首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: A homologous series of nonapeptides and their acetylated versions were successfully prepared using solid‐phase synthetic techniques. Each nonapeptide was rich in α,α‐dialkylated amino acids [one 4‐aminopiperidine‐4‐carboxylic acid (Api) and six α‐aminoisobutyric acid (Aib) residues] and also included lysines or lysine analogs (two residues). The incorporation of the protected dipeptide 9‐fluorenylmethyloxycarbonyl (Fmoc)‐Aib‐Aib‐OH improved the purity and overall yields of these de novo designed peptides. The helix preference of each nonapeptide was investigated in six different solvent environments, and each peptide's antimicrobial activity and cytotoxicity were studied. The 310‐helical, amphipathic design of these peptides was born out most prominently in the N‐terminally acetylated peptides. Most of the peptides exhibited modest activity against Escherichia coli and no activity against Staphylococcus aureus. The nonacetylated peptides (concentrations ≤100 μm ) and the acetylated peptides (concentrations ≤200 μm ) did not exhibit any significant cytotoxicity with normal (nonactivated) murine macrophages.  相似文献   

2.
Abstract: A series of short, amphipathic peptides incorporating 80% Cα,Cα‐disubstituted glycines has been prepared to investigate amphipathicity as a helix‐stabilizing effect. The peptides were designed to adopt 310‐ or α‐helices based on amphipathic design of the primary sequence. Characterization by circular dichroism spectroscopy in various media (1 : 1 acetonitrile/water; 9 : 1 acetonitrile/water; 9 : 1 acetonitrile/TFE; 25 mm SDS micelles in water) indicates that the peptides selectively adopt their designed conformation in micellar environments. We speculate that steric effects from ith and ith + 3 residues interactions may destabilize the 310‐helix in peptides containing amino acids with large side‐chains, as with 1‐aminocyclohexane‐1‐carboxylic acid (Ac6c). This problem may be overcome by alternating large and small amino acids in the ith and ith + 3 residues, which are staggered in the 310‐helix.  相似文献   

3.
Abstract: New analogues of deltorphin I (DT I), in which the Phe residue in position 3, and the Val residue in position 5 or 6 are replaced with respective amphiphilic α‐hydroxymethylamino acid residues (HmAA), were synthesized and tested for receptor affinity and selectivity to μ and δ opioid receptors. The analogue with (R)‐HmPhe at position 3 lost receptor selectivity, as a result of a partial decrease of affinity to δ and a significant increase of affinity to μ receptors. In contrast, an analogue with (S)‐HmPhe in the same position, was very potent and more specific to δ receptors than parent DT I. The analogue with (R)‐HmVal at position 5 expressed higher δ affinity and selectivity than parent DT I. The analogue with other possible isomer (S)‐HmVal was less selective for δ opioid receptors, as a result of decreasing affinity to δ and increasing affinity to μ receptors. The analogues with (R)‐ or (S)‐HmVal in position 6 expressed equally low receptor affinity and selectivity. The data obtained support a previously proposed model of active conformation of deltorphins.  相似文献   

4.
Abstract: A new and efficient method for the synthesis ofNα‐Fmoc‐/Boc‐/Z‐β‐amino acids using the two‐step Arndt‐Eistert approach is described. Fmoc‐/Boc‐/Z‐α‐Amino acid fluorides were used for the acylation of diazomethane synthesizing Fmoc‐/Boc‐/Z‐α‐aminodiazoketones as crystalline solids with good yield and purity. They were then converted to the corresponding β‐amino acids using PhCOOAg/dioxane/H2O.  相似文献   

5.
Abstract: This review briefly surveys the conformational properties of guest ω‐amino acid residues when incorporated into host α‐peptide sequences. The results presented focus primarily on the use of β‐ and γ‐residues in αω sequences. The insertion of additional methylene groups into peptide backbones enhances the range of accessible conformations, introducing additional torsional variables. A nomenclature system, which permits ready comparisons between α‐peptides and hybrid sequences, is defined. Crystal structure determination of hybrid peptides, which adopt helical and β‐hairpin conformations permits the characterization of backbone conformational parameters for β‐ and γ‐residues inserted into regular α‐polypeptide structures. Substituted β‐ and γ‐residues are more limited in the range of accessible conformation than their unsubstituted counterparts. The achiral β,β‐disubstituted γ‐amino acid, gabapentin, is an example of a stereochemically constrained residue in which the torsion angles about the Cβ–Cγ (θ1) and Cα–Cβ (θ2) bonds are restricted to the gauche conformation. Hybrid sequences permit the design of novel hydrogen bonded rings in peptide structures.  相似文献   

6.
Abstract: 2,2,6,6‐Tetramethylpiperidine‐1‐oxyl‐4‐amino‐4‐carboxylic acid (TOAC) is a topographically and conformationally restricted, nitroxide containing, Cα‐tetrasubstituted α‐amino acid. Here, we describe the molecular and crystal structures, as determined by X‐ray diffraction analyses, of a TOAC terminally protected derivative, the cyclic dipeptide c(TOAC)2·1,1,1,3,3,3‐hexafluoropropan‐2‐ol (HFIP) solvate, and five TOAC‐containing, terminally protected, linear peptides ranging in length from tetra‐ to hepta‐peptides. Incipient and fully developed, regular or distorted 310‐helical structures are formed by the linear peptides. A detailed discussion on the average geometry and preferred conformation for the TOAC piperidine ring is also reported. The X‐ray diffraction structure of an intramolecularly cyclized side product resulting from a C‐activated TOAC residue has also been determined.  相似文献   

7.
Abstract: Hofmann rearrangement of Nα‐Boc‐l ‐Gln‐OH mediated by a polymer‐supported hypervalent iodine reagent poly[(4‐diacetoxyiodo)styrene] (PSDIB) in water afforded Nα‐Boc‐l ‐α,γ‐diaminobutyric acid (Boc‐Dab‐OH, 1 ) in 87% yield. Nα‐Z‐derivative (Z‐Dab‐OH, 2 ) was prepared with PSDIB in 83% yield. Since the reaction of Nα‐Fmoc‐Gln‐OH by this procedure did not proceed because of the insolubility of Fmoc‐Gln‐OH in aqueous media, we synthesized Fmoc‐Dab(Boc)‐OH ( 5 ) from 2 in 54% yield. Polymyxin B heptapeptide (PMBH) which contains four Dab residues was successfully synthesized in a solution‐phase synthesis.  相似文献   

8.
The use of peptides as drugs in pharmaceutical applications is hindered by their susceptibility to proteolysis and therefore low bioavailability. β‐Peptides that contain an additional methylene group in the backbone, are gaining recognition from a pharmaceutical stand point as they are considerably more resilient to proteolysis and metabolism. Recently, we reported two new classes of β ‐peptides, β 3‐ and β2‐peptides derived from l ‐aspartic acid and l ‐diaminopropionic acid, respectively. Here, we report the proteolytic stability of these β‐peptidic compounds and a mixed α /β‐peptide against three enzymes (pronase, trypsin and elastase), as well as, human serum. The stability of these peptides was compared to an α‐peptide. Peptides containing β‐linkages were resistant to all conditions. The mixed α /β‐peptide, however, exhibited proteolysis in the presence of trypsin and pronase but not elastase. The rate of degradation of the mixed α /β‐peptide was slower than that would be expected for an α‐peptide. In addition, these β‐peptides were not toxic to HeLa and COS‐1 cell lines as observed by MTT cytotoxicity assay. These results expand the scope of mixed α /β‐peptides containing β‐amino acids or small β‐peptide fragments as therapeutic peptides.  相似文献   

9.
We have previously shown that the incorporation of an 8‐atom all‐hydrocarbon ‘staple’ at positions i and + 3 of a synthetic peptide results in substantial stabilization of the α‐helical conformation. As part of our ongoing effort to explore the scope and utility of all‐hydrocarbon stapling systems, we have investigated and report herein the properties of a new i,+ 3 stapling system that employs a 6‐carbon cross‐link.  相似文献   

10.
Abstract: The N‐terminal 1–34 segment of parathyroid hormone (PTH) is fully active in vitro and in vivo and it can reproduce all biological responses in bone characteristic of the native intact PTH. Recent studies have demonstrated that N‐terminal fragments presenting the principal activating domain such as PTH(1–11) and PTH(1–14) with helicity‐enhancing substitutions yield potent analogues with PTH(1–34)‐like activity. To further investigate the role of α‐helicity on biological potency, we designed and synthesized by solid‐phase methodology the following hPTH(1–11) analogues substituted at positions 1 and/or 3 by the sterically hindered and helix‐promoting Cα‐tetrasubstituted α‐amino acids α‐amino isobutyric acid (Aib), 1‐aminocyclopentane‐1‐carboxylic acid (Ac5c) and 1‐aminocyclohexane‐1‐carboxylic acid (Ac6c): Ac5c‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( I ); Aib‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( II ); Ac6c‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( III ); Aib‐V‐Ac6c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( IV ); Aib‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( V ); S‐V‐Aib‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VI ), S‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VII ); Ac5c‐V‐S‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( VIII ); Ac6c‐V‐S‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( IX ); Ac5c‐V‐Ac5c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( X ); Ac6c‐V‐Ac6c‐E‐I‐Q‐L‐M‐H‐Q‐R‐NH2 ( XI ). All analogues were biologically evaluated and conformationally characterized in 2,2,2‐trifluoroethanol (TFE) solution by circular dichroism (CD). Analogues I – V , which cover the full range of biological activity observed in the present study, were further conformationally characterized in detail by nuclear magnetic resonance (NMR) and computer simulations studies. The results of ligand‐stimulated cAMP accumulation experiments indicated that analogues I and II are active, analogues III , VI and VII are very weakly active and analogues IV , V , VIII–XI are inactive. The most potent analogue, I exhibits biological activity 3500‐fold higher than that of the native PTH(1–11) and only 15‐fold weaker than that of the native sequence hPTH(1–34). Remarkably, the two most potent analogues, I and II , and the very weakly active analogues, VI and VII , exhibit similar helix contents. These results indicate that the presence of a stable N‐terminal helical sequence is an important but not sufficient condition for biological activity.  相似文献   

11.
Abstract: A general method for the synthesis of enantiopure non‐natural α‐amino acids is described. The key intermediate tert‐butyl (2S)‐2‐[bis(tert‐butoxycarbonyl)amino]‐5‐oxopentanoate was obtained from l ‐glutamic acid after suitable protection and selective reduction of the γ‐methyl ester group by DIBALH. Wittig reaction of this chiral aldehyde with various ylides led to a variety of δ,ε‐unsaturated α‐amino acids. This methodology was applied to the synthesis of (S)‐2‐amino‐oleic acid.  相似文献   

12.
Abstract: The novel Cα‐tetrasubstituted α‐amino acid Cα‐methyl, Cα‐cyclohexylglycine was prepared by hydrogenation of its Cα‐methyl, Cα‐phenylglycine precursor. Terminally protected homodi‐, homotri‐, and homotetrapeptides from Cα‐methyl, Cα‐cyclohexylglycine and co‐oligopeptides to the pentamer level in combination with Gly or α‐aminoisobutyric acid residues were prepared by solution methods and fully characterized. The results of a conformational analysis, performed by use of Fourier transform infrared (FT‐IR) spectrophotomet absorption, 1H NMR, and X‐ray diffraction techniques, support the contention that this Cα‐methylated, Cβ‐trisubstituted aliphatic α‐amino acid is an effective β‐turn and 310‐helix inducer in tri‐ and longer peptides as its Cα‐methyl valine parent compound, but partially divergent from the corresponding aromatic Cα‐methyl, Cα‐diphenylmethylglycine residue, known to promote folded and fully extended structures to a significant extent in these oligomers.  相似文献   

13.
Abstract: Using a chemo‐enzymatic approach we prepared the highly lipophilic, chiral, Cα‐methylated α‐amino acid (αMe)Aun. Two series of terminally protected model peptides containing either d ‐(αMe)Aun in combination with Aib or l ‐(αMe)Aun in combination with Gly were synthesized using solution methods and fully characterized. A detailed solution conformational analysis, based on FT‐IR absorption, 1H NMR and CD techniques, allowed us to determine the preferred conformation of this amino acid and the relationship between chirality at its α‐carbon atom and screw sense of the helix that is formed. The results obtained strongly support the view that d ‐(αMe)Aun favors the formation of the left‐handed 310‐helical conformation.  相似文献   

14.
Bioactive peptides are emerging as promising class of drugs that could serve as α‐glucosidase inhibitors for the treatment of type 2 diabetes. This article identifies structural and physicochemical requirements for the design of therapeutically relevant α‐glucosidase inhibitory peptides. So far, a total of 43 fully sequenced α‐glucosidase inhibitory peptides have been reported and 13 of them had IC50 values several folds lower than acarbose. Analysis of the peptides indicates that the most potent peptides are tri‐ to hexapeptides with amino acids containing a hydroxyl or basic side chain at the N‐terminal. The presence of proline within the chain and alanine or methionine at the C‐terminal appears to be relevant for high activity. Hydrophobicity and isoelectric points are less important variables for α‐glucosidase inhibition whilst a net charge of 0 or +1 was predicted for the highly active peptides. In silico simulated gastrointestinal digestion revealed that the high and moderately active peptides, including the most potent peptide (STYV), were gastrointestinally unstable, except SQSPA. Molecular docking of SQSPA, STYV, and STY (digestion fragment of STYV) with α‐glucosidase suggested that their hydrogen bonding interactions and binding energies were comparable with acarbose. The identified criteria will facilitate the design of new peptide‐derived α‐glucosidase inhibitors.  相似文献   

15.
A study was made on the physical, chemical, energetic, conformational, geometric, and dynamic property potentials of amino acid residues in protein secondary structures: α-helix and β-strand. Property patterns were obtained by computing the average property values for specified residue units partitioned longitudinally and transversely about the chain. It was found that in r-helices with not more than 15 residues, there exist longitudinally opposing portions, one characteristically higher in average property potentials than the other. The helical chain, in general, acquires either an increasing or decreasing average potential in the N-terminal to C-terminal direction. The sequence-wise and surface-wise variations of property potentials in the elements of β-structure also revealed such general patterns. Possible wrong predictions in statistical methods of one secondary structural class over the other are pointed out.  相似文献   

16.
Abstract: Gramicidin S (GS) is a 10‐residue cyclic β‐sheet peptide with lytic activity against the membranes of both microbial and human cells, i.e. it possesses little to no biologic specificity for either cell type. Structure–activity studies of de novo‐designed 14‐residue cyclic peptides based on GS have previously shown that higher specificity against microbial membranes, i.e. a high therapeutic index (TI), can be achieved by the replacement of a single l ‐amino acid with its corresponding d ‐enantiomer [Kondejewski, L.H. et al. (1999) J. Biol. Chem. 274 , 13181]. The diastereomer with a d ‐Lys substituted at position 4 caused the greatest improvement in specificity vs. other l to d substitutions within the cyclic 14‐residue peptide GS14, through a combination of decreased peptide amphipathicity and disrupted β‐sheet structure in aqueous conditions [McInnes, C. et al. (2000) J. Biol. Chem. 275 , 14287]. Based on this information, we have created a series of peptide diastereomers substituted only at position 4 by a d ‐ or l ‐amino acid (Leu, Phe, Tyr, Asn, Lys, and achiral Gly). The amino acids chosen in this study represent a range of hydrophobicities/hydrophilicities as a subset of the 20 naturally occurring amino acids. While the d ‐ and l ‐substitutions of Leu, Phe, and Tyr all resulted in strong hemolytic activity, the substitutions of hydrophilic d ‐amino acids d ‐Lys and d ‐Asn in GS14 at position 4 resulted in weaker hemolytic activity than in the l ‐diastereomers, which demonstrated strong hemolysis. All of the l ‐substitutions also resulted in poor antimicrobial activity and an extremely low TI, while the antimicrobial activity of the d ‐substituted peptides tended to improve based on the hydrophilicity of the residue. d ‐Lys was the most polar and most efficacious substitution, resulting in the highest TI. Interestingly, the hydrophobic d ‐amino acid substitutions had superior antimicrobial activity vs. the l ‐enantiomers although substitution of a hydrophobic d ‐amino acid increases the nonpolar face hydrophobicity. These results further support the role of hydrophobicity of the nonpolar face as a major influence on microbial specificity, but also highlights the importance of a disrupted β‐sheet structure on antimicrobial activity.  相似文献   

17.
Abstract: We predicted γ‐turns from amino acid sequences using the first‐order Markov chain theory and enlarged representative data sets corresponding to protein chains selected from the Protein Data Bank (PDB). The following data sets were used for training and deriving the probability values: (1) an initial data set containing 315 protein chains comprising 904 γ‐turns and (2) a later data set in order to include new entries in the PDB, containing 434 protein chains and comprising 1053 γ‐turns. By excluding 93 protein chains that were common to these two training data sets, we generated two mutually exclusive data sets containing 222 and 341 protein chains for testing our predictions. Applying amino acid probability values derived from training data sets on to testing data sets yielded overall prediction accuracies in the range 54–57%. We recommend the use of probability values derived from the data set comprising 315 protein chains that represents more γ‐turns and also provides better predictions.  相似文献   

18.
The crystal and molecular structure of the fully protected dipeptide Boc-Val-(S)-α-MeSer-OMe has been determined by X-ray diffraction techniques. Crystals grown from ethyl acetate/n-pentane mixtures are tetragonal, space group 141, with cell parameters at 295 K of a= 15.307(2), c= 18.937(10)Å, V = 4437.1 Å3, M.W. = 332.40, Z = 8, Dm= 0.99 g/cm3 and Dx= 0.995 g/cm3. The structure was solved by application of direct methods and refined to an R value of 0.028 for 1773 reflections with I≥3σ(I) collected on a CAD-4 diffractometer. Both chiral centers have the (S) configuration. The dipeptide assumes in the solid state an S shape. The urethane moiety is in the cis conformation, while the amide bond is in the common trans conformation. The conformational angles φ1, ψ1 of the Val and φ2, and ψ2 of the (S)-αMeSer fall in the F region of the φ-ψ map. The isopropyl side chain of the Val residue has the (t, g?) conformation, while the Ser side chain has a g+ conformation. The hydrogen bond donor groups are all involved in intermolecular H-bond interactions. Along the quaternary axis the dipeptide molecules are linked to each other with the formation of infinite rows.  相似文献   

19.
1. In higher eukaryotes, metabolism and immunity are tightly coupled. However, whereas in evolutionary terms a compromised immune response due to undernourishment has been the predominant problem, the inflammatory response to obesity and other lifestyle‐associated diseases has increased in relevance in Western societies in the past 100 years. 2. Traditionally, fat tissue has been considered as the major source of pro‐inflammatory secreted factors in these pathologies. However, in recent years the contribution of other tissues to disease‐causing chronic inflammation has been increasingly appreciated. 3. Peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α) is one of the key regulatory factors in active skeletal muscle. Aberrant expression of PGC‐1α in inactive muscle fibres could be linked to a sedentary lifestyle, persistent systemic inflammation and a higher risk for many chronic diseases. Accordingly, modulation of PGC‐1α activity in skeletal muscle may have a broad range of therapeutic effects. Here, recent advances in the understanding of the role of muscle PGC‐1α in health and disease are reviewed.  相似文献   

20.
Sulfamate and its derivatives have a range of biological activities. One‐pot cyclocondensation of alkenes ( 1a–i ) with chlorosulfonyl isocyanate generates β‐lactams. β‐Amino acid derivatives ( 2a–i ) from β‐lactams were synthesized. Then, these highly reactive compounds were opened with MeOH to produce the corresponding sulfamate derivatives in good yields. The inhibitory effects of the novel sulfamate derivatives were tested on human carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α‐glycosidase (α‐Gly). Novel sulfamate derivatives showed Ki values in the range of 23.81–42.97 nM against hCA I, 8.95–52.23 nM against hCA II, 8.10–45.51 nM against AChE, 23.16–81.84 nM against BChE, and 14.02–48.68 nM against α‐Gly. As a result, the novel sulfamate derivatives had potent inhibitory effects against both isoenzymes. Overall, due to the inhibitory effects of the novel sulfamate derivatives on the tested metabolic enzymes, they are promising drug candidates for the treatment of diseases like glaucoma, epilepsy, leukemia, Alzheimer's disease, and type 2 diabetes mellitus, which are associated with high enzymatic activity of the indicated metabolic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号