首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported that overexpression of the angiotensin II type 2 (AT2) receptor downregulates the AT1a receptor through the bradykinin/NO pathway in a ligand-independent manner in vascular smooth muscle cells (VSMCs). In the present study, we investigated the effect of AT2 receptor overexpression on the expression of the AT1a receptor and transforming growth factor-beta (TGF-beta) receptor subtypes in VSMCs from spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). Transfection of the AT2 receptor gene downregulated expression of the AT1a receptor in VSMCs from WKY, but did not affect expression of the AT1a receptor in VSMCs from SHR. Transfection of the AT2 receptor abolished DNA synthesis in response to angiotensin II in VSMCs from WKY; in VSMCs from SHR, basal DNA synthesis was suppressed, but DNA synthesis in response to Ang II was not altered. The NO substrate L-arginine augmented downregulation of the AT1a receptor in VSMCs from WKY, whereas it did not affect expression of the AT1a receptor in VSMCs from SHR. In response to AT2 receptor transfection, expression of TGF-beta type I receptor mRNA was suppressed significantly in VSMCs from WKY, whereas expression of TGF-beta type I receptor was not altered in VSMCs from SHR. These results suggest that the AT2 receptor downregulates AT1a and TGF-beta type I receptors in normal VSMCs, but not in SHR-derived VSMCs. The lack of downregulation of the AT1a receptor may contribute, in part, to the exaggerated growth of VSMCs from SHR.  相似文献   

2.
Proteoglycans are an important component of the extracellular matrix, and are thought to play multiple roles not only in kidney remodeling, but also in regulating glomerular permeability, and in modulating the activity of other cytokines and growth factors. The aim of this study was to examine the gene expressions of proteoglycan core proteins in hypertensive rat kidneys, and their modulation by AT1 receptor antagonist. SHRSP/Izm rats and normotensive control WKY/Izm rats on a normal salt diet were treated with or without the AT1 receptor antagonist candesartan cilexetil (1 mg/kg/day) from 10 weeks to 22 weeks. At the end of the treatment period, renal tissue was excised, and gene expressions of the proteoglycan core proteins versican, perlecan, decorin, and biglycan were examined by Northern blot analysis and RT-PCR. Treatment with candesartan cilexetil caused significant decreases in blood pressure and amelioration of proteinuria and renal histological scores in the SHRSP/Izm rats. Compared to WKY/Izm rats, expression of biglycan mRNA showed a small increase in SHRSP/Izm rats which did not attain statistical significance. On the other hand, treatment with candesartan caused significant reductions in biglycan and decorin mRNA in the SHRSP/Izm rats. In contrast, the level of versican mRNA appeared to be increased after candesartan treatment. These results suggest that treatment with AT1 receptor antagonist was associated with diverse changes in renal proteoglycan gene expression in SHRSP/Izm rats. These changes could contribute to the beneficial effects of AT1 receptor antagonist on tissue remodeling and inhibition of disease progression in hypertensive rat kidneys.  相似文献   

3.
OBJECTIVE: To study the effects of long-term treatment with the type 1 angiotensin (AT1) receptor antagonist losartan and the angiotensin-converting enzyme (ACE) inhibitor enalapril, on cardiac adrenomedullin (ADM), atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) gene expression. METHODS: Spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were given losartan (15 mg/kg per day) or enalapril (4 mg/kg per day) orally for 10 weeks. The effects of drugs on systolic blood pressure, cardiac hypertrophy, ANP, BNP and ADM mRNA and immunoreactive-ANP (IR)-ANP, IR-BNP and IR-ADM levels in the left ventricle and atria were compared. RESULTS: Losartan and enalapril treatments completely inhibited the increase of systolic blood pressure occurring with ageing in SHR. The ratio of heart to body weight was reduced in both losartan- and enalapril-treated SHR and WKY rats. Treatment with losartan or enalapril reduced left ventricular ANP mRNA and IR-ANP in both strains, and ventricular BNP mRNA levels in SHR rats. Inhibition of ACE, AT1 receptor antagonism, changes in blood pressure or cardiac mass had no effect on left ventricular ADM gene expression in SHR and WKY rats. In addition, atrial IR-ANP and IR-ADM levels increased in SHR whereas IR-BNP levels decreased in WKY and SHR rats in response to drug treatments. CONCLUSIONS: Our results show that ventricular ADM synthesis is an insensitive marker of changes in haemodynamic load or cardiac hypertrophy. Furthermore, the expression of ADM, ANP and BNP genes is differently regulated both in the left ventricle and atria in response to AT1 receptor antagonism and ACE inhibition.  相似文献   

4.
Barber MN  Sampey DB  Widdop RE 《Hypertension》1999,34(5):1112-1116
In the present study, we investigated the role of the angiotensin type 2 (AT(2)) receptor in the regulation of blood pressure in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). We tested the hypothesis that AT(2) receptor activation may contribute to the antihypertensive effects of angiotensin type 1 (AT(1)) receptor antagonists. Mean arterial pressure (MAP) and heart rate were measured over a 4-day protocol in various groups of rats that received the following drug combinations: the AT(1) receptor antagonist candesartan (0.01 or 0.1 mg/kg IV) alone, the AT(2) receptor agonist CGP42112 (1 microg/kg per minute) alone, and candesartan plus CGP42112. In both SHR and WKY, 4-hour infusions of saline and CGP42112 alone did not alter MAP. In WKY, both doses of candesartan alone caused small decreases in MAP, which were similar when combined with CGP42112. In SHR, candesartan (0.1 mg/kg) caused an immediate, marked decrease in MAP, which was unaffected when combined with CGP42112. By contrast, in separate SHR, a 10-fold lower dose of candesartan (0.01 mg/kg) caused a slower-onset depressor response, which was enhanced when combined with CGP42112. The involvement of AT(2) receptors was confirmed in another group of SHR, since this facilitation of the antihypertensive effect of candesartan by CGP42112 was abolished by the coinfusion of the AT(2) receptor antagonist PD123319 (50 microg/kg per minute) with the candesartan/CGP42112 combination. Collectively, these data suggest that in SHR, AT(2) receptor activation can facilitate the initial depressor response caused by an AT(1) receptor antagonist.  相似文献   

5.
The renin-angiotensin (ANG) system has been implicated in the development of hypertension in spontaneously hypertensive rats (SHR). Because SHR are more susceptible to stress than normotensive Wistar-Kyoto rats (WKY), we measured the mRNA expression of AT1A, AT1B, and AT2 receptors in the hypothalamo-pituitary-adrenal (stress) axis of male SHR in comparison to age-matched WKY at prehypertensive (3 to 4 weeks), developing (7 to 8 weeks), and established (12 to 13 weeks) stages of hypertension. AT1A receptor mRNA was mainly expressed in the hypothalamus and adrenal gland. AT1B receptor mRNA was detected in the pituitary and adrenal gland. AT2 receptor mRNA was prominent only in the adrenal gland. When compared with WKY, SHR showed increased AT1A receptor mRNA levels in the pituitary gland at all ages in contrast to reduced pituitary AT1B receptor mRNA levels. In the adrenal gland of SHR, AT1B receptor mRNA levels were decreased at the hypertensive stages when compared with WKY. The reduced expression of adrenal AT1B receptor mRNA was localized selectively in the zona glomerulosa by in situ hybridization. No differences were observed between WKY and SHR in the expression of hypothalamic ANG receptors. ANG significantly increased plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone in dexamethasone-treated SHR but not in WKY. The aldosterone response to ANG was similar in SHR and WKY. Our results suggest a differential gene expression of AT1A and AT1B receptors in the hypothalamo-pituitary-adrenal axis of SHR and normotensive WKY and imply the participation of AT1 receptors in an exaggerated endocrine stress response of SHR to ANG.  相似文献   

6.
The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Because this interaction may be perturbed in genetic hypertension, we studied D1 dopamine and AT1 angiotensin receptors in immortalized renal proximal tubule (RPT) and A10 aortic vascular smooth muscle cells. In normotensive Wistar-Kyoto (WKY) rats, the D1-like agonist fenoldopam increased D1 receptors but decreased AT1 receptors. These effects were blocked by the D1-like antagonist SCH 23390 (10(-7) mol/L per 24 hours). In spontaneously hypertensive rat (SHR) RPT cells, fenoldopam also decreased AT1 receptors but no longer stimulated D1 receptor expression. Basal levels of AT1/D1 receptor coimmunoprecipitation were greater in WKY RPT cells (29+/-2 density units, DU) than in SHR RPT cells (21+/-2 DU, n=7 per group, P<0.05). The coimmunoprecipitation of D1 and AT1 receptors was increased by fenoldopam (10(-7) mol/L per 24 hours) in WKY RPT cells but decreased in SHR RPT cells. The effects of fenoldopam in RPT cells from WKY rats were similar in aortic vascular smooth muscle cells from normotensive BD IX rats, that is, fenoldopam decreased AT1 receptors and increased D1 receptors. Our studies show differential regulation of the expression of D1 and AT1 receptors in RPT cells from WKY and SHR. This regulation and D1/AT1 receptor interaction are different in RPT cells of WKY and SHR. An altered interaction of D1 and AT1 receptors may play a role in the impaired sodium excretion and enhanced vasoconstriction in hypertension.  相似文献   

7.
The renin-angiotensin and endothelin systems regulate blood pressure, in part, by affecting renal tubular sodium transport. In rodents, ETB receptors decrease proximal tubular reabsorption, whereas AT1 receptors produce the opposite effect. We hypothesize that ETB and AT1 receptors interact at the receptor level, and that the interaction is altered in spontaneously hypertensive rats (SHRs). In immortalized renal proximal tubule (RPT) cells from Wistar-Kyoto (WKY) rats, angiotensin II, via AT1 receptors, increased ETB receptor protein in a time- and concentration-dependent manner. In contrast, in SHR RPT cells, angiotensin II (10(-8) M/24 hours) had no effect on ETB receptor protein. AT1/ETB receptors colocalized and co-immunoprecipitated in both rat strains but long-term angiotensin II (10(-8) M/24 hours) treatment increased AT1/ETB co-immunoprecipitation in WKY but not in SHR cells. Short-term angiotensin II (10(-8) M/15 minutes) treatment decreased ETB receptor phosphorylation in both WKY and SHR cells, and increased ETB receptors in RPT cell surface membranes of RPT cells in WKY but not SHRs. Basal cell surface membrane ETB receptor expression was also higher in WKY than in SHRs. We conclude that AT1 receptors regulate ETB receptors by receptor interaction and modulation of receptor expression. The altered AT1 receptor regulation of ETB receptors in SHRs may play a role in the pathogenesis of hypertension.  相似文献   

8.
The dopaminergic and renin-angiotensin systems regulate blood pressure, in part, by affecting sodium transport in renal proximal tubules (RPTs). We have reported that activation of a D1-like receptor decreases AT1 receptor expression in the mouse kidney and in immortalized RPT cells from Wistar-Kyoto (WKY) rats. The current studies were designed to test the hypothesis that activation of the AT1 receptor can also regulate the D1 receptor in RPT cells, and this regulation is aberrant in spontaneously hypertensive rats (SHRs). Long-term (24 hours) stimulation of RPT cells with angiotensin II, via AT1 receptors increased total cellular D1 receptor protein in a time- and concentration-dependent manner in WKY but not in SHR cells. Short-term stimulation (15 minutes) with angiotensin II did not affect total cellular D1 receptor protein in either rat strain. However, in the short-term experiments, angiotensin II decreased cell surface membrane D1 receptor protein in WKY but not in SHR cells. D1 and AT1 receptors colocalized (confocal microscopy) and their coimmunoprecipitation was greater in WKY than in SHRs. However, AT1/D1 receptor coimmunoprecipitation was decreased by angiotensin II (10(-8) M/24 hours) to a similar extent in WKY (-22+/-8%) and SHRs (-22+/-12%). In summary, these studies show that AT1 and D1 receptors interact differently in RPT cells from WKY and SHRs. It is possible that an angiotensin II-mediated increase in D1 receptors and dissociation of AT1 from D1 receptors serve to counter regulate the long-term action of angiotensin II in WKY rats; different effects are seen in SHRs.  相似文献   

9.
Left ventricular hypertrophy (LVH) is an adaptive change in response to hypertensive pressure overload. Some evidence indicates that the decrease in sarcoplasmic reticulum (SR) Ca2+-ATPase mRNA expression, which may contribute to a diastolic dysfunction of the heart, occurs in the experimental pressure overload model. Also, recent studies have demonstrated that angiotensin II (Ang II) and angiotensin II receptor type 1 (AT1) play important roles in LVH. The purpose of this study was to investigate the function of the SR and the role of AT1 in genetic hypertension in spontaneously hypertensive rats (SHR) at ages 10 and 18 weeks. In SHR, cardiac hypertrophy has already developed at 10 weeks of age. SR Ca2+-ATPase activity and mRNA expression were significantly lower in SHR than in Wistar-Kyoto rats (WKY). Plasma renin activity in SHR was unchanged compared with WKY, whereas the Ang II concentration in SHR was significantly higher than that in WKY. AT1 mRNA expression in SHR was similar to that in WKY. These results suggest that in the early stage of hypertension in SHR Ang II may stimulate hypertrophy in the cardiomyocytes through the AT1, which is not downregulated by a high concentration of Ang II.  相似文献   

10.
The effect of selectively decreasing renal angiotensin II type 1 (AT1) receptor expression on renal function and blood pressure has not been determined. Therefore, we studied the consequences of selective renal inhibition of AT1 receptor expression in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) in vivo. Vehicle, AT1 receptor antisense oligodeoxynucleotides (AS-ODN), or scrambled oligodeoxynucleotides were infused chronically into the cortex of the remaining kidney of conscious, uninephrectomized WKY and SHR on a 4% NaCl intake. Basal renal cortical membrane AT1 receptor protein was greater in SHR than in WKY. In WKY and SHR, AS-ODN decreased renal but not cardiac AT1 receptors. AT1 receptor AS-ODN treatment increased plasma renin activity to a greater extent in WKY than in SHR. However, plasma angiotensin II and aldosterone were increased by AS-ODN to a similar degree in both rat strains. In SHR, sodium excretion was increased and sodium balance was decreased by AS-ODN but had only a transient ameliorating effect on blood pressure. Urinary protein and glomerular sclerosis were markedly reduced by AS-ODN-treated SHR. In WKY, AS-ODN had no effect on sodium excretion, blood pressure, or renal histology but also modestly decreased proteinuria. The major consequence of decreasing renal AT1 receptor protein in the SHR is a decrease in proteinuria, probably as a result of the amelioration in glomerular pathology but independent of systemic blood pressure and circulating angiotensin II levels.  相似文献   

11.
ACEI和Losartan对SHR肾局部RAS作用的比较   总被引:1,自引:0,他引:1  
目的:了解基础状态动物模型肾局部RAS的水平,观察其在用转换酶抑制剂(ACEI)和血管紧张素受体拮抗剂(AT1RA)干预治疗后的变化,探讨、比较这两种药物对肾保护作用的分子生物学机制。方法:用反转录聚合酶链反应(RT-PCR), 分别对自发性高血压大鼠(SHR)肾皮质内ACE和AT1 受体m RNA表达进行测定,观察用ACEI或AT1RA干预治疗后的变化。结果:(1)与WKY比,基础状态下SHR肾皮质内ACE和AT1受体m RNA表达均显著升高(两组P< 0.05);(2)与对照组相比,用ACEI后SHR 肾皮质内ACEm RNA 被抑制(P< 0.05),但AT1 受体m RNA无变化;(3)与对照组相比,用AT1RA后,SHR肾皮质内ACE和AT1 受体m RNA均被抑制(两组P< 0.05)。结论:ACEI和AT1RA 都对SHR局部RAS有作用,但作用机理和途径可能不同,AT1 受体可能存在多方面调节机制。ACEI似乎仅作用于ACE,对AT1 受体可能没有直接作用;AT1RA在作用于AT1 受体的同时,可能还通过旁路途径作用于ACE  相似文献   

12.
The dopaminergic and renin angiotensin systems interact to regulate blood pressure. Disruption of the D(3) dopamine receptor gene in mice produces renin-dependent hypertension. In rats, D(2)-like receptors reduce angiotensin II binding sites in renal proximal tubules (RPTs). Because the major D(2)-like receptor in RPTs is the D(3) receptor, we examined whether D(3) receptors regulate angiotensin II type 1 (AT(1)) receptors in rat RPT cells. The effect of D(3) receptors on AT(1) receptors was studied in vitro and in vivo. The D(3) receptor agonist PD128907 decreased AT(1) receptor protein and mRNA in WKY RPT cells and increased it in SHR cells. PD128907 increased D(3) receptors in WKY cells but had no effect in SHR cells. D(3)/AT(1) receptors colocalized in RPT cells; D(3) receptor stimulation decreased the percent amount of D(3) receptors that coimmunoprecipitated with AT(1) receptors to a greater extent in WKY than in SHR cells. However, D(3) receptor stimulation did not change the percent amount of AT(1) receptors that coimmunoprecipitated with D(3) receptors in WKY cells and markedly decreased the coimmunoprecipitation in SHR cells. The D(3) receptor also regulated the AT(1) receptor in vivo because AT(1) receptor expression was increased in kidneys of D(3) receptor-null mice compared with wild type littermates. D(3) receptors may regulate AT(1) receptor function by direct interaction with and regulation of AT(1) receptor expression. One mechanism of hypertension may be related to increased renal expression of AT(1) receptors due decreased D(3) receptor regulation.  相似文献   

13.
14.
We have recently demonstrated that type 1A dopamine (D1A) receptor is expressed in the rat heart, but its function still remains unknown. In the present study, we investigated possible changes in the expression level and the distribution of the cardiac D1A receptor in the development of left ventricular hypertrophy in spontaneously hypertensive rats/Izumo strain (SHR/Izm) at the ages of 4, 8, and 20 weeks. We examined D1A receptor protein distribution by immunohistochemistry and gene expression by competitive polymerase chain reaction (competitive PCR). In SHR/Izm, compared with the age-matched Wistar Kyoto rats/ Izmo strain (WKY/Izm), blood pressure and heart/body weight ratio were significantly increased at 8 and 20 weeks. By immunohistochemistry, the D1A receptor was localized in cardiomyocytes and vascular smooth muscle cells of coronary arteries, but not in interstitial fibrotic tissue. D1A receptor distribution was not changed either by the strain or the age. Competitive PCR analysis showed that the D1A receptor mRNA level was significantly higher at 4 weeks than at 8 and 20 weeks in both strains of rats and that there was no significant difference in D1A receptor mRNA between SHR/Izm and WKY/Izm at any age ( 43.2 ± 10.4 attomol × 10−3/L v 43.1 ± 11.2 attomol × 10−3/L at 4 weeks, P = not significant, 3.9 ± 0.9 attomol × 10−3/L v 4.0 ± 1.3 attomol × 10−3/L at 8 weeks, P = not significant, 3.0 ± 1.2 attomol × 10−3/L v 1.9 ± 1.6 attomol × 10−3/L at 20 weeks, P = not significant). These results do not support the hypothesis that changes in D1A receptor expression are associated with the development of left ventricular hypertrophy in SHR.  相似文献   

15.
16.
The functional impairment associated with atherogenic factors, including hypertension, constitutes a limitation to the ability of endothelial progenitor cells (EPCs) to repair. In addition, estrogens have been shown to play a role in reendothelialization after vascular injury. We investigated the effects of estrogens on differentiation and senescence of EPCs derived from bone marrow (BM-EPCs) in spontaneously hypertensive rats (SHR/Izm). Bone marrow (BM) cells were obtained from the tibias and femurs of age-matched, male SHR/Izm and Wistar-Kyoto rats (WKY/Izm). The number of differentiated, adherent BM-EPCs derived from SHR/Izm was significantly smaller than the number derived from WKY/Izm. 17beta-Estradiol (E2) significantly increased the number of adherent BM-EPCs from SHR/Izm, and this effect was significantly attenuated by pharmacological phosphatidylinositol 3-kinase (PI3-K) blockers. Immunoblotting analysis revealed that E2 treatment led to phosphorylation of Akt. Senescence, as assessed by acidic beta-galactosidase staining, occurred at a significantly greater rate in the BM-EPCs from SHR/Izm than in those from WKY/Izm, but E2 treatment dramatically delayed the senescence of BM-EPCs from SHR/Izm. A polymerase chain reaction (PCR)-ELISA based assay revealed that telomerase activity in BM-EPCs from SHR/Izm was significantly lower than in those from WKY/Izm, but that E2 treatment significantly augmented it. Both MTS and colony forming unit assay revealed that E2 treatment significantly augmented the functional activity in BM-endothelial cell (EC)-like cells from SHR/Izm compared to that in control BM-EC-like cells (no treatment). In conclusion, the differentiation of BM-EPCs derived from SHR/Izm was significantly decreased compared with that of BM-EPCs from WKY/Izm. In addition, the rate of senescence was significantly greater in the BM-EPCs from SHR/Izm than in those from WKY/Izm. Estrogen was shown to augment differentiation and delay the onset of senescence in BM-EPCs from SHR/Izm.  相似文献   

17.
18.
The functional balance between angiotensin II (Ang II) and nitric oxide (NO) plays a key role in modulating salt sensitivity. Estrogen has been shown to downregulate angiotensin type 1 (AT1) receptor expression and to increase the bioavailability of endothelium-derived NO, which decreases AT1 receptor expression. The present study tests the hypothesis that in the presence of genetic salt sensitivity, deficiency of endogenous estrogens after ovariectomy (OVX) fosters an upregulation of Ang II. Female Dahl salt-resistant (DR), Dahl salt-sensitive (DS), Wistar-Kyoto (WKY), and spontaneously hypertensive (SHR) rats underwent bilateral OVX or sham surgery (SHX) and were fed a normal salt diet (0.5% NaCl) for 14 weeks. Systolic blood pressures were measured every 2 weeks and were not significantly different between OVX and SHX for DR, WKY, and SHR groups. However, at the end of 14 weeks of normal salt diet, hypertension developed in DS OVX but not SHX rats (160+/-3 versus 136+/-3 mm Hg; P<0.05). Hypertension also developed in DS OVX rats pair-fed a normal salt diet (166+/-7 mm Hg). Development of hypertension in DS OVX rats was prevented by estrogen replacement (132+/-3 mm Hg), AT1 receptor blockade (119+/-3 mm Hg), or feeding a very low salt diet (0.1% NaCl; 129+/-4 mm Hg). Renal AT1 receptor protein expression was significantly elevated 2-fold in DS OVX relative to SHX rats and was prevented by estrogen replacement. These data strongly suggest that after OVX in salt-sensitive rats there is a lower threshold for the hypertensinogenic effect of salt that is linked to an activation of Ang II.  相似文献   

19.
OBJECTIVE: Sexual dimorphism has been observed in arterial hypertension. Blood pressure levels are lower in female than in male spontaneously hypertensive rats (SHR). Angiotensin II (Ang II) plays a major role in the regulation of blood pressure. The aim of this study was to compare Ang II vascular reactivity and AT(1) and AT(2) receptor gene expression in female and male SHR. METHODS: SHR animals were divided into four groups: (I) male, (II) female in physiological estrus, (III) ovariectomized and (IV) ovariectomized treated with estrogen. Arterial blood pressure, AT(1) and AT(2) mRNA expression were determined. Ang II responses in aorta and mesenteric vessels were also evaluated. RESULTS: In female SHR, aorta and mesenteric microvessels were hyporeactive to Ang II in comparison to male SHR. In ovariectomized females, Ang II vasoconstriction was similar to that of males. Estrogen treatment abolished this difference. The mRNA expression for AT(1) was higher in aorta and mesenteric vessels from males than in females. In ovariectomized SHR, mRNA expression for AT(1) was comparable to that of males. Treatment with estrogen reversed the over expression observed. Whereas AT(2) gene expression did not differ, a lower ratio AT(1)/AT(2) was found in female than in male vessels. A higher mRNA expression for AT(1) was observed in kidney from male than in female. Ovariectomy resulted in up-regulation of this subtype receptor. Treatment with estrogen reversed the overexpression. AT(2) gene expression was higher in kidney from female than male SHR. Ovariectomy reduced AT(2) gene expression and estrogen treatment reversed the alteration observed in kidney. CONCLUSION: There is sexual dimorphism in vascular reactivity and in receptor gene expression to Ang II in SHR. We conclude that estrogen modulates AT(1) and AT(2) receptor gene expression and that this might explain at least partially the lower blood pressure observed in female SHR.  相似文献   

20.
目的观察以重组腺病毒为载体的血管紧张素Ⅱ-1型受体的shRNA(AdS—AT1R—shRNA)对自发性高血压大鼠(SHR)血压的影响及对组织血管紧张素Ⅱ-1型受体(AT1R)基因表达的影响。方法在293细胞内扩增已构建好的荧光蛋白标记的携带AT1R shRNA的重组腺病毒(AdS—AT1R—shRNA),TCID50法测定重组腺病毒滴度。22只SHR随机分为2组,实验组(n=11)和高血压对照组(n=11),另设11只Wistar—Kyoto(WKY)大鼠为正常血压对照组,实验组SHR经鼠尾静脉单次注射Ad5—AT1R—shRNA,Ad5—AT1R—shRNA经TCID50法测定感染性滴度为1.7×10^9TCID50/ml,高血压对照组和正常血压对照组经鼠尾静脉单次注射对照重组复制缺陷型腺病毒(Ad5—EGFP),感染性滴度为7.9×10^9TCID50/ml。注射前及注射后每天定时监测血压及心率,于血压出现明显下降时处死部分动物,取出心脏、肝脏、肾脏、主动脉及肾上腺组织,在荧光显微镜下观察他们对Ad5—AT1R—shRNA的吸收情况,采用荧光定量PCR检测肝脏、肾脏及主动脉组织AT1R mRNA的表达情况。结果实验开始24h后,实验组收缩压[(163±7)mmHg,1mmHg=0.133kPa]出现明显下降,最大降压幅度达29mmHg,与SHR组[(182±8)mmHg]比较差异有统计学意义(P〈0.05),此后降压作用可持续5天,最长可持续7天。SHR组和WKY组血压均未见明显下降,SHR组有的血压可见继续升高。3组动物的心率变化不明显,肾脏、心脏、肝脏、主动脉及肾上腺组织在荧光显微镜下可见大量荧光表达。实验组肾脏及主动脉AT1R的mRNA表达量(分别为0.086±0.014,0,051±0.023)明显低于SHR组(分别为0.362±0.042,0.463±0.045),P〈0,01。结论AdS—AT1R—shRNA经静脉注射后可被许多重要脏器吸收,且对SHR的AT1R起到RNA干扰的作用,在mRNA水平抑制AT1R的基因表达。AdS—AT1R·shRNA通过阻抑AT1R生成对SHR起到明显且持久的降压作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号