首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to investigate neuropeptide Y (NPY)-induced vasoconstrictions in rat blood vessels and which NPY receptor subtype is involved in vasoconstrictions. NPY produced marked contractions in rat common jugular, brachial, portal, femoral and tail veins, and vena cava inferior, whereas it produced little or no contractions in rat common carotid, brachial, femoral and tail arteries, and thoracic and abdominal aortae. The maximal NPY-induced contractions were larger than maximal phenylephrine (PE)-induced contractions in the veins. These NPY-induced contractions were blocked by the Y1 antagonists, SRL-21, and BIBP3226 but not by the Y5 antagonist, L-152804. A Y2 agonist, NPY (13-36), did not produce contractions. RT-PCR showed that NPY-Y1 was the only receptor subtype in the veins indicating that NPY-induced contractions are mediated through the Y1 receptor. Pretreatment with NPY showed a rapid and long-lasting desensitization of these contractions. The marked NPY-induced contractions and its desensitization in the veins suggest the physiological relevance of NPY in the venous circulation.  相似文献   

2.
3.
Neuropeptide Y (NPY) is an important central and peripheral modulator of neural and endocrine functions. This neuropeptide interacts with at least two pharmacologically distinct receptors, termed Y1 and Y2. At Y1 receptors, the NPY analog [Leu31,Pro34] NPY, but not the carboxyl-terminal fragment NPY-(18-36), displaces radiolabeled NPY and the sequence-related peptide YY, whereas Y2 receptors exhibit the opposite selectivity. We have used cultured mammalian 293 cells for the high level transient expression of a previously cloned putative neuropeptide receptor of rat brain. We report that this receptor displays the ligand binding properties and selectivity of a Y1 receptor, with a single high affinity site for 125I-NPY (Kd, 0.7 +/- 0.2 nM). The functionality of the recombinantly expressed receptor was demonstrated by an inhibition of adenylyl cyclase and a concomitant mobilization of intracellular Ca2+.  相似文献   

4.
We have studied truncation mutants of the rat neuropeptide Y (NPY) Y1 receptor lacking four (Thr361stop, Y1T361*) or eight (Ser352stop, Y1S352*) potential serine/threonine C-terminal phosphorylation sites. NPY-stimulated hemagglutinin-tagged Y1, Y1T361*, and Y1S352* receptors all efficiently activated G proteins in Chinese hamster ovary (CHO) cell membranes, but desensitization after NPY pretreatment was only prevented in the HAY1S352* clone. In transfected colonic carcinoma epithelial layers, functional Y1 and Y1T361* peptide YY responses became more transient as the agonist concentration increased, whereas those mediated by the Y1S352* receptor remained sustained. NPY-stimulated HAY1 receptor phosphorylation was increased by transient overexpression of G protein-coupled receptor kinase 2, and only Ser352stop truncation abolished this response in CHO or human embryonic kidney (HEK) 293 cells. Rapid internalization of cell-surface HAY1 receptors in HEK293 cells was observed in response to agonist, resulting in partial colocalization with transferrin, a marker for clathrin-mediated endocytosis and recycling. It is surprising that both truncated receptors were constitutively internalized, predominantly in transferrin-positive compartments. NPY increased cell-surface localization of HAY1S352* receptors, whereas the distribution of both mutants was unaltered by BIBO3304. Recruitment of green fluorescent protein-tagged beta-arrestin2 to punctate endosomes was observed only for HAY1 and HAY1T361* receptors and solely under NPY-stimulated conditions. Thus, the key C-terminal sequence between Ser352 and Lys360 is a major site for Y1 receptor phosphorylation, is critical for its desensitization, and contributes to the association between the receptor and beta-arrestin proteins. However, additional beta-arrestin-independent mechanisms control Y1 receptor trafficking under basal conditions.  相似文献   

5.
  1. Neuropeptide Y (NPY) and NPY receptors are most abundant in the hippocampal formation where they modulate cognitive functions. Expression of NPY receptors in rat cultured primary hippocampal cells was investigated in the present study by use of combined molecular, pharmacological and immunohistochemical approaches, including the cloning of the rat Y2 receptor described here for the first time.
  2. More than 70% of the hippocampal neurones were endowed with [125I]-[Leu31,Pro34]PYY Y1-like receptor silver grain accumulations and Y1 receptor immunostaining. These radio- and immuno-labelling signals were distributed over cell bodies and processes of bipolar, stellate and pyramidal-like neuronal cells, as confirmed by neurone-specific enolase and MAP-2 staining.
  3. Competition binding profiles revealed that specific [125I]-[Leu31,Pro34]PYY binding was competitively displaced according to a ligand selectivity pattern prototypical of the Y1 receptor sub-type with [Leu31,Pro34]substituted NPY/PYY analogues>>C-terminal fragments=pancreatic polypeptides, with the non-peptide antagonist BIBP3226 being most potent. This profile excludes the possible labelling by [125I]-[Leu31,Pro34]PYY of the newly cloned Y4, Y5 and Y6 receptors.
  4. The expression of the genuine Y1 receptor was confirmed by RT–PCR in hippocampal cultures. In contrast, negligible levels of Y2-like/[125I]-PYY3–36 binding were detected in these cultures in spite of the presence of its mRNA, as characterized by RT–PCR. The expression of both the Y1 and the Y2 receptor mRNAs was also noted in normal embryonic hippocampal tissues showing that signals expressed in cultured neurones were also present in utero.
  5. Taken together, these results suggest that the Y1 receptor subtype may be of critical importance in the normal functioning of the rat hippocampus, especially during brain development and maturation.
  相似文献   

6.
We have studied the contractile effects of the sympathetic transmitter noradrenaline and its cotransmitter neuropeptide Y (NPY) given alone and in combination on isolated rat mesenteric resistance vessels (200–300 m diameter). Noradrenaline and NPY each concentration-dependently contracted rat mesenteric microvessels (EC50 800 nM and 10 nM, respectively), but noradrenaline caused considerably greater maximal effects than NPY (14.3 mN vs. 3.5mN). A low antagonistic potency of yohimbine indicated that the response to noradrenaline did not involve 2-adrenoceptors, and the subtype-selective antagonists 5-methylurapidil, tamsulosin and chloroethylclonidine indicated mediation via an 1A-adrenoceptor. Shallow Schild regressions for prazosin and 5-methylurapidil indicated that an 1-adrenoceptor subtype with relatively low prazosin affinity might additionally be involved. Studies with the NPY analogues PYY, [Leu31, Pro34]NPY and NPY18–36 demonstrated that NPY acted via a Y1 NPY receptor. In addition to its direct vasoconstricting effects NPY also lowered the noradrenaline EC50 but did not appreciably affect maximal noradrenaline responses indicating possible potentiation. The potentiating NPY response occured with similar agonist potency as the direct contractile NPY effects and also via a Y1 NPY receptor. The Ca2+ entry blocker nitrendipine (300 nM) reduced direct contractile responses to noradrenaline and NPY but did not affect the potentiation response to NPY.  相似文献   

7.
Abstract: Several series of low‐molecular‐mass ligands of the neuropeptide receptor subtype Y5 were prepared using a mixed strategy of synthesis on solid phase and in solution. Collections of single compounds were obtained by an automated parallel procedure which allowed quick variation and investigation of the central spacer moiety, as well as of the aromatic substituents on each side. The strategy of parallel synthesis and screening of partially purified analogs helped to select rapidly potent and selective leads which displayed comparable antagonistic potency against neuropeptide Y activity on the Y5 receptor and better receptor selectivity than the original reference compounds.  相似文献   

8.
1 The effects of BIIE 0246, a novel and non-peptide neuropeptide Y (NPY) Y2 receptor antagonist on sympathetic vasoconstriction of the canine splenic artery were investigated. 2 The vasoconstrictor response to periarterial electrical nerve stimulation was described to be a double peaked vasoconstriction consisting of an initial transient, dominantly P2X purinoceptor-mediated constriction followed by a prolonged, mainly alpha1 adrenoceptor-induced response. 3 BIIE 0246 at a concentration of 0.1-1 microM dose-dependently potentiated double peaked constrictions at low frequencies (1 and 4 Hz), whereas at high frequency (10 Hz), it failed to affect these responses. BIIE 0246 (1 microM) also enhanced double peaked responses even in the presence of rauwolscine (0.1 microM). NPY (13-36) (1-100 nM), a selective Y2 receptor agonist reduced these two peaked responses in a dose-related manner. The vasoconstriction to noradrenaline (0.1-10 nmol) or adenosine triphosphate (0.01-1 micromol) was not significantly influenced by either 1 microM BIIE 0246 or 100 nM NPY (13-36). Exposure of tissues to 1 microM BIIE 0246 almost completely prevented the suppression of double peaked constrictions by NPY (13-36) (10 nM) or by NPY (10 nM). 4 We conclude that NPY inhibits sympathetic purinergic and adrenergic vasoconstrictions through an activation of prejunctional Y2 receptor subtype in the neurovascular junction of the canine splenic artery.  相似文献   

9.
Neuropeptide Y is one of the most potent neuropeptides known to induce feeding in animals, and has been suggested to be a physiological signal for food intake. It has been also reported that intracerebroventricular injection of neuropeptide Y stimulates feeding behavior of the neonatal chick. There are many neuropeptide Y receptor agonists that have not been investigated in feeding response of the neonatal chick. The aim of this study is to elucidate whether central injection of several neuropeptide Y receptor agonists stimulates feeding of the neonatal chick over 2 h. We found that central injections of [Leu(31), Pro(34)]neuropeptide Y, peptide YY, human pancreatic polypeptide and rat pancreatic polypeptide significantly stimulated food intake of neonatal chicks throughout the 2-h post-injection period. Neuropeptide Y-(13-36) significantly stimulated feeding at 30 min, but not thereafter. [D-Trp(32)]neuropeptide Y stimulated feeding at 60 and 120 min, but not 30 min, post-injection. Central administration of rat pancreatic polypeptide, which does not increase food intake in rats, stimulated feeding in chicks. This result reflects structural differences of the neuropeptide Y receptor subtypes and/or differences in mechanisms stimulating feeding behavior between mammals and chickens. In conclusion, neuropeptide Y receptor agonists, except for neuropeptide Y-(13-36), are potent stimulators of food intake in the neonatal chick.  相似文献   

10.
The purpose of the present study was to determine whether or not activation of neuropeptide Y (NPY) receptors resulted in an enhancement or attenuation of the KCl (50 mM) evoked release of [3H]dopamine newly synthesized from [3H]tyrosine in superfused striatal slices and, if so to identify the NPY receptor subtype mediating the effect. Rat striatal slices were prepared and placed in microsuperfusion chambers and continuously superfused with physiological buffer containing 50 microCi/ml of l-3-5-[3H]tyrosine. Superfusate effluents were collected and analyzed for [3H]dopamine by liquid scintillation spectrometry following amberlite CG50 and alumina chromatography. NPY agonists (NPY and PYY3-36) were added 6 min prior to the addition of KCl, while the Y1, Y2, and Y5 antagonist BIBO3304, BIIE0246 and CGP71683A, respectively were added 6 min prior to the agonists. Continuous superfusion with [3H]tyrosine resulted in the production of [3H]dopamine which reached a steady state at approximately 48 min. Depolarization with KCl resulted in a 2- to 3-fold increase in [3H]dopamine overflow. NPY and PYY3-36 produced a concentration dependent enhancement in the KCl induced increase in newly synthesized [3H]dopamine overflow. The Y2 antagonist BIIE0246 produced an attenuation of both the NPY and PYY3-36 induced enhancement while the Y1 antagonist BIBO3304 and theY5 antagonist CGP71683A failed to alter the NPY or PYY3-36 induced enhancement. These results are consistent with the NPY-Y2 receptor subtype mediating the facilitatory effect.  相似文献   

11.
Neuropeptide Y (NPY), a 36-residue peptide amide, has been shown by numerous studies to be a potent vasoconstrictor. In order to gain an appreciation of the structural requirements for this action, we have previously synthesized a number of fragments of NPY. It had been shown that sequential deletions from the N-terminus resulted in peptides with decreasing hypertensive activity. In the present study we present data supporting the unexpected finding of two fragments, NPY17-36 and NPT18-36 with substantial hypotensive action in vivo. This action was dose dependent (data not shown) and was also observed to a lesser extent with NPY19-36 but not NPY16-36 or NPY20-36. It was, however, slower in onset and of longer duration than the hypertensive action of NPY. These differing kinetics of action may suggest that NPY and NPY18-36 act through different mechanisms. Structural studies using circular dichroism were performed. While NPY was found to assume an ordered helical structure in both aqueous buffer and trifluoroethanol (TFE), 30% TFE in aqueous buffer was required to induce substantial helicity for NPY18-36. This structural investigation suggests that both NPY and NPY18-36 assume an ordered conformation upon reaching the lipid rich receptor environment.  相似文献   

12.
13.
Neuropeptide Y Y2 receptor in health and disease   总被引:1,自引:0,他引:1  
We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed.  相似文献   

14.
Rationale Neuropeptide Y (NPY) is implicated in the pathophysiology of affective illness. Multiple receptor subtypes (Y1R, Y2R, and Y5R) have been suggested to contribute to NPY’s effects on rodent anxiety and depression-related behaviors. Objectives To further elucidate the role of Y1R in (1) NPY’s anxiolytic-like effects and (2) fluoxetine’s antidepressant-like and neurogenesis-inducing effects. Methods Mice lacking Y1R were assessed for spontaneous anxiety-like behavior (open field, elevated plus-maze, and light/dark exploration test) and Pavlovian fear conditioning, and for the anxiolytic-like effects of intracerebroventricularly (icv)-administrated NPY (elevated plus-maze). Next, Y1R −/− were assessed for the antidepressant-like effects of acute fluoxetine in the forced swim test and chronic fluoxetine in the novelty-induced hypophagia test, as well as for chronic fluoxetine-induced hippocampal neurogenesis. Results Y1R −/− exhibited largely normal baseline behavior as compared to +/+ littermate controls. Intraventricular administration of NPY in Y1R −/− mice failed to produce the normal anxiolytic-like effect in the elevated plus-maze test seen in +/+ mice. Y1R mutant mice showed higher immobility in the forced swim test and longer latencies in the novelty-induced hypophagia test. In addition, Y1R −/− mice responded normally to the acute and chronic effects of fluoxetine treatment in the forced swim test and the novelty-induced hypophagia test, respectively, as well as increased neuronal precursor cell proliferation in the hippocampus. Conclusions These data demonstrate that Y1R is necessary for the anxiolytic-like effects of icv NPY, but not for the antidepressant-like or neurogenesis-inducing effects of fluoxetine. The present study supports targeting Y1R as a novel therapeutic target for anxiety disorders.  相似文献   

15.
The aim of this study was to evaluate by quantitative receptor autoradiography the interactions between Neuropeptide Y Y1 (NPY Y1) and Galanin (GAL) receptors in the dorsal raphe nucleus (DRN) where both GAL receptors and NPY Y1 receptors exist. The ability of the GAL receptor antagonist M35 to block the GAL action was also evaluated. Double immunocytochemical staining of 5-hydroxytryptmine and c-Fos and stereology techniques were used to study the specific cell activation in the DRN after the intracerebroventricular coinjections of GAL and the NPY Y1/Y5 agonist [(125)I] Leu(31),Pro(34)PYY. GAL (0.3?nM) decreases [(125)I] Leu(31),Pro(34)PYY binding in the DRN by 48% (p?相似文献   

16.
Neuropeptide Y (NPY) is a 36 amino acid amidated peptide with high sequence homology to the endocrine peptides, peptide YY (PYY) and pancreatic polypeptide (PP). They appear to interact with a family of receptors that possess high affinity for one or more of these peptides. Five members of the receptor family have been cloned, with several additional members postulated through pharmacological evidence. All are members of the seven transmembrane domain-G-protein coupled receptor family. The Y1 receptor is the best characterised, with several nonpeptide antagonists available. This receptor appears to mediate a constriction of the peripheral vasculature and the 'anxiolytic' effects of centrally administered NPY. Less is known about the other receptors in the family. The Y2 receptor is believed to be presynaptic and mediates a reduction in neurotransmitter release. The Y4 receptor appears to be the receptor for pancreatic polypeptide, with high amounts of mRNA for this receptor found in the periphery, but lower levels in the brain. The Y5 receptor is expressed in the hypothalamus and has been postulated to be the receptor which mediates the increased food consumption seen following centrally administered NPY. Finally, the Y6 receptor has been cloned in the mouse and other species, but does not appear to encode a functional gene product in humans. Several types of nonpeptide Y1 and a series of Y5 antagonists have been described in the patent literature, though these compounds have limitations that will confine their use to preclinical studies. Nevertheless, considerable progress has been made in understanding the role of NPY and its receptors in experimental obesity. The next step will be the discovery of potent and selective nonpeptide antagonists, to add further credence to the therapeutic potential.  相似文献   

17.
Prejunctional neuropeptide Y (NPY) receptors that inhibit the contractions evoked in rat and rabbit vas deferens by field stimulation were investigated by using NPY, [Leu31,Pro34]NPY and the fragments, NPY-(13-36) and NPY-(18-36). NPY, and especially [Leu31,Pro34]NPY, were more potent agonists on the twitch response of the rabbit vas deferens. In contrast the NPY C-terminal fragments, NPY-(13-36) and NPY-(18-36), inhibited the twitch response at lower concentrations in the rat vas deferens. These results indicate that distinct NPY receptor subtypes mediate the biological effect in these two tissues. We suggest that prejunctional receptors in the rat vas deferens are of the Y2-subtype and those in rabbit vas deferens of the Y1-subtype.  相似文献   

18.
We previously reported that (S)-N(2)-[[1-[2-[4-[(R,S)-5, 11-dihydro-6(6h)-oxodibenz[b, e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cylopentyl]a cetyl]-N-[2-[1, 2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2, 4-triazol-4-yl]ethyl]argininamid, BIIE0246, is a potent and highly selective neuropeptide Y Y(2) receptor antagonist. Neuropeptide Y Y(2) receptors have been proposed to mediate the inhibition by neuropeptide Y of excitatory synaptic transmission in rat hippocampus. Therefore, we investigated the effects of BIIE0246 on the electrophysiological properties of neuropeptide Y in rat hippocampal slices and determined the affinity of this novel antagonist for rat hippocampal neuropeptide Y Y(2) receptors. BIIE0246 displayed an affinity of IC(50)=4.0+/-1.6 (n=4) for neuropeptide Y receptor binding sites labelled by 125I-neuropeptide Y in rat hippocampal membranes. At a concentration of 1 microM, BIIE0246 completely antagonized the inhibitory effects of 300 nM neuropeptide Y on synaptic transmission in rat hippocampal slices. This is the first study showing that a selective neuropeptide Y Y(2) receptor antagonist is able to block neuropeptide Y mediated effects in the hippocampus and unambiguously characterizes the presynaptic receptor in the rat hippocampus as the neuropeptide Y Y(2) receptor.  相似文献   

19.
20.

Rational and objectives  

Neuropeptide Y (NPY), an orexigenic peptide that is released during periods of food restriction, has been shown to have a significant modulatory impact on drug-related behaviors. We have previously reported that both acute food deprivation (FD) and NPY injections can reinstate extinguished drug-seeking behavior, a proposed animal model of relapse to drug abuse. However, it is not clear whether the FD effect on drug seeking is dependent on NPY transmission. Here, we used the reinstatement model to assess the role of NPY Y1 and Y5-receptor-mediated transmission in FD-induced reinstatement of heroin seeking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号