首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of cell-scaffold constructs is a promising tissue engineering approach to repair cartilage defects and to study cartilaginous tissue formation. In this study, silk fibroin/chitosan blended scaffolds were fabricated and studied for cartilage tissue engineering. Silk fibroin served as a substrate for cell adhesion and proliferation while chitosan has a structure similar to that of glycosaminoglycans, and shows promise for cartilage repair. We compared the formation of cartilaginous tissue in silk fibroin/chitosan blended scaffolds seeded with bovine chondrocytes and cultured in vitro for 2 weeks. The constructs were analyzed for cell viability, histology, extracellular matrix components glycosaminoglycan and collagen types I and II, and biomechanical properties. Silk fibroin/chitosan scaffolds supported cell attachment and growth, and chondrogenic phenotype as indicated by Alcian Blue histochemistry and relative expression of type II versus type I collagen. Glycosaminoglycan and collagen accumulated in all the scaffolds and was highest in the silk fibroin/chitosan (1:1) blended scaffolds. Static and dynamic stiffness at high frequencies was higher in cell-seeded constructs than non-seeded controls. The results suggest that silk/chitosan scaffolds may be a useful alternative to synthetic cell scaffolds for cartilage tissue engineering.  相似文献   

2.
To clarify the feasibility of using novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering, their mechanical properties and ability to promote cellular adhesion, proliferation, and extracellular matrix production were studied in vitro. Chitosan fibers and chitosan-based 0.05% and 0.1% hyaluronan hybrid fibers were developed by the wet spinning method. Hyaluronan coating significantly increased mechanical properties, compared to the chitosan fibers. Rabbit fibroblasts adhesion onto hybrid fibers was significantly greater than for the control and chitosan fibers. For analysis of cell proliferation and extracellular matrix production, a three-dimensional scaffold was created by simply piling up each fiber. At 1 day after cultivation, the DNA content in the hybrid scaffolds was higher than that in the chitosan scaffold. Scanning electron microscopy showed that the fibroblasts had produced collagen fibers after 14 days of culture. Immunostaining for type I collagen was clearly predominant in the hybrid scaffolds, and the mRNA level of type I collagen in the hybrid scaffolds were significantly greater than that in the chitosan scaffold. The present study revealed that hyaluronan hybridization with chitosan fibers enhanced fiber mechanical properties and in vitro biological effects on the cultured fibroblasts.  相似文献   

3.
制备羧乙基壳聚糖-纳米羟基磷灰石(NCECS/nHA)复合材料,研究其生物力学性能以及与气管软骨细胞的生物相容性。方法 气管软骨片段取自8周龄大耳白兔,Ⅱ型胶原酶消化,将所获得软骨细胞传代培养。将体外制备的NCECS/nHA复合材料分别进行干态标本和湿态标本的生物力学检测。将第3代软骨细胞种植到NCECS/nHA复合材料,分别计算材料表面软骨细胞在2h、6h、12h细胞贴壁率,并用噻唑蓝(MTT)法测定细胞增殖活性。结果 NCECS/nHA复合材料具有良好的生物力学性能。兔气管软骨细胞在NCECS/nHA复合材料表面上12h的贴壁率达(88.4±2.1)%,与其他组差异无统计学意义(P>0.05)。同时MTT显示气管软骨细胞在NCECS/nHA复合材料表面生长状态良好。扫描电镜结果显示软骨细胞在NCECS/nHA薄膜上增殖和分化良好。结论 NCECS/nHA复合材料具备良好的细胞相容性和适宜的生物力学强度,作为一种具有开发潜力的生物材料,可用于组织工程气管的体外构建。  相似文献   

4.
壳聚糖/纳米羟基磷灰石分层复合支架的生物相容性研究   总被引:2,自引:0,他引:2  
制备壳聚糖/纳米羟基磷灰石(CS/nHA)分层复合支架,对其进行细胞毒性评价.分离培养大鼠软骨细胞接种于支架,相差显微镜和扫描电镜观察细胞的黏附及生长情况.动物皮下埋植试验观察其组织相容性.实验结果证实壳聚糖/纳米羟基磷灰石分层复合支架具有良好的生物相容性,有望成为较好的骨软骨组织工程支架.  相似文献   

5.
In this study, we investigated in vitro the role of the degree of acetylation (DA) on some biological properties of chitosan films. We noticed that, whatever the DA, all chitosan films were cytocompatible towards keratinocytes and fibroblasts. We also demonstrated that the higher the DA of chitosan, the lower was the cell adhesion on the films. Fibroblasts appear to adhere twice as much as keratinocytes on these materials. We observed that keratinocyte proliferation increases when the DA of chitosan films decreases. Thus, DA influences the cell growth in the same way as cell adhesion. On the other hand, although they remain alive, fibroblasts do not proliferate on chitosan films. This behaviour is related to an extremely high adhesion on this kind of material, which certainly inhibits cell growth. In conclusion, DA plays a key role in cell adhesion and proliferation, but does not change the cytocompatibility of chitosan. In parallel, it is also important to notice the role played by the surface morphology of the material, a second major parameter which influences the mechanism of adhesion.  相似文献   

6.
Cui YL  Qi AD  Liu WG  Wang XH  Wang H  Ma DM  Yao KD 《Biomaterials》2003,24(21):3859-3868
The objective of this study was to investigate the efficiency of two treatments for poly(L-lactic acid) (PLLA) surface modification with chitosan, via entrapment and coupling by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide. The properties of original PLLA films, chitosan-entrapped and coupled PLLA films were investigated by water contact angle measurement and electron spectroscopy for chemical analysis (ESCA). The contact angle indicated the change in hydrophilicity and the ESCA data suggested that the modified PLLA films became enriched with nitrogen atoms. The cytocompatibility of modified PLLA films might be improved. Therefore, the attachment and proliferation of bovine articular chondrocyte seeded on modified PLLA films and control one were examined. A whole cell enzyme-linked immunosorbent assay (Cell ELISA) that detects the BrdU incorporation during DNA synthesis and collagen type II secretion was applied to evaluate the chondrocytes on different PLLA films and tissue culture plates. Cell viability was estimated by the MTT assay and cell function were assessed by measuring sulfated glycosaminoglycan secreted by chondrocytes. These results implied that chitosan used to modify PLLA surface through entrapment and coupling could enhance the chondrocyte adhesion, proliferation and function.  相似文献   

7.
In this study, the surface of poly(epsilon-caprolactone) (PCL) scaffold was modified by chitosan (CS) in order to enhance its cell affinity and biocompatibility. It is demonstrated by scanning electronic microscopy (SEM) that when 0.5-2.0 wt% chitosan solutions are used to modify the PCL scaffold, the amount of adhesion of the fibroblasts on the chitosan-modified PCL scaffolds dramatically increase when compared to the control after 7 days cell culture. The results indicate that the chitosan-modified PCL scaffolds are more favorable for cell proliferation by improving the scaffold biocompatibility. The improvement may be helpful for the extensive applications of PCL scaffold in heart valve and blood vessel tissue engineering.  相似文献   

8.
Chitosan [beta(1-4)-2 amino-2-deoxy-D-glucose], the natural polyaminosaccharide derived from N-deacetylation of chitin [beta(1-4)-2 acetamide-2-deoxy-D-glucose], has been shown to possess attractive biological and cell interactive properties. Recently chitosan and chitosan analogs have also been shown to support the growth and continued function of chondrocytes. In the present study, chitosan substrates are crosslinked with a functional diepoxide (1,4 butanediol diglycidyl ether) to alter its mechanical property, and the viability and proliferation of the canine articular chondrocytes seeded on the crosslinked surface are further assayed. Of interest is the impact of substrate stiffness on the growth and proliferation of articular canine chondrocytes. Crosslinked scaffolds were also subjected to degradation by chitosanase to examine the impact of crosslinking on enzyme-assisted degradation. The hydrophilicity and compression modulus of the crosslinked surfaces were measured via contact-angle measurements and compression tests, respectively. Scanning electron microscopy (SEM) and fluorescent staining were used to observe the proliferation and morphology of chondrocyte cells on noncrosslinked and crosslinked surfaces. The crosslinked chitosan was found to be nontoxic to chondrocytes and more hydrophilic. Its compression modulus and stiffness increased, which may improve the scaffold resistance to wear and in vivo shrinkage once implanted. The increased stiffness also seemed to serve as an additional mechanical stimulus to promote chondrocyte growth and proliferation. The cell morphology on crosslinked scaffolds seen by SEM and fluorescent stain was the typical chondrocytic rounded shape. The method proposed provides a nontoxic way to increase the mechanical strength of the chitosan scaffolds.  相似文献   

9.
The collagen–chitosan complex with a three-dimensional nanofiber structure was fabricated to mimic native ECM for tissue repair and biomedical applications. Though the three-dimensional hierarchical fibrous structures of collagen–chitosan composites could provide more adequate stimulus to facilitate cell adhesion, migrate and proliferation, and thus have the potential as tissue engineering scaffolding, there are still limitations in their applications due to the insufficient mechanical properties of natural materials. Because poly (vinyl alcohol) (PVA) and thermoplastic polyurethane (TPU) as biocompatible synthetic polymers can offer excellent mechanical properties, they were introduced into the collagen–chitosan composites to fabricate the mixed collagen/chitosan/PVA fibers and a sandwich structure (collagen/chitosan-TPU-collagen/chitosan) of nanofiber in order to enhance the mechanical properties of the nanofibrous collagen–chitosan scaffold. The results showed that the tensile behavior of materials was enhanced to different degrees with the difference of collagen content in the fibers. Besides the Young’s modulus had no obvious changes, both the break strength and the break elongation of materials were heightened after reinforced by PVA. For the collagen–chitosan nanofiber reinforced by TPU, both the break strength and the Young’s modulus of materials were heightened in different degrees with the variety of collagen content in the fibers despite the decrease of the break elongation of materials to some extent. In vitro cell test demonstrated that the materials could provide adequate environment for cell adhesion and proliferation. All these indicated that the reinforced collagen–chitosan nanofiber could be as potential scaffold for tissue engineering according to the different mechanical requirements in clinic.  相似文献   

10.
It has been recognized that adhesion and proliferation of cells on biodegradable polymers such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and poly(lactide-co-glycolide) (PLGA) depend on the surface properties. The chloric acid (CA) treatment of these films was developed to increase surface wettability and to improve adhesion and proliferation of human chondrocytes and NIH/3T3 fibroblasts. The CA-treated films were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis (ESCA), and scanning electron microscopy (SEM). The changes of the film surface water contact angle gradually decreased with increase of CA treatment time, owing to the oxygen-based functional groups incorporated on the surface by CA treatment and were in the order PGA > PLGA > PLA due to the number of methyl group on the backbone chain. In ESCA analysis, as CA treatment time increased, the carbon (binding energy, approximately 285 eV) ratio decreased in film surfaces, whereas the oxygen (approximately 532 eV) ratio increased. The human chondrocytes from articular cartilage and mouse NIH/3T3 fibroblasts adhered for 1 day and grown for 2 days on the CA-treated films were counted and observed by SEM. As the surface wettability increased, the number of cells adhered and grown on the surface increased. In conclusion, this study demonstrated that the surface wettability of the biodegradable polymer plays an important role for cell adhesion and proliferation behavior for the application of the tissue engineering.  相似文献   

11.
12.
In this study, we hypothesized that hyaluronic acid could provide superior biological effects on the chondrocytes in a three-dimensional culture system. To test this hypothesis, we investigated the in vitro behavior of rabbit chondrocytes on a novel chitosan-based hyaluronic acid hybrid polymer fiber. The goal of the current study was to show the superiority of this novel fiber as a scaffold biomaterial for cartilage tissue engineering. Chitosan polymer fibers (chitosan group) and chitosan-based hyaluronic acid hybrid polymer fibers (HA 0.04% and HA 0.07% groups, chitosan coated with hyaluronic acid 0.04% and 0.07%, respectively) were originally developed by the wetspinning method. Articular chondrocytes were isolated from Japanese white rabbits and cultured in the sheets consisting of each polymer fiber. The effects of each polymer fiber on cell adhesivity, proliferation, morphological changes, and synthesis of the extracellular matrix were analyzed by quantitative a cell attachment test, DNA quantification, light and scanning electron microscopy, semi-quantitative RT-PCR, and immunohistochemical analysis. Cell adhesivity, proliferation and the synthesis of aggrecan were significantly higher in the hybrid fiber (HA 0.04% and 0.07%) groups than in the chitosan group. On the cultured hybrid polymer materials, scanning electron microscopic observation showed that chondrocytes proliferated while maintaining their morphological phenotype and with a rich extracellular matrix synthesis around the cells. Immunohistochemical staining with an anti-type II collagen antibody demonstrated rich production of the type II collagen in the pericellular matrix from the chondrocytes. The chitosan-based hyaluronic acid hybrid polymer fibers show great potential as a desirable biomaterial for cartilaginous tissue scaffolds.  相似文献   

13.
Chitosan-alginate as scaffolding material for cartilage tissue engineering   总被引:11,自引:0,他引:11  
Tissue compatibility of chitosan-alginate scaffolds was studied in vitro in terms of cell morphology, proliferation, and functionality using HTB-94 cells. The scaffold has an interconnected 3D porous structure, and was fabricated by thermally induced phase separation followed by freeze drying. Cell proliferation on the chitosan-alginate scaffold was found to be faster than on a pure chitosan scaffold. After cell culture for 2 weeks in vitro, the cells on the chitosan scaffold gradually assumed a fibroblast-like morphology while the cells on the chitosan-alginate scaffold retained their spherical morphology throughout the period of study. SDS-PAGE electrophoresis and Western blot assays for proteins extracted from cells grown on scaffolds indicated that production of cartilage-specific collagen type II, a marker for chondrocytic phenotype, increased from week 2 to week 3 on the chitosan-alginate scaffold but decreased on the chitosan scaffold. This study suggested that chitosan-alginate scaffolds promote cell proliferation, enhance phenotype expression of HTB-94 chondrocytes, and may potentially serve as an improved alternative to chitosan scaffolds for cartilage tissue engineering.  相似文献   

14.
Articular cartilage has limited repair and regeneration potential, and the scarcity of treatment modalities has motivated attempts to engineer cartilage tissue constructs. The use of chondrocytes in cartilage tissue engineering has been restricted by the limited availability of these cells, their intrinsic tendency to lose their phenotype during the expansion, as well as the difficulties during the first cell adhesion to the scaffold. Aim of this work was to evaluate the intra-articular adipose stromal vascular fraction attachment on silk fibroin scaffold to promote chondrocytes adhesion and proliferation. Physicochemical characterization has demonstrated that three-dimensionally organized silk fibroin scaffold is an ideal biopolymer for cartilage tissue engineering; it allows cell attachment, scaffold colonization, and physically cell holding in the area that must be repaired; the use of adipose-derived stem cells is a promising strategy to promote adhesion and proliferation of chondrocytes to the scaffold as an autologous human feeder layer.  相似文献   

15.
Polyvinyl alcohol (PVA) hydrogels blended with chitosan or other biological macromolecules have shown promise for cell culture and tissue engineering. This study investigates the attachment and growth of bovine aortic endothelial (BAEC) and smooth muscle cells (BASMC) on the PVA hydrogels modified with water soluble and water insoluble chitosan. Cell adhesion on the surface of the membranes was examined by phase contrast microscopy while cell morphologies were studied using immunocytochemistry staining with EC and SMC specific biomarkers (F-actin and alpha actin respectively). Cells cultured on 6% PVA, 0.4% chitosan (water soluble and insoluble) hydrogel membranes displayed excellent adhesion and spreading characteristics, in addition to negligible cell structural morphological changes in comparison to a polystyrene control. Similar vascular cell adhesion features were apparent on PVA membranes blended with water-soluble and -insoluble chitosan. Fluorescent activated cell sorter (FACS) analysis was used to determine BAEC and BASMC proliferation and cell viability. Apoptotic levels in BAEC after 7 days were 12.8% +/- 2.5% on the PVA- chitosan WS-1 membrane and 10.1% +/- 1.5% on the control well (n = 3) while comparable results were also noted for BASMC. Equivalent proliferative activity was apparent for BAEC on the control and PVA-chitosan membrane after 7 days, while BASMC showed increased proliferative activity on the membranes. These results indicate that the PVA-chitosan blended hydrogel membranes show promise for cell culture and tissue engineering applications.  相似文献   

16.
Material selection in tissue-engineering scaffolds is one of the primary factors defining cellular response and matrix formation. In this study, we fabricated chitosan-coated poly(lactic acid) (PLA) fiber scaffolds to test our hypothesis that PLA fibers coated with chitosan highly promoted cell supporting properties compared to those without chitosan. Both PLA fibers (PLA group) and chitosan-coated PLA fibers (PLA–chitosan group) were fabricated for this study. Anterior cruciate ligament (ACL) fibroblasts were isolated from Japanese white rabbits and cultured on scaffolds consisting of each type of fiber. The effects of cell adhesivity, proliferation, and synthesis of the extracellular matrix (ECM) for each fiber were analyzed by cell counting, hydroxyproline assay, scanning electron microscopy and quantitative RT-PCR. Cell adhesivity, proliferation, hydroxyproline content and the expression of type-I collagen mRNA were significantly higher in the PLA–chitosan group than in the PLA group. Scanning electron microscopic observation showed that fibroblasts proliferated with a high level of ECM synthesis around the cells. Chitosan coating improved ACL fibroblast adhesion and proliferation, and had a positive effect on matrix production. Thus, the advantages of chitosan-coated PLA fibers show them to be a suitable biomaterial for ACL tissue-engineering scaffolds.  相似文献   

17.
Peritendinous adhesions, as a major problem in hand surgery, may be due to the proliferation of fibroblasts and excessive collagen synthesis, in which ERK1/2 and SMAD2/3 plays crucial roles. In this study, we hypothesized that the complication progression could be inhibited by down-regulating ERK1/2 and SMAD2/3 phosphorylation of exogenous fibroblasts with celecoxib. Celecoxib was incorporated in poly(l-lactic acid)-polyethylene glycol (PELA) diblock copolymer fibrous membranes via electrospinning. Results of an in vitro drug release study showed celecoxib-loaded membrane had excellent continuous drug release capability. It was found that celecoxib-loaded PELA membranes were not favorable for the rabbit fibroblast and tenocyte adhesion and proliferation. In a rabbit tendon repair model, we first identified ERK1/2 and SMAD2/3 phosphorylation as a critical driver of early adhesion formation progression. Celecoxib released from PELA membrane was found to down-regulate ERK1/2 and SMAD2/3 phosphorylation, leading to reduced collagen I and collagen Ⅲ expression, inflammation reaction, and fibroblast proliferation. Importantly, the celecoxib-loaded PELA membranes successfully prevented tissue adhesion compared with control treatment and unloaded membranes treatment. This approach offers a novel barrier strategy to block tendon adhesion through targeted down-regulating of ERK1/2 and SMAD2/3 phosphorylation directly within peritendinous adhesion tissue.  相似文献   

18.
A surface modification technique based on poly(dopamine) deposition developed from oxidative polymerization of dopamine is known to promote cell adhesion to several cell-resistant substrates. In this study this technique was applied to articular cartilage tissue engineering. The adhesion and proliferation of rabbit chondrocytes were evaluated on poly(dopamine)-coated polymer films, such as polycaprolactone, poly(L-lactide), poly(lactic-co-glycolic acid) and polyurethane, biodegradable polymers that are commonly used in tissue engineering. Cell adhesion was significantly increased by merely 15 s of dopamine incubation, and 4 min incubation was enough to reach maximal cell adhesion, a 1.35-2.69-fold increase compared with that on the untreated substrates. Cells also grew much faster on the poly(dopamine)-coated substrates than on untreated substrates. The increase in cell affinity for poly(dopamine)-coated substrates was demonstrated via enhancement of the immobilization of serum adhesive proteins such as fibronectin. When the poly(dopamine)-coating technique was applied to three-dimensional (3-D) polyurethane scaffolds, the proliferation of chondrocytes and the secretion of glycosaminoglycans were increased compared with untreated scaffolds. Our results show that the deposition of a poly(dopamine) layer on 3-D porous scaffolds is a simple and promising strategy for articular cartilage tissue engineering, and may be applied to other types of tissue engineering.  相似文献   

19.
Combining bovine collagen with chitosan followed by freeze-drying has been shown to produce porous scaffolds suitable for skin and connective tissue engineering applications. In this study collagen extracted from porcine and avian skin was compared with bovine collagen for the production of tissue engineered scaffolds. A similar purity of the collagen extracts was shown by electrophoresis, confirming the reliability of the extraction process. Collagen was solubilized, cross-linked by adding chitosan to the solution and freeze-dried to generate a porous structure suitable for tissue engineering applications. Scaffold porosity and pore morphology were shown to be source dependant, with bovine collagen and avian collagen resulting into the smallest and largest pores, respectively. Scaffolds were seeded with dermal fibroblasts and cultured for 35 days to evaluate the suitability of the different collagen–chitosan scaffolds for long-term tissue engineered dermal substitute maturation in vitro. Cell proliferation and scaffold biocompatibility were found to be similar for all the collagen–chitosan scaffolds, demonstrating their capability to support long-term cell adhesion and growth. The scaffolds contents was assessed by immunohistochemistry and showed increased deposition of extracellular matrix by the cells as a function of time. These results correlate with measurements of the mechanical properties of the scaffolds, since both the ultimate tensile strength and tensile modulus of the cell seeded scaffolds had increased by the end of the culture period. This experiment demonstrates that porcine and avian collagen could be used as an alternative to bovine collagen in the production of collagen–chitosan scaffolding materials.  相似文献   

20.
《Acta biomaterialia》2014,10(6):2539-2550
In this study, one-step enzyme-mediated preparation of a multi-functional injectable hyaluronic-acid-based hydrogel system is reported. Hydrogel was formed through the in situ coupling of phenol moieties by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), and bioactive peptides were simultaneously conjugated into the hydrogel during the gel formation process. The preparation of this multi-functional hydrogel was made possible by synthesizing peptides containing phenols which could couple with the phenol moieties of hyaluronic-acid–tyramine (HA–Tyr) during the HRP-mediated crosslinking reaction. Preliminary studies demonstrated that two phenol moieties per molecule resulted in a consistently high degree of conjugation into the HA–Tyr hydrogel network, unlike the one modified with one phenol moiety per molecule. Therefore, an Arg–Gly–Asp (RGD) peptide bearing two phenol moieties (phenol2–poly(ethylene glycol)–RGD) was designed for conjugation to endow the HA–Tyr hydrogel with adhesion signals and enhance its bioactivities. Human umbilical vein endothelial cells (HUVECs) cultured on or within the RGD-modified hydrogels showed significantly different adhesion behavior, from non-adherence on the HA–Tyr hydrogel to strong adhesion on hydrogels modified with phenol2–poly(ethylene glycol)–RGD. This altered cell adhesion behavior led to improved cell proliferation, migration and formation of capillary-like network in the hydrogel in vitro. More importantly, when HUVECs and human fibroblasts (HFF1) were encapsulated together in the RGD-modified HA–Tyr hydrogel, functional vasculature was observed inside the cell-laden gel after 2 weeks in the subcutaneous tissue. Taken together, the in situ conjugation of phenol2–poly(ethylene glycol)–RGD into HA–Tyr hydrogel system, coupled with the ease of incorporating cells, offers a simple and effective means to introduce biological signals for preparation of multi-functional injectable hydrogels for tissue engineering application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号