首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of saturated and unsaturated fatty acid ethanolamides as well as delta9-tetrahydrocannabinol (delta9-THC), WIN 55,212-2 and cannabinoid CB1 receptor antagonist SR 141716 on sea urchin fertilization was studied. The ethanolamides of arachidonic, oleic and linoleic acids but not saturated fatty acid (C14-C20) derivatives inhibited fertilization when pre-incubated with sperm cells. Delta9-THC and WIN 55,212-2 also inhibited fertilization, delta9-THC being ten times as potent as WIN 55,212-2. Selective cannabinoid CB1 receptor antagonist SR 141716 also blocked fertilization and did not antagonize the action of delta9-THC. The obtained results indicate that different unsaturated fatty acid ethanolamides may control sea urchin fertilization, and that sea urchin sperm cell cannabinoid receptor may differ from the known cannabinoid receptor subtypes.  相似文献   

2.
The effects of cannabinoid agonists on noxious heat-evoked firing of 62 spinal wide dynamic range (WDR) neurons were examined in urethan-anesthetized rats (1 cell/animal). Noxious thermal stimulation was applied with a Peltier device to the receptive fields in the ipsilateral hindpaw of isolated WDR neurons. To assess the site of action, cannabinoids were administered systemically in intact and spinally transected rats and intraventricularly. Both the aminoalkylindole cannabinoid WIN55,212-2 (125 microg/kg iv) and the bicyclic cannabinoid CP55,940 (125 microg/kg iv) suppressed noxious heat-evoked activity. Responses evoked by mild pressure in nonnociceptive neurons were not altered by CP55,940 (125 microg/kg iv), consistent with previous observations with another cannabinoid agonist, WIN55,212-2. The cannabinoid induced-suppression of noxious heat-evoked activity was blocked by pretreatment with SR141716A (1 mg/kg iv), a competitive antagonist for central cannabinoid CB1 receptors. By contrast, intravenous administration of either vehicle or the receptor-inactive enantiomer WIN55,212-3 (125 microg/kg) failed to alter noxious heat-evoked activity. The suppression of noxious heat-evoked activity induced by WIN55,212-2 in the lumbar dorsal horn of intact animals was markedly attenuated in spinal rats. Moreover, intraventricular administration of WIN55,212-2 suppressed noxious heat-evoked activity in spinal WDR neurons. By contrast, both vehicle and enantiomer were inactive. These findings suggest that cannabinoids selectively modulate the activity of nociceptive neurons in the spinal dorsal horn by actions at CB1 receptors. This modulation represents a suppression of pain neurotransmission because the inhibitory effects are selective for pain-sensitive neurons and are observed with different modalities of noxious stimulation. The data also provide converging lines of evidence for a role for descending antinociceptive mechanisms in cannabinoid modulation of spinal nociceptive processing.  相似文献   

3.
The psychoactive component of marijuana, delta9-tetrahydrocannabinol (THC) suppresses different functions of immunocytes, including the antimicrobicidal activity of macrophages. The triggering of cannabinoid receptors of CB1 and CB2 subtypes present on leukocytes may account for these effects. We investigated the influence of specific CB1 or CB2 receptor antagonists (SR141716A and SR144528, respectively) and nonselective CB1/CB2 cannabinoid receptor agonists (CP55,940 or WIN 55212-2) on macrophage infection by Brucella suis, an intracellular gram-negative bacteria. None of the compounds tested affected bacterial phagocytosis. By contrast, the intracellular multiplication of Brucella was dose-dependently inhibited in cells treated with 10-500 nM SR141716A and 1 microM SR141716A-induced cells exerted a potent microbicidal effect against the bacteria. SR144528, CP55,940, or WIN 55212-2 did not affect (or slightly potentiated) the growth of phagocytized bacteria. However, CP55,940 or WIN 55212-2 reversed the SR141716A-mediated effect, which strongly suggested an involvement of macrophage CB1 receptors in the phenomenon. SR141716A was able to pre-activate macrophages and to trigger an activation signal that inhibited Brucella development. The participation of endogenous cannabinoid ligand(s) in Brucella infection was discussed. Finally, our data show that SR141716A up-regulates the antimicrobial properties of macrophages in vitro and might be a pharmaceutical compound useful for counteracting the development of intramacrophagic gram-negative bacteria.  相似文献   

4.
The present studies were conducted to test the hypothesis that systemically inactive doses of cannabinoids suppress inflammation-evoked neuronal activity in vivo via a peripheral mechanism. We examined peripheral cannabinoid modulation of spinal Fos protein expression, a marker of neuronal activity, in a rat model of inflammation. Rats received unilateral intraplantar injections of carrageenan (3%). In behavioral studies, carrageenan induced allodynia and mechanical hyperalgesia in response to stimulation with von Frey monofilaments. The cannabinoid agonist WIN55,212-2 (30 microg intraplantarly), administered concurrently with carrageenan, attenuated carrageenan-evoked allodynia and hyperalgesia relative to control conditions. In immunocytochemical studies, WIN55,212-2 suppressed the development of carrageenan-evoked Fos protein expression in the lumbar dorsal horn of the spinal cord relative to vehicle treatment. The same dose administered systemically or to the noninflamed contralateral paw failed to alter either carrageenan-evoked allodynia and hyperalgesia or carrageenan-evoked Fos protein expression, consistent with a peripheral site of action. The suppressive effects of WIN55,212-2 (30 microg intraplantarly) on carrageenan-evoked Fos protein expression and pain behavior were blocked by local administration of either the CB(2) antagonist SR144528 (30 microg intraplantarly) or the CB(1) antagonist SR141716A (100 microg intraplantarly). WIN55,212-3, the enantiomer of the active compound, also failed to suppress carrageenan-evoked Fos protein expression. These data provide direct evidence that a peripheral cannabinoid mechanism suppresses the development of inflammation-evoked neuronal activity at the level of the spinal dorsal horn and implicate a role for CB(2) and CB(1) in peripheral cannabinoid modulation of inflammatory nociception.  相似文献   

5.
The effects of the synthetic cannabinoid WIN 55,212-2 on heat-evoked firing of spinal wide dynamic range (WDR) neurons were examined in a rodent model of neuropathic pain. Fifty-eight WDR neurons (1 cell/animal) were recorded from the ipsilateral spinal dorsal horns of rats with chronic constriction injury (CCI) and sham-operated controls. Relative to sham-operated controls, neurons recorded in CCI rats showed elevations in spontaneous firing, noxious heat-evoked responses, and afterdischarge firing as well as increases in receptive field size. WIN 55,212-2 (0.0625, 0.125, and 0.25 mg/kg, intravenous) dose-dependently suppressed heat-evoked activity and decreased the receptive field areas of dorsal horn WDR neurons in both nerve injured and control rats with a greater inhibition in CCI rats. At the dose of 0.125 mg/kg iv, WIN 55,212-2 reversed the hyperalgesia produced by nerve injury. The effect of intravenous administration of WIN 55,212-2 appears to be centrally mediated because administration of the drug directly to the ligated nerve did not suppress the heat-evoked neuronal activity in CCI rats. Pretreatment with the cannabinoid CB(1) receptor antagonists SR141716A or AM251, but not the CB(2) antagonist SR144528, blocked the effects. These results provide a neural basis for reports of potent suppression by cannabinoids of the abnormal sensory responses that result from nerve injury.  相似文献   

6.
Cannabinoids receptors have been reported to modulate synaptic transmission in many structures of the CNS, but yet little is known about their role in the prefrontal cortex where type I cannabinoid receptor (CB-1) are expressed. In this study, we tested first the acute effects of selective agonists and antagonist of CB-1 on glutamatergic excitatory postsynaptic currents (EPSCs) in slices of rat prefrontal cortex (PFC). EPSCs were evoked in patch-clamped layer V pyramidal cells by stimulation of layer V afferents. Monosynaptic EPSCs were strongly depressed by bath application (1 microM) of the cannabinoid receptors agonists WIN55212-2 (-50.4 +/- 8.8%) and CP55940 (-42.4 +/- 10.9%). The CB-1 antagonist SR141716A reversed these effects. Unexpectedly, SR141716A alone produced a significant increase of glutamatergic synaptic transmission (+46.9 +/- 11.2%), which could be partly reversed by WIN55212-2. In the presence of strontium in the bath, the frequency but not the amplitude of asynchronous synaptic events evoked in layer V pyramidal cells by stimulating layer V afferents, was markedly decreased (-54.2 +/- 8%), indicating a presynaptic site of action of cannabinoids at these synapses. Tetanic stimulation (100 pulses at 100 Hz, 4 trains) induced in control condition, no changes (n = 7/18), long-term depression (LTD; n = 6/18), or long-term potentiation (LTP; n = 5/18) of monosynaptic EPSCs evoked by stimulation of layer V afferents. When tetanus was applied in the presence of WIN 55,212-2 or SR141716-A (1 microM) in the bath, the proportion of "nonplastic" cells were not significantly changed (n = 7/15 in both cases). For the plastic ones (n = 8 in both cases), WIN 55,212-2 strongly favored LTD (n = 7/8) at the apparent expense of LTP (n = 1/8), whereas the opposite effect was observed with SR141716-A (7/8 LTP; 1/8 LTD). These results demonstrate that cannabinoids influence glutamatergic synaptic transmission and plasticity in the PFC of rodent.  相似文献   

7.
The effect of cannabinoids on excitatory transmission in the substantia gelatinosa was investigated using intracellular recording from visually identified neurons in a transverse slice preparation of the juvenile rat spinal cord. In the presence of strychnine and bicuculline, perfusion of the cannabinoid receptor agonist WIN55,212-2 reduced the frequency and the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Furthermore, the frequency of miniature EPSCs (mEPSCs) was also decreased by WIN55,212-2, whereas their amplitude was not affected. Similar effects were reproduced using the endogenous cannabinoid ligand anandamide. The effects of both agonists were blocked by the selective CB(1) receptor antagonist SR141716A. Electrical stimulation of high-threshold fibers in the dorsal root evoked a monosynaptic EPSC in lamina II neurons. In the presence of WIN55,212-2, the amplitude of the evoked EPSC (eEPSCs) was reduced, and the paired-pulse ratio was increased. The reduction of the eEPSC following CB(1) receptor activation was unlikely to have a postsynaptic origin because the response to AMPA, in the presence of 1 microM TTX, was unchanged. To investigate the specificity of this synaptic inhibition, we selectively activated the nociceptive C fibers with capsaicin, which induced a strong increase in the frequency of EPSCs. In the presence of WIN55,212-2, the response to capsaicin was diminished. In conclusion, these results strongly suggest a presynaptic location for CB(1) receptors whose activation results in inhibition of glutamate release in the spinal dorsal horn. The strong inhibitory effect of cannabinoids on C fibers may thereby contribute to the modulation of the spinal excitatory transmission, thus producing analgesia at the spinal level.  相似文献   

8.
Behavioral effects of cannabinoid agents in animals   总被引:11,自引:0,他引:11  
Two subtypes of cannabinoid receptors have been identified to date, the CB1 receptor, essentially located in the CNS, but also in peripheral tissues, and the CB2 receptor, found only at the periphery. The identification of delta9-tetrahydrocannabinol (delta9-THC) as the major active component of marijuana (Cannabis sativa), the recent emergence of potent synthetic ligands and the identification of anandamide and sn-2 arachidonylglycerol as putative endogenous ligands for cannabinoid receptors in the brain, have contributed to advancing cannabinoid pharmacology and approaching the neurobiological mechanisms involved in physiological and behavioral effects of cannabinoids. Most of the agonists exhibit nonselective affinity for CB1/CB2 receptors, and delta9-THC and anandamide probably act as partial agonists. Some recently synthesized molecules are highly selective for CB2 receptors, whereas selective agonists for the CB1 receptors are not yet available. A small number of antagonists exist that display a high selectivity for either CB1 or CB2 receptors. Cannabinomimetics produce complex pharmacological and behavioral effects that probably involve numerous neuronal substrates. Interactions with dopamine, acetylcholine, opiate, and GABAergic systems have been demonstrated in several brain structures. In animals, cannabinoid agonists such as delta9-THC, WIN 55,212-2, and CP 55,940 produce a characteristic combination of four symptoms, hypothermia, analgesia, hypoactivity, and catalepsy. They are reversed by the selective CB1 receptor antagonist, SR 141716, providing good evidence for the involvement of CB1-related mechanisms. Anandamide exhibits several differences, compared with other agonists. In particular, hypothermia, analgesia, and catalepsy induced by this endogenous ligand are not reversed by SR 141716. Cannabinoid-related processes seem also involved in cognition, memory, anxiety, control of appetite, emesis, inflammatory, and immune responses. Agonists may induce biphasic effects, for example, hyperactivity at low doses and severe motor deficits at larger doses. Intriguingly, although cannabis is widely used as recreational drug in humans, only a few studies revealed an appetitive potential of cannabimimetics in animals, and evidence for aversive effects of delta9-THC, WIN 55,212-2, and CP 55,940 is more readily obtained in a variety of tests. The selective blockade of CB1 receptors by SR 141716 impaired the perception of the appetitive value of positive reinforcers (food, cocaine, morphine) and reduced the motivation for sucrose, beer and alcohol consumption, indicating that positive incentive and/or motivational processes could be under a permissive control of CB1-related mechanisms. There is little evidence that cannabinoid systems are activated under basal conditions. However, by using SR 141716 as a tool, a tonic involvement of a CB1-mediated cannabinoid link has been demonstrated, notably in animals suffering from chronic pain, faced with anxiogenic stimuli or highly motivational reinforcers. Some effects of SR 141716 also suggest that CB1-related mechanisms exert a tonic control on cognitive processes. Extensive basic research is still needed to elucidate the roles of cannabinoid systems, both in the brain and at the periphery, in normal physiology and in diseases. Additional compounds, such as selective CB1 receptor agonists, ligands that do not cross the blood brain barrier, drugs interfering with synthesis, degradation or uptake of endogenous ligand(s) of CB receptors, are especially needed to understand when and how cannabinoid systems are activated. In turn, new therapeutic strategies would likely to emerge.  相似文献   

9.
The assumption of a novel high palatable food (a candied cherry) occurs concomitantly with an increase in the concentration of extra-cellular dopamine and its main metabolite 3,4-dihydroxy-phenylacetic acid (DOPAC) by about 45% in the dialysate obtained by intracerebral microdialysis from the shell of the nucleus accumbens of male rats. Such increase was reversed by SR 141716A (Rimonabant), a selective cannabinoid CB1 receptor antagonist (0.3 mg/kg i.p. and 1 mg/kg i.p.), which also reduces the assumption of the high palatable food, when given 15 min before exposure to the candied cherry. SR 141716A effects on extracellular dopamine and DOPAC were prevented by WIN 55,212-2 (0.3 mg/kg i.p.) or HU 210 (0.1 mg/kg i.p.) given 15 min before SR 141716A. The present results show for the first time that SR 141716A reduces the increase in extra-cellular dopamine induced by a novel high palatable food in the nucleus accumbens. This confirms that cannabinoid CB1 receptors play a key role in food intake and/or appetite and suggests that the mesolimbic dopaminergic system is involved at least in part, in the effects of cannabinoid receptor agonists and antagonists on food intake and/or appetite.  相似文献   

10.
Meng ID  Johansen JP 《Neuroscience》2004,124(3):685-693
Systemic administration of a cannabinoid agonist produces antinociception through the activation of pain modulating neurons in the rostral ventromedial medulla (RVM). The aim of the present study was to determine how a cannabinoid receptor agonist acting directly within the RVM affects neuronal activity to produce behaviorally measurable antinociception. In lightly anesthetized rats, two types of RVM neurons have been defined based on changes in tail flick-related activity. On-cells increase firing (on-cell burst), whereas off-cells cease firing (off-cell pause), just prior to a tail flick. The cannabinoid receptor agonist WIN55,212-2 was microinfused directly into the RVM while monitoring tail flick latencies and on- and off-cell activity. Microinfusion of WIN55,212-2 (2.0 microg/microl and 0.4 microg/microl) reduced the tail flick-related on-cell burst, decreased the duration of the off-cell pause, and increased off-cell ongoing activity. These changes were prevented by co-infusing the CB1 receptor antagonist, SR141716A (0.35 microg/microl), with WIN55,212-2 (0.4 microg/microl). Furthermore, 2.0 microg/microl WIN55,212-2 delayed the onset of the off-cell pause and increased tail flick latencies. Microinfusion of WIN55,212-2 to brain regions caudal or lateral to the RVM had no effect on RVM neuronal activity or tail flick latencies. These results indicate that cannabinoids act directly within the RVM to affect off-cell activity, providing one mechanism by which cannabinoids produce antinociception.  相似文献   

11.
The endocannabinoid system and the cannabinoid CB(1) receptors are involved in the development of ethanol tolerance and dependence. This study aimed to investigate the in vivo sensitivity of a CB(1) receptor agonist (WIN 55,212-2) modulating the synthesis of 3,4-dihydroxy-phenylalanine/dopamine/noradrenaline (DOPA/DA/NA) and that of 5-hydroxy-tryptophan/serotonin (5-HTP/5-HT) in rat brain after ethanol treatment and withdrawal. In control rats, WIN 55,212-2 (4 mg/kg, i.p., for 1h), through a mechanism sensible to the CB(1) antagonist SR 141716A, increased the synthesis of DOPA/NA in a slice of brainstem containing the locus ceruleus (250%) and in the hippocampus (64%), and it reduced DOPA/DA synthesis in the striatum (47%). WIN 55,212-2 also decreased the synthesis of 5-HTP/5-HT in the locus ceruleus (43%), hippocampus (35%) and striatum (35%). In the locus ceruleus of ethanol-treated rats, the stimulatory effect of WIN 55,212-2 on DOPA/NA synthesis was abolished (acute treatment) or markedly attenuated (53-55%, chronic treatment and withdrawal), whereas in the hippocampus this effect was reduced only in chronic ethanol-withdrawn rats (33%). In the striatum of ethanol-treated rats (acute, chronic and withdrawal), the inhibitory effect of WIN 55,212-2 on DOPA/DA synthesis was completely blunted or markedly reduced. Similarly, the inhibitory effect of WIN 55,212-2 on 5-HTP/5-HT synthesis was reduced or abolished in the three brain regions after chronic ethanol and during withdrawal. These results indicate that treatment with ethanol in rats induces a functional desensitization of CB(1) receptors modulating the synthesis of brain monoamines.  相似文献   

12.
Using whole cell voltage-clamp recordings we investigated the effects of a synthetic cannabinoid (WIN55,212-2) on inhibitory inputs received by layer 2/3 pyramidal neurons in slices of the mouse auditory cortex. Activation of the type 1 cannabinoid receptor (CB1R) with WIN55,212-2 reliably reduced the amplitude of GABAergic inhibitory postsynaptic currents evoked by extracellular stimulation within layer 2/3. The suppression of this inhibition was blocked and reversed by the highly selective CB1R antagonist AM251, confirming a CB1R-mediated inhibition. Pairing evoked inhibitory postsynaptic currents (IPSCs) at short interstimulus intervals while applying WIN55,212-2 resulted in an increase in paired-pulse facilitation suggesting that the probability of GABA release was reduced. A presynaptic site of cannabinoid action was verified by an observed decrease in the frequency with no change in the amplitude or kinetics of action potential-independent postsynaptic currents (mIPSCs). When Cd(2+) was added or Ca(2+) was omitted from the recording solution, the remaining fraction of Ca(2+)-independent mIPSCs did not respond to WIN55,212-2. These data suggest that cannabinoids are capable of suppressing the inhibition of neocortical pyramidal neurons by depressing Ca(2+)-dependent GABA release from local interneurons.  相似文献   

13.
The nucleus accumbens (NAc) represents a critical site for the rewarding and addictive properties of several classes of abused drugs. The medium spiny GABAergic projection neurons (MSNs) in the NAc receive innervation from intrinsic GABAergic interneurons and glutamatergic innervation from extrinsic sources. Both GABA and glutamate release onto MSNs are inhibited by drugs of abuse, suggesting that this action may contribute to their rewarding properties. To investigate the actions of cannabinoids in the NAc, we performed whole cell recordings from MSNs located in the shell region in rat brain slices. The cannabinoid agonist WIN 55,212-2 (1 microM) had no effect on the resting membrane potential, input resistance, or whole cell conductance, suggesting no direct postsynaptic effects. Evoked glutamatergic excitatory postsynaptic currents (EPSCs) were inhibited to a much greater extent by [Tyr-D-Ala(2), N-CH(3)-Phe(4), Gly-ol-enkephalin] (DAMGO, approximately 35%) than by WIN 55,212-2 (<20%), and an analysis of miniature EPSCs suggested that the effects of DAMGO were presynaptic, whereas those of WIN 55,212-2 were postsynaptic. However, electrically evoked GABAergic inhibitory postsynaptic currents (evIPSCs), were reduced by WIN 55,212-2 in every neuron tested (EC(50) = 123 nM; 60% maximal inhibition), and the inhibition of IPSCs by WIN 55,212-2 was completely antagonized by the CB1 receptor antagonist SR141716A (1 microM). In contrast evIPSCs were inhibited in approximately 50% of MSNs by the mu/delta opioid agonist D-Ala(2)-methionine(2)-enkephalinamide and were completely unaffected by a selective mu-opioid receptor agonist (DAMGO). WIN 55,212-2 also increased paired-pulse facilitation of the evIPSCs and did not alter the amplitudes of tetrodotoxin-resistant miniature IPSCs, suggesting a presynaptic action. Taken together, these data suggest that cannabinoids and opioids differentially modulate inhibitory and excitatory synaptic transmission in the NAc and that the abuse liability of marijuana may be related to the direct actions of cannabinoids in this structure.  相似文献   

14.
At present, little is known about the mechanisms by which cannabinoids exert their effects on the central nervous system. In this study, fluorescence imaging and electrophysiological techniques were used to investigate the functional relationship between cell surface cannabinoid type 1 (CB(1)) receptors and GABAergic synaptic transmission in cultured hippocampal neurons. CB(1) receptors were labelled on living neurons using a polyclonal antibody directed against the N-terminal 77 amino acid residues of the rat cloned CB(1) receptor. Highly punctate CB(1) receptor labelling was observed on fine axons and at axonal growth cones, with little somatic labelling. The majority of these sites were associated with synaptic terminals, identified either with immunohistochemical markers or by using the styryl dye FM1-43 to label synaptic vesicles that had undergone active turnover. Dual labelling of neurons for CB(1) receptors with either the inhibitory neurotransmitter GABA or its synthesising enzyme glutamate decarboxylase, demonstrated a strong correspondence. The immunocytochemical data was supported by functional studies using whole-cell patch-clamp recordings of miniature inhibitory postsynaptic currents (mIPSCs). The cannabinoid agonist WIN55,212-2 (100nM) markedly inhibited (by 77+/-6.3%) the frequency of pharmacologically-isolated GABAergic mIPSCs. The effects of WIN55,212-2 were blocked in the presence of the selective CB(1) receptor antagonist SR141716A (100nM).In conclusion, the present data show that cell surface CB(1) receptors are expressed at presynaptic GABAergic terminals, where their activation inhibits GABA release. Their presence on growth cones could indicate a role in the targeting of inhibitory connections during development.  相似文献   

15.
CB1 cannabinoid receptors in the neostriatum mediate profound motor deficits induced when cannabinoid drugs are administered to rodents. Because the CB1 receptor has been shown to inhibit neurotransmitter release in various brain areas, we investigated the effects of CB1 activation on glutamatergic synaptic transmission in the dorsolateral striatum of the rat where the CB1 receptor is highly expressed. We performed whole cell voltage-clamp experiments in striatal brain slices and applied the CB1 agonists HU-210 or WIN 55,212-2 during measurement of synaptic transmission. Excitatory postsynaptic currents (EPSCs), evoked by electrical stimulation of afferent fibers, were significantly reduced in a dose-dependent manner by CB1 agonist application. EPSC inhibition was accompanied by an increase in two separate indices of presynaptic release, the paired-pulse response ratio and the coefficient of variation, suggesting a decrease in neurotransmitter release. These effects were prevented by application of the CB1 antagonist SR141716A. When Sr(2+) was substituted for Ca(2+) in the extracellular solution, application of HU-210 (1 microM) significantly reduced the frequency, but not amplitude, of evoked, asynchronous quantal release events. Spontaneous release events were similarly decreased in frequency with no change in amplitude. These findings further support the interpretation that CB1 activation leads to a decrease of glutamate release from afferent terminals in the striatum. These results reveal a novel potential role for cannabinoids in regulating striatal function and thus basal ganglia output and may suggest CB1-targeted drugs as potential therapeutic agents in the treatment of Parkinson's disease and other basal ganglia disorders.  相似文献   

16.
Bone tumor pain is a poorly controlled pain comprising background and severe pain on moving or weight-bearing postures that decreases the quality of life for cancer patients; thus, more effective analgesics are clearly needed. This study evaluated the efficacy of a cannabinoid (CB) receptor agonist (WIN 55,212-2) on bone tumor pain in the spinal cords of rats, and clarified the roles of the CB1 and CB2 receptors in WIN 55,212-2-induced antinociception at the spinal level. Bone tumor pain was induced by injecting MRMT-1 tumor cells (1×10(5)) into the right tibias of female Sprague-Dawley rats under sevoflurane anesthesia. Bone tumor development was monitored radiologically. Under sevoflurane anesthesia, a polyethylene catheter was inserted into the intrathecal space for drug administration. To assess pain, the withdrawal threshold was measured by applying a von Frey filament to the tumor cell inoculation site. The effect of intrathecal WIN 55,212-2 was investigated. Next, the WIN 55,212-2-mediated antinociception was reversed using CB1 (AM 251) and CB2 (AM 630) receptor antagonists. The intratibial injection of MRMT-1 tumor cells produced radiologically confirmed bone tumors. The paw withdrawal threshold decreased significantly (mechanical allodynia) with tumor development; however, intrathecal WIN 55,212-2 dose-dependently increased the withdrawal threshold. The antinociceptive effect of WIN 55,212-2 was reversed by both CB1 and CB2 receptor antagonists. Intrathecal WIN 55,212-2 reduced bone tumor-related pain behavior mediated via spinal CB1 and CB2 receptors. Therefore, spinal CB receptor agonists may be novel analgesics in the treatment of bone tumor pain.  相似文献   

17.
Cannabinoids are known to inhibit neurotransmitter release in the CNS through CB1 receptors. The present study compares the effects of synthetic cannabinoids on acetylcholine (ACh) release in human and mice neocortex. We further investigated a possible endocannabinoid tone on CB1 receptors in human neocortex caused by endogenous agonists like anandamide or 2-arachidonylglycerol. Brain slices, incubated with [3H]-choline, were superfused and stimulated electrically under autoinhibition-free conditions to evoke tritium overflow assumed to represent ACh release. The first series of experiments was performed with 26 pulses, 60 mA, at 0.1 Hz. In mice neocortical slices, the cannabinoid receptor agonist WIN55212-2 decreased ACh release (pIC50=6.68, I(max)=67%). In the human neocortex the concentration-response curve of WIN55212-2 was bell-shaped and flat (I(max observed) approximately 30%). The estimated maximum possible inhibition, however, was much larger: I(max derived)=79%. Lec, the negative logarithm (lg) of the biophase concentration of endocannabinoids in 'WIN55212-2 units,' was -6.52, the pKd of WIN55212-2 was 7.47. The CB1 receptor antagonist/inverse agonist SR141716 enhanced ACh release in the human neocortex (by 38%) and prevented the inhibitory effect of WIN55212-2. The concentration-response curve of WIN55212-2 was changed in its shape including a shift to the right due to the presence of SR141716. A pA2 of this antagonist between 11.60 and 11.18 was obtained. SR141716 alone had no effect in mice neocortical slices. A partial agonist without inverse agonistic activity, O-1184, enhanced ACh release in the human neocortex. The endocannabinoid uptake-inhibitor AM404 decreased ACh release in human, but not in mice, neocortical slices. Change of the stimulation parameters (eight trains of pseudo-one-pulse bursts (4 pulses, 76 mA, 100 Hz), spaced by 45 s intervals) led to a stronger inhibitory effect of WIN55212-2, and abolished the disinhibitory effect of SR141716 and O-1184. The results show that activation of CB1 cannabinoid receptors leads to inhibition of ACh release in the human and mouse neocortex. The endocannabinoid tone is high in the human, but not in the mouse neocortex and is dependent on neuronal activity. SR141716 acts as a competitive CB1 receptor antagonist.  相似文献   

18.
CB1 receptors have been localized to primary afferent neurons, but little is known about the direct effect of cannabinoids on these neurons. The depolarization-evoked increase in the concentration of free intracellular calcium ([Ca(2+)](i)), measured by microfluorimetry, was used as a bioassay for the effect of cannabinoids on isolated, adult rat primary afferent neurons 20-28 h after dissociation of dorsal root ganglia. Cannabinoid agonists CP 55,940 (100 nM) and WIN 55,212-2 (1 microM) had no effect on the mean K(+)-evoked increase in [Ca(2+)](i) in neurons with a somal area<800 microm(2), but the ligands attenuated the evoked increase in [Ca(2+)](i) by 35% in neurons defined as intermediate in size (800-1500 microm(2)). The effects of CP 55,940 and WIN 55,212-2 were mediated by the CB1 receptor on the basis of relative effective concentrations, blockade by the CB1 receptor antagonist SR141716A and lack of effect of WIN 55,212-3. Intermediate-size neurons rarely responded to capsaicin (100 nM). Although cannabinoid agonists generally did not inhibit depolarization-evoked increases in [Ca(2+)](i) in small neurons, immunocytochemical studies indicated that CB1 receptor-immunoreactivity occurred in this population. CB1 receptor-immunoreactive neurons ranged in size from 227 to 2995 microm(2) (mean somal area of 1044 microm(2)). In double labeling studies, CB1 receptor-immunoreactivity co-localized with labeling for calcitonin gene-related peptide and RT97, a marker for myelination, in some primary afferent neurons.The decrease in evoked Ca(2+) influx indicates that cannabinoids decrease conductance through voltage-dependent calcium channels in a subpopulation of primary afferent neurons. Modulation of calcium channels is one mechanism by which cannabinoids may decrease transmitter release from primary afferent neurons. An effect on voltage-dependent calcium channels, however, represents only one possible effect of cannabinoids on primary afferent neurons. Identifying the mechanisms by which cannabinoids modulate nociceptive neurons will increase our understanding of how cannabinoids produce anti-nociception in normal animals and animals with tissue injury.  相似文献   

19.
Ogawa A  Meng ID 《Neuroscience》2006,143(1):265-272
Cannabinoid receptor agonists have been demonstrated to inhibit medullary and spinal cord dorsal horn nociceptive neurons. The effect of cannabinoids on thermoreceptive specific neurons in the spinal or medullary dorsal horn remains unknown. In the present study, single-unit recordings from the rat medullary dorsal horn were performed to examine the effect of a cannabinoid receptor agonists on cold-specific lamina I spinothalamic tract neurons. The cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (WIN-2), was locally applied to the medullary dorsal horn and the neuronal activity evoked by cooling the receptive field was recorded. WIN-2 (1 microg/microl and 2 microg/microl) significantly attenuated cold-evoked activity. Co-administration of the CB1 receptor antagonist SR 141716 with WIN-2 did not affect cold-evoked activity. These results demonstrate a potential mechanism by which cannabinoids produce hypothermia, and also suggest that cannabinoids may affect non-noxious thermal discrimination.  相似文献   

20.
The aim of the present in vivo microdialysis study was to investigate whether prenatal exposure to the CB(1) receptor agonist WIN55,212-2 mesylate (WIN; (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone), at a dose of 0.5 mg/kg (s.c. from the fifth to the 20th day of gestation), that causes neither malformations nor overt signs of toxicity, influences cortical glutamate extracellular levels in adult (90-day old) rats. Dam weight gain, pregnancy length and litter size at birth were not significantly affected by prenatal treatment with WIN. Basal and K(+)-evoked dialysate glutamate levels were lower in the cerebral cortex of adult rats exposed to WIN during gestation than in those born from vehicle-treated mothers. In both group of animals WIN (0.1 mg/kg, i.p.) increased dialysate glutamate levels. However, while the blockade of the CB1 receptors with the selective receptor antagonist SR141716A completely counteracted the WIN-induced increase in those rats exposed to vehicle during gestation, it failed to antagonise the increase in those born from WIN-treated dams. These findings suggest that prenatal exposure to the CB1 receptor agonist WIN, at a concentration which is not associated with gross malformations and/or overt signs of toxicity, induces permanent alterations in cortical glutamatergic function. The possibility that these effects might underlie, at least in part, some of the cognitive deficits affecting the offspring of marijuana users is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号