首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrauterine gene transfer (IUGT) offers ontological advantages including immune naiveté mediating tolerance to the vector and transgenic products, and effecting a cure before development of irreversible pathology. Despite proof-of-principle in rodent models, expression efficacy with a therapeutic transgene has yet to be demonstrated in a preclinical nonhuman primate (NHP) model. We aimed to determine the efficacy of human Factor IX (hFIX) expression after adeno-associated-viral (AAV)-mediated IUGT in NHP. We injected 1.0–1.95 × 1013 vector genomes (vg)/kg of self-complementary (sc) AAV5 and 8 with a LP1-driven hFIX transgene intravenously in 0.9G late gestation NHP fetuses, leading to widespread transduction with liver tropism. Liver-specific hFIX expression was stably maintained between 8 and 112% of normal activity in injected offspring followed up for 2–22 months. AAV8 induced higher hFIX expression (P = 0.005) and milder immune response than AAV5. Random hepatocellular integration was found with no hotspots. Transplacental spread led to low-level maternal tissue transduction, without evidence of immunotoxicity or germline transduction in maternal oocytes. A single intravenous injection of scAAV-LP1-hFIXco to NHP fetuses in late-gestation produced sustained clinically-relevant levels of hFIX with liver-specific expression and a non-neutralizing immune response. These data are encouraging for conditions where gene transfer has the potential to avert perinatal death and long-term irreversible sequelae.  相似文献   

2.
Summary. Background: Adeno‐associated viral vector (AAV)‐mediated and muscle‐directed gene therapy is a safe and non‐invasive approach to treatment of hemophilia B and other genetic diseases. However, low efficiency of transduction, inhibitor formation and high prevalence of pre‐existing immunity to the AAV capsid in humans remain as main challenges for AAV2‐based vectors using this strategy. Vectors packaged with AAV7, 8 and 9 serotypes have improved gene transfer efficiencies and may provide potential alternatives to overcome these problems. Objective: To compare the long‐term expression of canine factor IX (cFIX) levels and anti‐cFIX antibody responses following intramuscular injection of vectors packaged with AAV1, 2, 5, 7, 8 and 9 capsid in immunocompetent hemophilia B mice. Results: Highest expression was detected in mice injected with AAV2/8 vector (28% of normal), followed by AAV2/9 (15%) and AAV2/7 (10%). cFIX expression by AAV2/1 only ranged from 0 to 5% of normal levels. High incidences of anti‐cFIX inhibitor (IgG) were detected in mice injected with AAV2 and 2/5 vectors, followed by AAV2/1. None of the mice treated with AAV2/7, 2/8 and 2/9 developed inhibitors or capsid T cells. Conclusions: AAV7, 8 and 9 are more efficient and safer vectors for muscle‐directed gene therapy with high levels of transgene expression and absence of inhibitor formation. The absence of antibody response to transgene by AAV7, 8 and 9 is independent of vector dose but may be due to the fact that these three serotypes are associated with high level distribution to, and transduction of, hepatocytes following i.m. injection.  相似文献   

3.
Efficient AAV1-AAV2 hybrid vector for gene therapy of hemophilia   总被引:3,自引:0,他引:3  
Adeno-associated virus (AAV) serotype 1 (AAV1) has been shown to be more effective than the well-studied AAV serotype 2 (AAV2) in muscle gene transfer. Replacement of amino acids 350 to 430 of AAV2 VP1 with the corresponding amino acids from VP1 of AAV1 resulted in a hybrid vector, termed AAV-221-IV, which behaved similarly to AAV1 in vitro and in vivo in muscle. Intramuscular injection of 1x10(11) vector particles per mouse of hybrid vector carrying a human FIX transgene in CD4 knockout mice resulted in an average level of human FIX in the plasma of 450 ng/ml, 4- to 10-fold higher than in mice injected with an AAV2 vector carrying the same transgene, and 80% of the transgene levels in animals treated with the same dose of AAV1. DNA analysis of injected muscle showed a 10-fold higher copy number after gene delivery by the hybrid vector compared with AAV2. A comparison of total DNA versus DNA from intact virus particles suggests a higher stability of hybrid virus particles. These results suggest that changes in the AAV capsid have an effect on virus-cell receptor interaction, and also influence trafficking and processing of the virus particle in the cell. This "hybrid vector" retains the heparin-binding sites of AAV2 and, therefore, can be purified by passage through a heparin-Sepharose column with the same efficiency as AAV2. When tested in vivo, either in CD4 knockout mice or in a hemophilic mouse model, the heparin-purified hybrid vector showed >10-fold higher activity than similarly purified AAV2. This demonstrates the utility of this hybrid vector in the performance of large-scale heparin column purification to generate a vector with a high expression profile for muscle-directed gene delivery. Initiation of clinical studies with this hybrid vector may be facilitated because it differs from AAV2 by only nine amino acids.  相似文献   

4.
Recombinant adeno-associated viral (rAAV) vectors have been widely used in pulmonary gene therapy research. In this study, we evaluated the transduction and expression efficiencies of several AAV serotypes and AAV2 capsid mutants with specific pulmonary targeting ligands in the mouse lung. The noninvasive intranasal delivery was compared with the traditional intratracheal lung delivery. The rAAV8 was the most efficient serotype at expressing α-1-antitrypsin (AAT) in the lung among all the tested serotypes and mutants. A dose of 1 × 1010 vg of rAAV8-CB-AAT transduced a high percentage of cells in the lung when delivered intratrachealy. The serum and the broncho-alveolar lavage fluid (BALF) levels of human AAT (hAAT) were about 6- and 2.5-fold higher, respectively, than those of rAAV5 group. Among the rAAV2 capsid mutants, the rAAV2 capsid mutants that display a peptide sequence from hAAT (“long serpin”) indicated a twofold increase in transgene expression. For most vectors, the serum hAAT levels achieved after intranasal delivery were 1/2 to 1/3 of those with the intratracheal method. Overall, rAAV8 was the most promising vector for the future application in gene therapy of pulmonary diseases such as AAT deficiency–related emphysema.  相似文献   

5.
BACKGROUND: The formation of inhibitory anti-factor IX (anti-FIX) antibodies is a major complication of FIX protein replacement-based treatment for hemophilia B. It is difficult to treat patients with anti-FIX antibodies. Gene therapy is emerging as a potentially effective treatment for hemophilia. Direct i.m. injection of adeno-associated virus (AAV) is a safe and efficient procedure for hemophilia B gene therapy. However, the development of anti-FIX antibodies following i.m. of AAV may impede its application to patients. OBJECTIVE: We aimed to investigate induction of immune tolerance to human FIX (hFIX) by i.m. of AAV1, further validating i.m. of AAV1 for hemophilia B gene therapy. METHODS AND RESULTS: Cohorts of hemostatically normal and hemophilia B mice with diverse genetic and MHC backgrounds received i.m. of AAV-hFIX. Human FIX antigen and anti-hFIX antibodies were examined. I.m. of 1 x 10(11) vector genomes (VG) of AAV2 elicits formation of anti-hFIX antibodies comparable to those by hFIX protein replacement. I.m. of 1 x 10(11) VG of AAV1 results in expression of therapeutic levels of hFIX (up to 950 ng mL(-1), mean = 772 ng mL(-1), SEM +/- 35.7) and hFIX-specific immune tolerance in C57BL/6 mice. CONCLUSIONS: A single i.m. of AAV1 can result in efficient expression of therapeutic levels of hFIX and induction of hFIX tolerance in hemostatically normal and hemophilic B mice. Our results substantiate the prospect of i.m. of AAV1 for hemophilia B gene therapy and FIX tolerance induction.  相似文献   

6.
Hepatic adeno-associated virus (AAV)-serotype 2–mediated gene transfer results in sustained transgene expression in experimental animals but not in human subjects. We hypothesized that loss of transgene expression in humans might be caused by immune memory mechanisms that become reactivated upon AAV vector transfer. Here, we tested the effect of immunological memory to AAV capsid on AAV-mediated gene transfer in a mouse model. Upon hepatic transfer of an AAV2 vector expressing human factor IX (hF.IX), mice immunized with adenovirus (Ad) vectors expressing AAV8 capsid before AAV2 transfer developed less circulating hF.IX and showed a gradual loss of hF.IX gene copies in liver cells as compared to control animals. This was not observed in mice immunized with an Ad vectors expressing AAV2 capsid before transfer of rAAV8-hF.IX vectors. The lower hF.IX expression was primarily linked to AAV-binding antibodies that lacked AAV-neutralizing activity in vitro rather than to AAV capsid–specific CD8+ T cells.  相似文献   

7.
Intravascular delivery of adeno-associated virus (AAV) vector is commonly used for liver-directed gene therapy. In humans, the high prevalence of neutralizing antibodies to AAV-2 capsid and the wide cross-reactivity with other serotypes hamper vector transduction efficacy. Moreover, the safety of gene-based approaches depends on vector biodistribution, vector dose, and route of administration. Here we sought to characterize the safety of AAV-5 and AAV-6 for liver-mediated human factor IX (hFIX) expression in rabbits at doses of 1 × 10(12) or 1 × 10(13) viral genomes/kg. Circulating therapeutic levels of FIX were observed in both cohorts of AAV-6-hFIX, whereas for AAV-5-hFIX only the high dose was effective. Long-lasting inhibitory antibodies to hFIX were detected in three of the 10 AAV-6-injected animals but were absent in the AAV-5 group. Overall, vector shedding in the semen was transient and vector dose-dependent. However, the kinetics of clearance were remarkably faster for AAV-5 (3-5 weeks) compared with AAV-6 (10-13 weeks). AAV-6 vector sequences outside the liver were minimal at 20-30 weeks post-injection. In contrast, AAV-5 exhibited relatively high amounts of vector DNA in tissues other than the liver. Together these data are useful to further define the safety and potential for clinical translation of these AAV vectors.  相似文献   

8.
Due to their efficient transduction potential, adeno-associated virus (AAV) vectors are leading candidates for gene therapy in skeletal muscle diseases. However, immune responses toward the vector or transgene product have been observed in preclinical and clinical studies. TLR9 has been implicated in promoting AAV-directed immune responses, but vectors have not been developed to circumvent this barrier. To assess the requirement of TLR9 in promoting immunity toward AAV-associated antigens following skeletal muscle gene transfer in mice, we compared immunological responses in WT and Tlr9-deficient mice that received an AAV vector with an immunogenic capsid, AAVrh32.33. In Tlr9-deficient mice, IFN-γ T cell responses toward capsid and transgene antigen were suppressed, resulting in minimal cellular infiltrate and stable transgene expression in target muscles. These findings suggest that AAV-directed immune responses may be circumvented by depleting the ligand for TLR9 (CpG sequences) from the vector genome. Indeed, we found that CpG-depleted AAVrh32.33 vectors could establish persistent transgene expression, evade immunity, and minimize infiltration of effector cells. Thus, CpG-depleted AAV vectors could improve outcome of clinical trials of gene therapy for skeletal muscle disease.  相似文献   

9.
Novel recombinant adeno-associated virus vectors pseudotyped with serotype 8 capsid (rAAV2/8) have recently shown exciting promise as effective liver-directed gene transfer reagents. We have produced a novel liver-specific rAAV2/8 vector expressing the mouse phenylalanine hydroxylase (Pah) cDNA and have administered this vector to hyperphenylalaninemic PAH-deficient Pah(enu2) mice, a model of human phenylketonuria (PKU). Our hypothesis was that this vector would produce sufficient hepatocyte transduction frequency and PAH activity to correct blood phenylalanine levels in murine PKU. Portal vein injection of recombinant AAV2/8 vector into five adult Pah(enu2) mice yielded complete and stable (up to 17 weeks) correction of serum phenylalanine levels. Liver PAH activity was corrected to 11.5+/-2.4% of wild type liver activity and was associated with a significant increase in phenylalanine clearance following parenteral phenylalanine challenge. Although questions of long-term safety and stability of expression remain, recombinant AAV2/8-mediated, liver-directed gene therapy is a promising novel treatment approach for PKU and allied inborn errors of metabolism.  相似文献   

10.
11.
Recombinant adeno-associated virus (AAV) vectors show promise for use in gene therapy. For liver-targeted gene transfer in animals, AAV vectors pseudotyped with the AAV serotype 8 (AAV8) capsid have definite advantages over the widely used but less efficient serotype AAV2, even though the capsid amino acid sequences are 82% conserved. To demonstrate the mechanism behind the higher liver transduction efficiency associated with AAV8 capsids, we adopted a domain-swapping strategy that would generate 27 chimeric capsid genes containing exchanged domains between AAV2 and AAV8. The resulting chimeric capsids were then used to package AAV genomes with a liver-specific human coagulation factor IX (hFIX) expression cassette. By comparing the transduction efficiencies between vectors pseudotyped with chimeric, AAV2 and AAV8 capsids, we found that the more efficient liver transduction achieved by AAV8 was closely related to the components of its interstrand Loop IV domain, particularly the subloops 1 and 4. These subloops are exposed on opposite sides of a threefold proximal peak on the virion surface, which may function as a critical structural determinant for AAV transduction. Because a single specific peptide component could not explain all the observed differences in the transduction parameters, we suggest that important subloop regions require interaction with other portions of the capsid for their functioning.  相似文献   

12.
The ability of transient immunosuppression with a combination of a non-depleting anti-CD4 (NDCD4) antibody and cyclosporine (CyA) to abrogate immune reactivity to both adeno-associated viral vector (AAV) and its transgene product was evaluated. This combination of immunosuppressants resulted in a 20-fold reduction in the resulting anti-AAV8 antibody titres, to levels in na?ve mice, following intravenous administration of 2 × 10(12) AAV8 vector particles per kg to immunocompetent mice. This allowed efficient transduction upon secondary challenge with vector pseudotyped with the same capsid. Persistent tolerance did not result, however, as an anti-AAV8 antibody response was elicited upon rechallenge with AAV8 without immunosuppression. The route of vector administration, vector dose, AAV serotype or the concomitant administration of adenoviral vector appeared to have little impact on the ability of the NDCD4 antibody and CyA combination to moderate the primary humoral response to AAV capsid proteins. The combination of NDCD4 and CyA also abrogated the humoral response to the transgene product, that otherwise invariably would occur, following intramuscular injection of AAV5, leading to stable transgene expression. These observations could significantly improve the prospects of using rAAV vectors for chronic disorders by allowing for repeated vector administration and avoiding the development of antibodies to the transgene product.  相似文献   

13.
The use of adeno-associated viral (AAV) vectors for gene replacement therapy is currently being explored in several clinical indications. However, reports have suggested that input capsid proteins from AAV-2 vector particles may result in the stimulation of cytotoxic T lymphocyte (CTL) responses that can result in a loss of transduced cells. To explore the impact of anti-AAV CTLs on AAV-mediated transgene expression, both immunocompetent C57BL=6 mice and B cell-deficient muMT mice were immunized against the AAV2 capsid protein (Cap) and were injected intravenously with an AAV-2 vector encoding alpha-galactosidase (alpha-Gal). C57BL=6 mice, which developed both CTL and neutralizing antibody responses against Cap, failed to show any detectable alpha-Gal expression. In contrast, serum alpha-Gal levels comparable to those of naive mice were observed in muMT mice despite the presence of robust CTL activity against Cap, indicating that preexisting Cap-specific CTLs did not have any effect on the magnitude and duration of transgene expression. The same strategy was used to assess the impact of CTLs against the alpha-Gal transgene product on AAV-mediated gene delivery and persistence of transgene expression. Preimmunization of muMT mice with an Ad=alpha-Gal vector induced a robust CTL response to alpha-Gal. When these mice were injected with AAV2=alpha-Gal vector, initial levels of alpha-Gal expression were reduced by more than 1 log and became undetectable by 2 weeks postinjection. Overall, our results indicate that CTLs against the transgene product as opposed to AAV capsid protein are more likely to interfere with AAV transgene expression.  相似文献   

14.
Cornerstone for an efficient cardiac gene therapy is the need for a vector system, which enables selective and long-term expression of the gene of interest. In rodent animal models adeno-associated viral (AAV) vectors like AAV-6 have been shown to efficiently transduce cardiomyocytes. However, since significant species-dependent differences in transduction characteristics exist, large animal models are of imminent need for preclinical evaluations. We compared gene transfer efficiencies of AAV-6 and heparin binding site-deleted AAV-2 vectors in a porcine model. Application of the AAVs was performed by pressure-regulated retroinfusion of the anterior interventricular cardiac vein, which has been previously shown to efficiently deliver genes to the myocardium (3.5 x 10(10) viral genomes per animal; n=5 animals per group). All vectors harbored a luciferase reporter gene under control of a cytomegalovirus (CMV)-enhanced 1.5 kb rat myosin light chain promoter (CMV-MLC2v). Expression levels were evaluated 4 weeks after gene transfer by determining luciferase activities. To rule out a systemic spillover peripheral tissue was analyzed by PCR for the presence of vector genomes. Selective retroinfusion of AAV serotype 6 vectors into the anterior cardiac vein substantially increased reporter gene expression in the targeted distal left anterior descending (LAD) territory (65 943+/-31 122 vs control territory 294+/-69, P<0.05). Retroinfusion of AAV-2 vectors showed lower transgene expression, which could be increased with coadministration of recombinant human vascular endothelial growth factor (1365+/-707 no vascular endothelial growth factor (VEGF) vs 38 760+/-2448 with VEGF, P<0.05). Significant transgene expression was not detected in other organs than the heart, although vector genomes were detected also in the lung and liver. Thus, selective retroinfusion of AAV-6 into the coronary vein led to efficient long-term myocardial reporter gene expression in the targeted LAD area of the porcine heart. Coapplication of VEGF significantly increased transduction efficiency of AAV-2.  相似文献   

15.
Somatic in utero gene therapy aims to treat congenital diseases where pathology develops in perinatal life, thereby preventing permanent damage. The aim of this study was to determine whether delivery of self-complementary (sc) adeno-associated virus (AAV) vector in utero would provide therapeutic long-term transgene expression in a large animal model. We performed ultrasound-guided intraperitoneal injection of scAAV2/8-LP1-human Factor IX (hFIX)co (1 × 10(12) vector genomes/kg) in early (n = 4) or late (n = 2) gestation fetal sheep. The highest mean hFIX levels were detected 3 weeks after injection in late gestation (2,055 and 1,687.5 ng/ml, n = 2) and 3 days after injection in early gestation (435 ng/ml, n = 1). Plasma hFIX levels then dropped as fetal liver and lamb weights increased, although low levels were detected 6 months after late gestation injection (75 and 52.5 ng/ml, n = 2). The highest vector levels were detected in the fetal liver and other peritoneal organs; no vector was present in fetal gonads. hFIX mRNA was detectable only in hepatic tissues after early and late gestation injection. Liver function tests and bile acid levels were normal up to a year postnatal; there was no evidence of liver pathology. No functional antibodies to hFIX protein or AAV vector were detectable, although lambs mounted an antibody response after injection of hFIX protein and Freund's adjuvant. In conclusion, hFIX expression is detectable up to 6 months after delivery of scAAV vector to the fetal sheep using a clinically applicable method. This is the first study to show therapeutic long-term hFIX transgene expression after in utero gene transfer in a large animal model.  相似文献   

16.
Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans.  相似文献   

17.
Adeno-associated virus vectors (AAV) show promise for liver-targeted gene therapy. In this study, we examined the long-term consequences of a single intravenous administration of a self-complementary AAV vector (scAAV2/ 8-LP1-hFIXco) encoding a codon optimized human factor IX (hFIX) gene in 24 nonhuman primates (NHPs). A dose–response relationship between vector titer and transgene expression was observed. Peak hFIX expression following the highest dose of vector (2 × 1012 pcr-vector genomes (vg)/kg) was 21 ± 3 µg/ml (~420% of normal). Fluorescent in-situ hybridization demonstrated scAAV provirus in almost 100% of hepatocytes at that dose. No perturbations of clinical or laboratory parameters were noted and vector genomes were cleared from bodily fluids by 10 days. Macaques transduced with 2 × 1011 pcr-vg/kg were followed for the longest period (~5 years), during which time expression of hFIX remained >10% of normal level, despite a gradual decline in transgene copy number and the proportion of transduced hepatocytes. All macaques developed serotype-specific antibodies but no capsid-specific cytotoxic T lymphocytes were detected. The liver was preferentially transduced with 300-fold more proviral copies than extrahepatic tissues. Long-term biochemical, ultrasound imaging, and histologic follow-up of this large cohort of NHP revealed no toxicity. These data support further evaluation of this vector in hemophilia B patients.  相似文献   

18.
We reported total correction of blood coagulation plasma factor VIII (FVIII) activity, using adeno-associated virus serotype 8 (AAV8) vectors for liver-specific gene transfer in hemophilia A mice. We now show, irrespective of immunosuppression or route of administration, total long-term correction of hemophilia A mice with pseudotyped AAV8 and AAV9 vectors. We delivered two FVIII vectors, one expressing canine heavy chain and the other expressing canine light chain. Interestingly, when these vectors were given by hepatic portal vein to hemophilia A dogs, only modest FVIII levels were seen despite the species-specific transgene. No dogs treated developed FVIII inhibitors. However, of three dogs treated with AAV8 vector, the single male, given 1.25 x 10(13) genome copies per vector per kilogram (GC/vector/kg), maintained a level of >4.5% for more than 2 years. In contrast, the two female dogs expressed only 2% FVIII activity despite receiving higher doses of 1.52 x 10(13) and 3 x 10(13) GC/vector/kg, respectively. On the other hand, a male dog treated with AAV9 vector at a low dose (6 x 10(12) GC/vector/kg) maintained FVIII levels of 2-2.5% of normal without bleeding for 200 days (observation ongoing). Although hemophilia A mice were not predictive of vector efficacy in dogs, the two treated male dogs became symptom-free for long periods. Even so, translation of these robust vectors either in appropriate large animals or human beings remains challenging.  相似文献   

19.
20.
重组AAV2/hFⅨ病毒制备及其基因治疗血友病B的实验研究   总被引:3,自引:0,他引:3  
目的 制备携带人凝血因子Ⅸ (hFⅨ )基因的重组AAV2病毒 (rAAV2 /hFⅨ ) ,并对用rAAV2 /hFⅨ肌肉注射治疗血友病B模型小鼠的疗效进行评价。方法 通过“一株载体细胞 /一株辅助病毒”的双因素包装策略制备出rAAV2 /hFⅨ ,体外转导BHK 2 1、C2C12细胞后 ,检测细胞培养上清中hFⅨ的表达量 ;肌肉直接注射血友病B模型小鼠后 ,检测其血浆中hFⅨ的抗原水平和凝血活性等指标。结果 转导 2 4h后在细胞上清中即可检测到hFⅨ ,连续检测 12 0h都有表达 ,BHK 2 1、C2C12细胞 2 4h最高表达量分别达到 (5 1.0± 6 .5 )ng/ 10 5细胞和 (6 8.0± 7.2 )ng/ 10 5细胞。rAAV2 /hFⅨ经肌肉直接注射后 ,高、中、低三个剂量组均能检测到小鼠体内高效表达hFⅨ ,在给药后第 3周达到高峰 ,小鼠血浆中hFⅨ的表达量与对照组比较差异有显著性 (P <0 .0 1) ,之后缓慢下降 ,到第 10周仍可检测到低水平hFⅨ表达 ;取第 3周小鼠血浆样品检测凝血功能 ,高、中、低剂量组FⅨ活性均得到明显改善 ,小鼠的割尾实验出血时间明显缩短 ,5min失血量也相应显著减少 ,其中高剂量组hFⅨ最高表达量达到 (387.0± 12 .5 )ng/ml血浆 ,FⅨ活性达到正常水平的 (30 .0± 5 .5 ) % ;给药后第 10周 ,除在注射点外 ,其它主要脏器均未检测到AAV载体DNA。结论  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号