首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction forces at the glenohumeral joint counterbalance the mass moment of the upper extremity during shoulder motion and are directly related to the activity of muscles across the joint. Because stability of the glenohumeral joint depends on compression of the humeral head into the glenoid, reaction forces constitute an important aspect of shoulder biomechanics. The objective of this study was to measure reaction forces at the glenohumeral joint during active scapula plane abduction. Furthermore, to clarify the relationship between the deltoid and supraspinatus muscles throughout abduction, this study investigated the effect of 4 variations of applied muscle forces on the magnitude and direction of glenohumeral reaction forces. We used a dynamic shoulder testing apparatus equipped with a force-moment sensor to directly measure reaction forces. Joint reaction forces increased throughout abduction and peaked at approximately 90 degrees for all testing conditions. The largest reaction forces occurred when the ratio of applied forces favored the supraspinatus tendon, whereas simulated paralysis of the supraspinatus resulted in a significant decrease in joint compression. There were no differences in direction of the reaction force between testing conditions. The results of this study indicate that the magnitude of glenohumeral joint reaction forces varies according to the ratio of forces between the supraspinatus and deltoid muscles. Thus, conditions characterized by either deltoid or supraspinatus dysfunction may result in abnormal loading mechanics at the glenohumeral joint. Understanding the relationship between rotator cuff function and glenohumeral reaction forces will aid in clarifying the importance of muscular activity to shoulder stability and strength as it relates to compression of the humeral head.  相似文献   

2.
The rotator cuff musculature imparts dynamic stability to the glenohumeral joint. In particular, the balance between the subscapularis anteriorly and the infraspinatus posteriorly, often referred to as the rotator cuff “force couple,” is critical for concavity compression and concentric rotation of the humeral head. Restoration of this anterior–posterior force balance after chronic, massive rotator cuff tears may allow for deltoid compensation, but no in vivo studies have quantitatively demonstrated an improvement in shoulder function. Our goal was to determine if restoring this balance of forces improves shoulder function after two‐tendon rotator cuff tears in a rat model. Forty‐eight rats underwent detachment of the supraspinatus and infraspinatus. After four weeks, rats were randomly assigned to three groups: no repair, infraspinatus repair, and two‐tendon repair. Quantitative ambulatory measures including medial/lateral forces, braking, propulsion, and step width were significantly different between the infraspinatus and no repair group and similar between the infraspinatus and two‐tendon repair groups at almost all time points. These results suggest that repairing the infraspinatus back to its insertion site without repair of the supraspinatus can improve shoulder function to a level similar to repairing both the infraspinatus and supraspinatus tendons. Clinically, a partial repair of the posterior cuff after a two‐tendon tear may be sufficient to restore adequate function. An in vivo model system for two‐tendon repair of massive rotator cuff tears is presented. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1028–1033, 2011  相似文献   

3.
BACKGROUND: Rotator cuff ruptures are frequently associated with loss of strength of the shoulder. However, the characteristics of the rotator cuff tear that are responsible for the loss of force generation and transmission have not yet been identified. The purpose of this study was to compare the effects of supraspinatus tendon detachments, tendon defects, and muscle retractions on in vitro force transmission by the rotator cuff to the humerus. METHODS: The rotator cuff tendons from ten cadaver shoulders were loaded proportionally to the respective cross-sectional areas of their muscles. A fiberglass rod was cemented into the medullary canal of the humerus and connected to a three-component load cell for the measurement of the forces transmitted by the rotator cuff to the humerus. This study was performed with the humerus in a hanging arm position and with various sizes of supraspinatus tendon detachments, tendon defects, and muscle retractions. RESULTS: Detachment or creation of a defect involving one-third or two-thirds of the supraspinatus tendon resulted in a minor reduction in the force transmitted by the rotator cuff (< or =5%), while detachment or creation of a defect involving the whole tendon resulted in a moderate reduction (11% and 17%, respectively). Simulated muscle retraction involving one-third, two-thirds, and the whole tendon resulted in losses of torque measuring 19%, 36%, and 58%, respectively. Side-to-side repair of the one-third and two-thirds defects nearly restored the force transmission capability, whereas a deficit remained after side-to-side repair following complete resection. CONCLUSIONS: Our results support the rotator cable concept and correspond to the clinical observation that patients with a small rupture of the rotator cuff may present without a loss of shoulder strength. Muscle retraction is potentially an important factor responsible for loss of shoulder strength following large rotator cuff ruptures. Clinical Relevance: Supraspinatus muscle retraction diminishes glenohumeral abduction torque significantly more than either a defect in the tendon or a simple detachment of the tendon from the tuberosity. In cases of irreparable defects, side-to-side repair may be worthwhile to restore muscle tension and the integrity of the rotator cable.  相似文献   

4.
One of the main goals in reconstructing rotator cuff tears is the restoration of glenohumeral joint stability, which is subsequently of utmost importance in order to prevent degenerative damage such as superior labral anterior posterior (SLAP) lesion, arthrosis, and malfunction. The goal of the current study was to facilitate musculoskeletal models in order to estimate glenohumeral instability introduced by muscle weakness due to cuff lesions. Inverse dynamics simulations were used to compute joint reaction forces for several static abduction tasks with different muscle weakness. Results were compared with the existing literature in order to ensure the model validity. Further arm positions taken from activities of daily living, requiring the rotator cuff muscles were modeled and their contribution to joint kinetics computed. Weakness of the superior rotator cuff muscles (supraspinatus; infraspinatus) leads to a deviation of the joint reaction force to the cranial dorsal rim of the glenoid. Massive rotator cuff defects showed higher potential for glenohumeral instability in contrast to single muscle ruptures. The teres minor muscle seems to substitute lost joint torque during several simulated muscle tears to maintain joint stability. Joint instability increases with cuff tear size. Weakness of the upper part of the rotator cuff leads to a joint reaction force closer to the upper glenoid rim. This indicates the comorbidity of cuff tears with SLAP lesions. The teres minor is crucial for maintaining joint stability in case of massive cuff defects and should be uprated in clinical decision‐making. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1628–1635, 2016.  相似文献   

5.
Disorders of the rotator cuff, particularly tears of the rotator cuff tendons, cause significant shoulder disability. Among numerous factors thought to be responsible for the initiation and progression of supraspinatus tears are those related to the tendon's biomechanical properties. We hypothesized that in supraspinatus tendons subjected to tensile loading a strain gradient (difference) exists between the articular and bursal tendon surfaces, that regional strain differences exist on each of these two tendon surfaces, and that tendon surface strains vary with glenohumeral abduction. To test these hypotheses, the intrinsic inhomogeneous deformational characteristics of the articular and bursal surfaces of eight intact human cadaveric supraspinatus tendons were studied at three glenohumeral abduction angles using a novel multiple strain measuring system which simultaneously recorded surface marker displacements on two opposing soft tissue surfaces. Under applied tensile loads, the articular surface exhibited greater strain at 22 degrees (7.4+/-2.6% vs. 1.3+/-0.7%, p=0.0002) and 63 degrees (6.4+/-1.6% vs. 2.7+/-1.2%, p=0.0001) whereas the bursal surface exhibited greater strain at 90 degrees (7.6+/-2.8% vs. 4.9+/-0.4%, p=0.013). At all abduction angles, insertion strains were higher than those of the mid-tendon and tendon-muscle junction regions. The existence of inhomogeneous surface strains in the intact supraspinatus tendon demonstrates that intratendinous shear occurs within the tendon. The higher strain on the articular side of the tendon, especially at the insertion region, suggests a propensity for tears to initiate in the articular tendinous zone.  相似文献   

6.
Shoulders with rotator cuff tears (RCT) tears are associated with significantly larger critical shoulder angles (CSA) (RCT CSA = 38.2°) than shoulders without RCT (CSA = 32.9°). We hypothesized that larger CSAs increase the ratio of glenohumeral joint shear to joint compression forces, requiring substantially increased compensatory supraspinatus loads to stabilize the arm in abduction. A previously established three dimensional (3D) finite element (FE) model was used. Two acromion shapes mimicked the mean CSA of 38.2° found in patients with RCT and that of a normal CSA (32.9°). In a first step, the moment arms for each muscle segment were obtained for 21 different thoracohumeral abduction angles to simulate a quasi‐static abduction in the scapular plane. In a second step, the muscle forces were calculated by minimizing the range of muscle stresses able to compensate an external joint moment caused by the arm weight. If the joint became unstable, additional force was applied by the rotator cuff muscles to restore joint stability. The model showed a higher joint shear to joint compressive force for the RCT CSA (38.2°) for thoracohumeral abduction angles between 40° and 90° with a peak difference of 23% at 50° of abduction. To achieve stability in this case additional rotator cuff forces exceeding physiological values were required. Our results document that a higher CSA tends to destabilize the glenohumeral joint such that higher than normal supraspinatus forces are required to maintain modeled stability during active abduction. This lends strong support to the concept that a high CSA can induce supraspinatus (SSP) overload. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:961–968, 2016.  相似文献   

7.
8.
Articular-surface partial-thickness rotator cuff tears play a significant role in shoulder pathology, but the role of the articular-surface tissue is poorly understood. This investigation assessed the effect of an articular-surface partial-thickness rotator cuff tear on intratendinous strain fields. A magnetic resonance imaging-based technique quantified intratendinous strains in healthy cadaveric shoulders at 15 degrees, 30 degrees, 45 degrees, and 60 degrees of glenohumeral abduction. A second set of magnetic resonance images was acquired after an articular-surface partial-thickness tear was created arthroscopically. Measures of strain were grouped into 3 tendon regions. A 3-factor analysis of variance assessed the effects of joint position, tendon region, and tendon tear. Intratendinous strains were influenced significantly by joint position, but few differences existed between tendon regions. The articular-surface partial-thickness tear increased intratendinous strain for all joint positions except 15 degrees. The results lend insight into the mechanical behavior of the normal and pathologic rotator cuff.  相似文献   

9.
The rotator cuff assists in shoulder movement and provides dynamic stability to the glenohumeral joint. Specifically, the anterior–posterior (AP) force balance, provided by the subscapularis anteriorly and the infraspinatus and teres minor posteriorly, is critical for joint stability and concentric rotation of the humeral head on the glenoid. However, limited understanding exists of the consequences associated with disruption of the AP force balance (due to tears of both the supraspinatus and infraspinatus tendons) on joint function and joint damage. We investigated the effect of disrupting the APforce balance on joint function and joint damage in an overuse rat model. Twenty‐eight rats underwent 4 weeks of overuse to produce a tendinopathic condition and were then randomized into two surgical groups: Detachment of the supraspinatus only or detachment of the supraspinatus and infraspinatus tendons. Rats were then gradually returned to their overuse protocol. Quantitative ambulatory measures including medial/lateral, propulsion, braking, and vertical forces were significantly different between groups. Additionally, cartilage and adjacent tendon properties were significantly altered. These results identify joint imbalance as a mechanical mechanism for joint damage and demonstrate the importance of preserving rotator cuff balance when treating active cuff tear patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:638–644, 2014.  相似文献   

10.
The purpose of this study was to evaluate consecutive shoulder arthroscopies for the presence or absence of a space between the biceps tendon and the supraspinatus as an indicator of a full-thickness rotator cuff tear. We performed 588 consecutive shoulder arthroscopies in the lateral decubitus position, and the presence or absence of a space between the rotator cuff (supraspinatus) and the biceps tendon was recorded immediately upon entering and insufflating the joint. Of the 588 patients, 174 (30%) were found to have full-thickness rotator cuff tears. Of these 174 patients, 171 had absence of the space between the biceps and the supraspinatus, for a sensitivity of 98%. Of the 414 patients in whom no full-thickness tear was present, 4 had absence of the space, for a specificity of 99%. The 4 patients with a false-negative result had adhesive capsulitis. During shoulder arthroscopy, a normal interval exists between the supraspinatus and biceps tendons as a result of joint insufflation. Loss of this interval is both highly sensitive (98%) and specific (99%) for a full-thickness rotator cuff tear. The space between the rotator cuff and the biceps tendon can be a reliable adjunct for verification of a full-thickness rotator cuff tear immediately upon entering the shoulder joint but should not be used in place of a full arthroscopic evaluation of the cuff.  相似文献   

11.
Rotator cuff repairs are commonly performed to reduce pain and restore function. Tears are also treated successfully without surgical intervention; however, the effect that a torn tendon has on the glenohumeral cartilage remains unknown. Clinically, a correlation between massive rotator cuff tears and glenohumeral arthritis has often been observed. This may be due to a disruption in the balance of forces at the shoulder, resulting in migration of the humeral head and subsequently, abnormal loading of the glenoid. Our lab previously demonstrated changes in ambulation and intact tendon mechanical properties following supraspinatus and infraspinatus rotator cuff tendon tears in a rat model. Therefore, the purpose of this study was to investigate the effects of supraspinatus and infraspinatus rotator cuff tears on the glenoid cartilage. Nine rats underwent unilateral detachment of the supraspinatus and infraspinatus tendons and were sacrificed after 4 weeks. Cartilage thickness significantly decreased in the antero‐inferior region of injured shoulders. In addition, equilibrium elastic modulus significantly decreased in the center, antero‐superior, antero‐inferior, and superior regions. These results suggest that altered loading after rotator cuff injury may lead to damage to the joint with significant pain and dysfunction. Clinically, understanding the mechanical processes involved with joint damage will allow physicians to better advise patients. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1435–1439, 2012  相似文献   

12.
We evaluated the function of the supraspinatus tendon with a dynamic shoulder model. Active glenohumeral joint motion was simulated in 10 cadaveric shoulder specimens with hydrodynamic cylinder forces at the deltoid muscle and at the rotator cuff. Computerized regulation initiated standardized cycles of glenohumeral joint motion, where the isolated effect of the supraspinatus muscle could be studied. The efficacy of the supraspinatus muscle on elevation of the glenohumeral joint was measured with an ultrasonic sensor system. Pressures underneath the coracoa-cromial vault were recorded with capacitive sensors, as an indicator of the impingement at the shoulder. Elimination of force of the supraspinatus muscle led to a 6 percent decrease in elevation of the glenohumeral joint. The deltoid muscle was able to reverse this loss of elevation by a force increase of one third of the lost supraspinatus force. If no force was applied to the supraspinatus muscle, average pressures underneath the coracoacromial vault decreased 8 percent. It was concluded that the supraspinatus produces less torque and more glenohumeral joint compression than the deltoid. However, the supraspinatus has no effect on depression of the humeral head during elevation.

The clinical consequence of our observations is that operative closure of supraspinatus tendon defects is not mandatory.  相似文献   

13.
目的探讨反式全肩关节置换术(reverse total shoulder arthroplasty,RTSA)治疗巨大不可修复肩袖撕裂的临床治疗效果。 方法对南京中医药大学附属医院2018年5月至2020年1月收治的采取RTSA治疗的13例巨大不可修复肩袖撕裂患者的临床资料进行回顾性分析。记录术前及最后一次随访时患者的肩关节前屈、外展、外旋活动,美国肩肘外科协会评分(American shoulder and elbow surgeons score,ASES)及美国加州大学洛杉矶分校(University of California at Los Angeles,UCLA)评分评估患者肩关节功能。并记录患者发生并发症的情况及影像学检查结果。术前行MR确定肩袖脂肪浸润程度,CT评价肩胛盂骨质情况及有无缺损,术后使用X线评估假体情况。 结果13例患者均随访至少12个月以上。统计术前与术后12个月数据之间的关系,术后12个月肩关节前屈、外展、外旋活动,ASES评分和UCLA评分较术前明显提高,差异具有统计学意义(P<0.01)。随访期内13例患者中有1例患者因局部血肿在术后1周行切开血肿清除引流术,所有患者功能恢复良好。 结论RTSA治疗巨大不可修复肩袖撕裂临床效果良好。  相似文献   

14.
OBJECTIVES: The aim of the study was to quantify the decrease in glenohumeral stability following a global rotator cuff tear and to evaluate the effect of a decreased glenoid inclination angle through analysis of muscle force vectors in a computer model. MATERIAL AND METHODS: The lines of action of eight shoulder muscles were integrated into a standard geometric model. Muscle force magnitudes were estimated based on physiological cross-sectional area and normalized electromyographic activity. The magnitude and elevation angle of the resultant force vector was calculated at 0, 30, 60, and 90 degrees of abduction. A rotator cuff tear was simulated by reduction of the corresponding muscle force vectors. RESULTS: At 0 and 30 degrees of glenohumeral abduction a global rotator cuff tear showed a resultant force vector pointing outside the glenoid. In the computer model, decreasing the inclination angle of the glenoid by 30 degrees increased the stability in rotator cuff-deficient shoulders. CONCLUSIONS: The results of this study provide a biomechanical rationale for clinical complications of global rotator cuff tear such as superior humeral head translation. The decreased glenoid inclination simulated in the computer model may represent a biomechanical basis for the development of new operative techniques to treat global rotator cuff tears.  相似文献   

15.
Analysis of rotator cuff muscles in adult human cadaveric specimens   总被引:1,自引:0,他引:1  
Management of irreparable massive rotator cuff tears remains a challenging and controversial problem. Defining glenohumeral force relations may allow for the development of treatment strategies based on biomechanical principles. Five fresh-frozen adult human cadaveric shoulder specimens were dissected to determine fiber length, mass, and lever arm of (a) the 3 bellies of the deltoid and (b) the rotator cuff muscles (supraspinatus, infraspinatus, teres minor, subscapularis). From these data, physiologic cross-sectional areas and moment relations were calculated. These relations provide evidence for a balanced axial force couple between the anterior and posterior rotator cuff. Demonstration of an axial force couple across the glenohumeral joint may have clinical significance for treatment of irreparable massive rotator cuff tears and may explain why many patients with full-thickness rotator cuff tears can regain acceptable shoulder function.  相似文献   

16.
A rotator cuff tear causes morphologic changes in rotator cuff muscles and tendons and reduced shoulder strength. The mechanisms by which these changes affect joint strength are not understood. This study's purpose was to empirically determine rotation moment arms for subregions of supraspinatus, infraspinatus, and for teres minor, and to test the hypothesis that subregions of the cuff tendons increase their effective moment arms through connections to other subregions. Tendon excursions were measured for full ranges of rotation on 10 independent glenohumeral specimens with the humerus abducted in the scapular plane at 10 and 60 degrees . Supraspinatus and infraspinatus tendons were divided into equal width subregions. Two conditions were tested: tendon divided to the musculotendinous junction, and tendon divided to the insertion on the humerus. Moment arms were determined from tendon excursion via the principle of virtual work. Moment arms for the infraspinatus (p < 0.001) and supraspinatus (p < 0.001) were significantly greater when the tendon was only divided to the musculotendinous junction versus division to the humeral head. Moment arms across subregions of infraspinatus (p < 0.001) and supraspinatus (p < 0.001) were significantly different. A difference in teres minor moment arm was not found for the two cuff tendon conditions. Moment arm differences between muscle subregions and for tendon division conditions have clinical implications. Interaction between cuff regions could explain why some subjects retain strength after a small cuff tear. This finding helps explain why a partial cuff repair may be beneficial when a complete repair is not possible. Data presented here can help differentiate between cuff tear cases that would benefit from cuff repair and cases for which cuff repair might not be as favorable.  相似文献   

17.
The rotator cuff has an important role in the stability and function of the glenohumeral joint. It is a complex anatomic structure commonly affected by injury such as tendinopathy and cuff tears. The rotator cuff helps to provide a stabilising effect to the shoulder joint by compressing the humeral head against the glenoid cavity via the concavity compression mechanism. To appreciate the function of the cuff it is imperative to understand the normal biomechanics of the cuff as well as the mechanisms involved in the pathogenesis of cuff disease.The shoulder joint offers a wide range of motion due to the variety of rotational moments the cuff muscles are able to provide. In order for the joint to remain stable, the cuff creates a force couple around the glenohumeral joint with coordinated activation of adjacent muscles, which work together to contain the otherwise intrinsically unstable glenohumeral joint and prevent proximal migration of the humerus. Once this muscular balance is lost, increased translations or subluxation of the humeral head may result, leading to changes in the magnitude and direction of the joint reaction forces at the glenohumeral joint. These mechanical changes may then result in a number of clinical presentations of shoulder dysfunction, disease and pain.This narrative review aims to highlight the importance of functional rotator cuff biomechanics whilst assessing the kinetics and kinematics of the shoulder joint, as well as exploring the various factors involved in cuff disease.  相似文献   

18.
Dynamic contributions to superior shoulder stability.   总被引:3,自引:0,他引:3  
It has been suggested that superior decentralization of the humeral head is a mechanical factor in the etiology of degenerative rotator cuff tears. This superior decentralization may be caused by muscular imbalance. The objective of this study was to investigate the contribution of individual shoulder muscles to superior stability of the glenohumeral joint. In 10 fresh frozen cadaver shoulders the tendons of the rotator cuff, teres major, latissimus, pectoralis major, deltoid and biceps were prepared. The shoulders were tested in a shoulder-loading device in 0 degrees, 30degrees, 60 degrees and 90 degrees of glenohumeral abduction. A constant superior force of 20 N was applied to the humerus. Tensile loads were applied sequentially to the tendons in proportion to their cross-sectional areas and translations of the humeral head relative to the glenoid were recorded with a 3Space Fastrak system. Depression of the humeral head was most effectively achieved by the latissimus (5.6 +/- 2.2 mm) and the teres major (5.1 +/- 2.0 mm). Further studies should elucidate their possible in vivo role in the frontal plane force couple to counter balance the deltoid. The infraspinatus (4.6 +/- 2.0 mm) and subscapularis (4.7 +/- 1.9 mm) showed similar effects while the supraspinatus (2.0 +/- 1.4 mm) was less effective in depression. Therefore, the infraspinatus and subscapularis should be surgically repaired whenever possible. The supraspinatus may be of less importance for superior stability than previously assumed.  相似文献   

19.
Rotator cuff tears are disabling conditions that result in changes in joint loading and functional deficiencies. Clinically, damage to the long‐head of the biceps tendon has been found in conjunction with rotator cuff tears, and this damage is thought to increase with increasing tear size. Despite its importance, controversy exists regarding the optimal treatment for the biceps. An animal model of this condition would allow for controlled studies to investigate the etiology of this problem and potential treatment strategies. We created rotator cuff tears in the rat model by detaching single (supraspinatus) and multiple (supraspinatus + infraspinatus or supraspinatus + subscapularis) rotator cuff tendons and measured the mechanical properties along the length of the long‐head of the biceps tendon 4 and 8 weeks following injury. Cross‐sectional area of the biceps was increased in the presence of a single rotator cuff tendon tear (by ~150%), with a greater increase in the presence of a multiple rotator cuff tendon tear (by up to 220%). Modulus values decreased as much as 43 and 56% with one and two tendon tears, respectively. Also, multiple tendon tear conditions involving the infraspinatus in addition to the supraspinatus affected the biceps tendon more than those involving the subscapularis and supraspinatus. Finally, biceps tendon mechanical properties worsened over time in multiple rotator cuff tendon tears. Therefore, the rat model correlates well with clinical findings of biceps tendon pathology in the presence of rotator cuff tears, and can be used to evaluate etiology and treatment modalities. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:416–420, 2009  相似文献   

20.
It is not possible for some rotator cuff tears to be repaired because of a large defect associated with muscle retraction. The purpose of the current study was to investigate the use of a synthetic patch graft to restore abduction force transmission in the glenohumeral joint with a rotator cuff defect. Shoulders from cadavers (n = 10) were fixed in the hanging arm and in neutral rotation, and loading was applied to the rotator cuff tendons and middle deltoid. After a simulated supraspinatus tendon defect and retraction, a patch graft was inserted into the defect and the effects of reattachment to the greater tuberosity, narrowing of the defect by using a smaller graft, and anterior graft attachment (rotator interval tissue versus subscapularis) were investigated. Abduction torque generation was measured and normalized to the intact condition. Compared with torque generation after creation of a supraspinatus defect (61% of normal torque), abduction torque increased with a graft between the infraspinatus and either the rotator interval (68% of normal) or subscapularis (80% of normal). The optimum grafting technique for abduction torque restoration occurred with a reduced size patch connected anteriorly to the subscapularis and sutured to the greater tuberosity (107% of normal). The patch graft acts to redirect force transmission, thereby providing a potential treatment option for otherwise irreparable defects. These same principles can be applied when tendon transfers are used to reconstruct large or massive cuff tears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号