5 mg/kg) caused a significant inhibition of ALA-D from kidney (40%, P < 0.01) and liver (25%, P < 0.05). Five doses of lead acetate (3.5 or 7 mg/kg) caused an inhibition of about 25 and 40%, respectively (P < 0.01), of hepatic ALA-D, and an increase of 1.4-fold (P < 0.05) and 2.6-fold (P < 0.01) of blood enzyme, respectively. Treatment with five doses of HgCl2 (5 mg/kg) caused an inhibition of about 25, 60, 50, and 80% of ALA-D from brain, blood, liver and kidney, respectively (all P < 0.05). Five doses of 2.5 mg/kg HgCl2 caused an inhibition of ALA-D from liver (40%, P < 0.01) and kidney (45%, P < 0.01). These results demonstrate that ALA-D from young rat tissues show different sensitivities to mercury and lead. The enzyme was more affected by mercury than by lead in vivo, while in vitro lead was more potent that mercury as an ALA-D inhibitor.  相似文献   

16.
目的 探讨内毒素血症下调肝细胞核因子4α(HNF4α)表达介导肝损伤进展的机制。方法 144只BALB/c小鼠采用随机数字表法分组进行以下实验:(1)四氯化碳(CCl4)诱导小鼠急性肝损伤。对照组和0.5 mL/kg、1.0 mL/kg、2.0 mL/kg CCl4组。(2)筛选脂多糖(LPS)干预小鼠的剂量。对照组和0.1 mg/kg、0.5 mg/kg、2.5 mg/kg LPS组。(3)LPS干预CCl4(1.0 mL/kg)诱导急性肝损伤模型小鼠。对照组、CCl4组、0.1 mg/kg LPS+CCl4组、0.5 mg/kg LPS+CCl4组。每组12只。诱导24 h后处死小鼠,采用酶速率法检测血清丙氨酸转氨酶(ALT),重氮法检测总胆红素(TBil)水平;Western blot法检测肝组织HNF4α、胱天蛋白酶3剪切体(Cleaved caspase-3)蛋白表达;原位末端标记法检测肝细胞凋亡情况。结果 0.5、1.0、2.0 mL/kg CCl4组的血清ALT、TBil及肝组织HNF4α、Cleaved caspase-3蛋白表达水平高于对照组,且呈剂量依赖性增高。2.5 mg/kg LPS组血清ALT、TBil及肝组织Cleaved caspase-3蛋白表达水平高于对照组和0.1、0.5 mg/kg LPS组,肝组织HNF4α蛋白表达水平低于对照组和0.1、0.5 mg/kg LPS组(P<0.05)。CCl4组和0.1、0.5 mg/kg LPS+CCl4组的血清ALT、TBil,肝组织HNF4α、Cleaved caspase-3蛋白表达水平及肝细胞凋亡指数均高于对照组(P<0.05);0.1、0.5 mg/kg LPS+CCl4组的血清ALT、TBil,肝组织Cleaved caspase-3蛋白表达水平及肝细胞凋亡指数高于CCl4组,HNF4α蛋白表达水平低于CCl4组(P<0.05)。结论 内毒素血症通过下调HNF4α表达增加肝细胞凋亡,可能是其介导肝损伤进展的机制之一。  相似文献   

17.
Methods The effects of 4 days of oral administration of different doses of two drugs, an enkephalinase inhibitor (the antisecretory agent, racecadotril) and a μ-receptor agonist (loperamide), on intestinal growth of a bacterial nonpathogenic strain ( Escherichia coli E 404) and on the central nervous system (CNS) were compared in newborn gnotobiotic piglets.
Results The E. coli content of the proximal jejunum (segment S1) and the E. coli ratio of stomach:segment S1 were similar in the racecadotril (20 mg/kg b.d., n  = 5) and control groups. In contrast, in the loperamide group (1 mg/kg b.d., n  = 4), the E. coli content of segment S1 and the E. coli ratio stomach:S1 were both significantly higher than with racecadotril or control ( P  = 0.04 and 0.005, respectively, for E. coli content; P  = 0.05 and 0.03, respectively, for stomach:S1). There were no clinical signs of neurotoxicity and no deaths with racecadotril given orally at a high dose of 130 mg/kg b.d. ( n  = 5) – nearly 60 times the paediatric dosage. In contrast, an equivalent high dose of loperamide (5 mg/kg b.d.) resulted in death in three out of four piglets.
Conclusions In contrast to loperamide, racecadotril did not induce bacterial overgrowth and did not produce central neurotoxicity.  相似文献   

18.
Thioacetamide (TA) is a well-known hepatotoxin in rats. Acute doses cause centrilobular necrosis and hyperbilirubinemia while chronic administration leads to biliary hyperplasia and cholangiocarcinoma. Its acute toxicity requires its oxidation to a stable S-oxide (TASO) that is oxidized further to a highly reactive S,S-dioxide (TASO(2)). To explore possible parallels among the metabolism, covalent binding, and toxicity of TA and thiobenzamide (TB), we exposed freshly isolated rat hepatocytes to [(14)C]-TASO or [(13)C(2)D(3)]-TASO. TLC analysis of the cellular lipids showed a single major spot of radioactivity that mass spectral analysis showed to consist of N-acetimidoyl PE lipids having the same side chain composition as the PE fraction from untreated cells; no carbons or hydrogens from TASO were incorporated into the fatty acyl chains. Many cellular proteins contained N-acetyl- or N-acetimidoyl lysine residues in a 3:1 ratio (details to be reported separately). We also oxidized TASO with hydrogen peroxide in the presence of dipalmitoyl phosphatidylenthanolamine (DPPE) or lysozyme. Lysozyme was covalently modified at five of its six lysine side chains; only acetamide-type adducts were formed. DPPE in liposomes also gave only amide-type adducts, even when the reaction was carried out in tetrahydrofuran with only 10% water added. The exclusive formation of N-acetimidoyl PE in hepatocytes means that the concentration or activity of water must be extremely low in the region where TASO(2) is formed, whereas at least some of the TASO(2) can hydrolyze to acetylsulfinic acid before it reacts with cellular proteins. The requirement for two sequential oxidations to produce a reactive metabolite is unusual, but it is even more unusual that a reactive metabolite would react with water to form a new compound that retains a high degree of chemical reactivity toward biological nucleophiles. The possible contribution of lipid modification to the hepatotoxicity of TA/TASO remains to be determined.  相似文献   

19.
The present study investigated the preventive effect of eugenol, a naturally occurring food flavouring agent on thioacetamide (TA)-induced hepatic injury in rats. Adult male Wistar rats of body weight 150–180 g were used for the study. Eugenol (10.7 mg/kg b.w./day) was administered to rats by oral intubation for 15 days. TA was administered (300 mg/kg b.w., i.p.) for the last 2 days at 24 h interval and the rats were sacrificed on the 16th day. Markers of liver injury (aspartate transaminase, alanine transaminase, alkaline phosphatase, γ-glutamyl transferase and bilirubin), inflammation (myeloperoxidase, tumor necrosis factor-α and interleukin-6), oxidative stress (lipid peroxidation indices, protein carbonyl and antioxidant status) and cytochrome P4502E1 activity were assessed. Expression of cyclooxygenase-2 (COX-2) and the extent of DNA damage were analyzed using immunoblotting and comet assay, respectively. Liver injury and collagen accumulation were assessed using histological studies by hematoxylin and eosin and Masson trichrome staining. Rats exposed to TA alone showed increased activities of hepatocellular enzymes in plasma, lipid peroxidation indices, inflammatory markers and pro-inflammatory cytokines and decreased antioxidant status in circulation and liver. Hepatic injury and necrosis were also evidenced by histology. Eugenol pretreatment prevented liver injury by decreasing CYP2E1 activity, lipid peroxidation indices, protein oxidation and inflammatory markers and by improving the antioxidant status. Single-cell gel electrophoresis revealed that eugenol pretreatment prevented DNA strand break induced by TA. Increased expression of COX-2 gene induced by TA was also abolished by eugenol. These findings suggest that eugenol curtails the toxic effects of TA in liver.  相似文献   

20.
The acute pulmonary toxicity induced by 3-nm TiO2 primary particles was preliminary investigated after they were intratracheally instilled at doses of 0.4, 4 and 40 mg/kg into lungs of mice. The biochemical parameters in bronchoalveolar lavage fluid (BALF) and pathological examination were used as endpoints to assess their pulmonary toxicity at 3-day postexposure. As such, the pulmonary toxicity assessment of 20-nm TiO2 primary particles was performed using the same method. It was found that the 3-nm TiO2 primary particles induced no pulmonary toxicity at dose of 0.4 mg/kg, moderate toxicity at 4 mg/kg and lung overload at 40 mg/kg, and this kind of particles did not produce more pulmonary toxicity than the 20-nm ones at any instilled doses. As regards physicochemical characteristics of the two TiO2 particles, their pH values in medium, other than particle size, surface area and aggregation, may play important role in affecting their pulmonary toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号