首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Angiopoietin-1 (Ang1) exerts a vascular endothelial barrier protective effect by blocking the action of permeability-increasing mediators such as vascular endothelial growth factor (VEGF) through unclear mechanisms. Because VEGF may signal endothelial hyperpermeability through the phospholipase C (PLC)-IP3 pathway that activates extracellular Ca2+ entry via the plasmalemmal store-operated channel transient receptor potential canonical-1 (TRPC1), we addressed the possibility that Ang1 acts by inhibiting this Ca2+ entry mechanism in endothelial cells. Studies in endothelial cell monolayers demonstrated that Ang1 inhibited the VEGF-induced Ca2+ influx and increase in endothelial permeability in a concentration-dependent manner. Inhibitors of the PLC-IP3 Ca2+ signaling pathway prevented the VEGF-induced Ca2+ influx and hyperpermeability similar to the inhibitory effects seen with Ang1. Ang1 had no effect on PLC phosphorylation and IP3 production, thus its permeability-decreasing effect could not be ascribed to inhibition of PLC activation. However, Ang1 interfered with downstream IP3-dependent plasmalemmal Ca2+ entry without affecting the release of intracellular Ca2+ stores. Anti-TRPC1 antibody inhibited the VEGF-induced Ca2+ entry and the increased endothelial permeability. TRPC1 overexpression in endothelial cells augmented the VEGF-induced Ca2+ entry, and application of Ang1 opposed this effect. In immunoprecipitation studies, Ang1 inhibited the association of IP3 receptor (IP3R) and TRPC1, consistent with the coupling hypothesis of Ca2+ entry. These results demonstrate that Ang1 blocks the TRPC1-dependent Ca2+ influx induced by VEGF by interfering with the interaction of IP3R with TRPC1, and thereby abrogates the increase in endothelial permeability.  相似文献   

3.
BACKGROUND: Infusion of exogenous vascular endothelial growth factor (VEGF) into adult brain at doses above 60 ng/day induces dramatic angiogenesis accompanied by vascular leak and inflammation. Blood vessels formed by this treatment are dilated and tortuous, exhibiting a pathological morphology. Pathological VEGF-induced angiogenesis is preceded by vascular leak and inflammation, which have been proposed to mediate subsequent angiogenesis. METHODS: To test this hypothesis, we infused VEGF into the brains of adult rats to induce pathological angiogenesis. Some of these rats were treated with dexamethasone, a potent anti-inflammatory glucocorticoid, to inhibit inflammation and edema. RESULTS: We demonstrate that inhibition of inflammation by treatment with dexamethasone significantly attenuated VEGF-induced pathological angiogenesis. To present converging evidence that inflammation may be important in this angiogenic process, we also demonstrate that mice genetically deficient in the inflammatory mediator intercellular adhesion molecule-1 have attenuated VEGF-induced angiogenesis. These same mice showed normal amounts of physiological angiogenesis in response to enriched environments, however, suggesting that a generalized reduction in vascular plasticity could not account for their poor angiogenic response to VEGF. CONCLUSIONS: Taken together, the data from these experiments suggest that the inflammation which occurs before or during VEGF-induced pathological brain angiogenesis plays a contributory role in the pathological angiogenic process.  相似文献   

4.
5.
Hattori Y  Suzuki K  Hattori S  Kasai K 《Hypertension》2006,47(6):1183-1188
AMP-activated protein kinase (AMPK) is tightly regulated by the cellular AMP:ATP ratio and plays a central role in regulation of energy homeostasis and metabolic stress. Metformin has been shown to activate AMPK. We hypothesized that metformin may prevent nuclear factor kappaB (NF-kappaB) activation in endothelial cells exposed to inflammatory cytokines. Metformin was observed to activate AMPK, as well as its downstream target, phosphoacetyl coenzyme A carboxylase, in human umbilical vein endothelial cells (HUVECs). Metformin also dose-dependently inhibited tumor necrosis factor (TNF)-alpha-induced NF-kappaB activation and TNF-alpha-induced IkappaB kinase activity. Furthermore, metformin attenuated the TNF-alpha-induced gene expression of various proinflammatory and cell adhesion molecules, such as vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1, in HUVECs. A pharmacological activator of AMPK, 5-amino-4-imidazole carboxamide riboside (AICAR), dose-dependently inhibited TNF-alpha- and interleukin-1beta-induced NF-kappaB reporter gene expression. AICAR also suppressed the TNF-alpha- and interleukin-1beta-induced gene expression of vascular cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1 in HUVECs. The small interfering RNA for AMPKalpha1 attenuated metformin or AICAR-induced inhibition of NF-kappaB activation by TNF-alpha, suggesting a possible role of AMPK in the regulation of cell inflammation. In light of these findings, we suggest that metformin attenuates the cytokine-induced expression of proinflammatory and adhesion molecule genes by inhibiting NF-kappaB activation via AMPK activation. Thus, it might be useful to target AMPK signaling in future efforts to prevent atherogenic and inflammatory vascular disease.  相似文献   

6.
OBJECTIVE: Cyclooxygenase-2 (COX-2) is induced by hypoxic stimuli and is also involved in the process of angiogenesis. We previously demonstrated that vascular endothelial growth factor (VEGF) is one of the principal factors produced by hypoxic myocytes and is responsible for the induction of COX-2 expression in endothelial cells. Yet the signaling pathways by which VEGF modulates COX-2 gene expression are still less well defined. We therefore examined the regulation of VEGF-induced COX-2 expression by the mitogen-activated protein kinase (MAPK) family in endothelial cells. METHODS AND RESULTS: Human umbilical vascular endothelial cells (HUVECs) were incubated with U0126 (ERK1/2 inhibitor, 10 microM), SB203580 (p38 inhibitor, 20 microM), and SP600125 (JNK inhibitor, 20 microM), as well as the COX-2 selective inhibitor, NS398, for 1 h before treating with VEGF (20 ng/ml). COX-2 expression induced by VEGF at both mRNA and protein levels was significantly inhibited by selective p38 and JNK inhibitors but not by the ERK1/2 inhibitor. The phosphorylation of p38 and JNK kinases was observed as early as 5 min in HUVECs after VEGF stimulation. Furthermore, the biological significance of the COX-2 gene in endothelial cells was examined by over-expressing or knocking down COX-2 gene expression. (3)H-Thymidine incorporation and Matrigel techniques were used to determine cell proliferation and vascular structure formation. VEGF-induced cell proliferation was significantly reduced when HUVECs were either pre-treated with NS398 (21.52+/-3.6%) or transfected with COX-2 siRNA (34.12+/-5.81%). In contrast, in HUVECs with over-expression of COX-2, VEGF-induced cell proliferation was increased 42.56+/-7.69%. Moreover, the formation of vascular structure assayed by Matrigel demonstrated that VEGF-induced vascular structure formation was accelerated in COX-2 over-expressing cells but attenuated in COX-2 siRNA-transfected cells. CONCLUSION: COX-2 plays an important role in VEGF-induced angiogenesis via p38 and JNK kinase activation pathways. These findings suggest that the cardioprotective role of COX-2 may be, at least in part, through its angiogenic activity.  相似文献   

7.
Hemolytic uremic syndrome (HUS), which is the most common cause of acute renal failure in infants and small children, is caused by verotoxin (VT)-producing Escherichia coli infection. Endothelial injury determines microvascular thrombosis and evidence is available from recent studies that suggests that leukocyte activation participates in endothelial damage. We studied here the effect of VT-1 on leukocyte adhesion to vascular endothelium under physiologic flow conditions. Human umbilical vein endothelial cells (HUVECs) were incubated for 24 hours with VT-1 (0.1, 1, and 10 pmol/L) and then exposed to a total leukocyte suspension in a parallel plate flow chamber under laminar flow conditions (1.5 dynes/cm2). Adherent cells were counted by digital image processing. Results showed that VT-1 dose-dependently increased the number of adhering leukocytes to HUVECs as compared with unstimulated cells. The adhesive response elicited by VT-1 was comparable to that of interleukin-1 beta (IL-1 beta), one of the most potent inducers of endothelial cell adhesiveness. Exposure of HUVECs to VT-1 did not affect the number of rolling leukocytes, which was similar to that of control values. To examine the role of adhesion molecules in VT-1-induced leukocyte adhesion, HUVECs were incubated with mouse monoclonal antibodies against E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) before adhesion assay. Functional blocking of E-selectin, ICAM-1, and VCAM-1 on endothelial cells significantly inhibited VT-1-induced increase in leukocyte adhesion. In some experiments, before VT-1 incubation, HUVECs were pretreated for 24 hours with tumor necrosis factor alpha (TNF alpha; 100 U/mL), which is known to increase VT receptor expression on HUVECs. The number of adhering leukocytes on HUVECs exposed to TNF alpha and VT-1 significantly increased as compared with HUVECs incubated with VT-1 and TNF alpha alone. These results suggest that VT-1 modulates leukocyte-endothelium interaction, thus increasing leukocyte adhesion and upregulating adhesive proteins on endothelial surface membrane.  相似文献   

8.
9.
10.
Endothelial cell migration and tube formation in response to vascular endothelial growth factor (VEGF) play an important role in the process of angiogenesis. Recent data indicate that angiotensin type 2 (AT2) receptor stimulation is antiangiogenic. Therefore, we studied the effect of angiotensin II (Ang II) on VEGF-induced migration and in vitro tube formation of human endothelial cells. Ang II inhibited VEGF-induced migration of EA.hy926 cells, human coronary artery (HCA) and human dermal microvascular (HDM) endothelial cells (ECs) as well as tube formation by HDMECs. The AT2 receptor antagonist PD123,319 but not the AT1 receptor antagonist losartan blocked the inhibitory effect of Ang II. The inhibitory effect of Ang II on VEGF-induced migration of endothelial cells was mimicked by the specific AT2 receptor agonist CGP-42112A. The phosphorylation of Akt and its downstream effector endothelial NO synthase (eNOS) is pivotal to VEGF-induced angiogenesis. We therefore investigated the effect of Ang II on VEGF-induced Akt and eNOS phosphorylation. Ang II diminished the VEGF-induced phosphorylation of Akt and eNOS in endothelial cells, whereas the autophosphorylation of VEGF receptors was unaffected. CGP-42112A again mimicked and PD123,319 but not losartan blocked the inhibitory effect of Ang II. Treatment of endothelial cells with pertussis toxin (PTX) totally abolished the AT2 receptor-mediated inhibition of VEGF-induced endothelial cell migration and blocked the inhibition of Akt and eNOS phosphorylation. In conclusion, this study indicates that AT2 receptor stimulation inhibits VEGF-induced endothelial cell migration and tube formation via activation of a PTX-sensitive G protein. These findings may explain the reported antiangiogenic properties of the AT2 receptor.  相似文献   

11.
12.
Summary We evaluated the influence of high ambient glucose on cellular expression of adhesion molecules, known to mediate endothelial interaction of leucocytes and monocytes. Paired cultures of individual isolates of human umbilical vein endothelial cells (HUVECs) were studied by fluorescence activated cell sorter analysis after exposure to 30 vs 5 mmol/l glucose. Incubation of HUVECs for 24 h in 30 mmol/l glucose increased ICAM-1 (intercellular adhesion molecule-1; 116.4±16.9% of control, p 0.05), but not PECAM (platelet endothelial cell adhesion molecule) expression, compared to cultures kept in 5 mmol/l glucose. Long-term exposure (13±1 days) of HUVECs to 30 mmol/l glucose increased expression of ICAM-1 to 122.5±32.2% (p<0.002) and reduced that of PECAM to 86.9±21.3% vs the respective control culture in 5 mmol/l glucose (p<0.02). Stimulation of confluent HUVECs, kept in 30 vs 5 mmol/l glucose for 13±1 days, with 20 U/ ml interleukin-1 for 24 h (ICAM-1) and 4 h (endothelial leukocyte adhesion molecule 1) resulted in reduced ICAM-1 (84.8±27.0%, p<0.05) and endothelial leukocyte adhesion molecule-1 (87.6±22.4%, p<0.05) expression vs control cells, while that of PECAM (t: 24 h) and vascular cell adhesion molecule-1 (t: 16 h) remained unchanged. In conclusion, it appears that differences in expression of adhesion molecules on HUVECs in response to high glucose reflects endothelial glucose toxicity, which may also induce endothelial dysfunction in diabetes.Abbreviations HUVECs Human umbilical vein endothelial cells - ICAM-1 intercellular adhesion molecule-1 - PECAM platelet endothelial cell adhesion molecule - ELAM-1 endothelial leukocyte adhesion molecule-1 - VCAM-1 vascular cell adhesion molecule-1 - IL-1 interleukin-1 - FACS fluorescence activated cell sorter - FCS fetal calf serum - PBS phosphate buffered saline  相似文献   

13.
14.
OBJECTIVE: Expression of adhesion molecules on endothelial cells and subsequent monocyte adhesion are initial events in the development of atherosclerosis. The purpose of this study was to investigate the role of apurinic/apyrmidinic endonuclease1/redox factor-1 (APE1/ref-1) in the interaction of monocytes with vascular endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVECs) were transfected with an adenovirus encoding human APE1/ref-1. The effect of APE1/ref-1 overexpression on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) protein expression, and intracellular superoxide production in tumor necrosis factor (TNF)-alpha-activated HUVECs was examined. RESULTS: Adhesion of the monocytic cell line U937 to TNF-alpha-stimulated HUVECs in which APE1/ref-1 was overexpressed was suppressed. APE1/ref-1 overexpression also suppressed expression of VCAM-1 induced by TNF-alpha. APE1/ref-1-mediated suppression of VCAM-1 was blocked by pretreatment with the nitric oxide synthase (NOS) inhibitor l-nitroarginine methyl ester. Furthermore, APE1/ref-1 overexpression inhibited the TNF-alpha-induced increase in intracellular superoxide and p38 MAPK phosphorylation. CONCLUSIONS: These data provide evidence that APE1/ref-1 in endothelial cells mitigates TNF-alpha-induced monocyte adhesion and expression of vascular cell adhesion molecules, and this anti-adhesive property of APE1/ref-1 is primarily mediated by a NOS-dependent mechanism. Furthermore, APE1/ref-1 may inhibit VCAM-1 expression by inhibiting superoxide production and p38 MAPK activation.  相似文献   

15.
Vascular endothelial growth factor (VEGF) has been implicated in angiogenesis associated with coronary heart disease, vascular complications in diabetes, inflammatory vascular diseases, and tumor metastasis. The mechanism of VEGF-driven angiogenesis involving glycosphingolipids such as lactosylceramide (LacCer), however, is not known. To demonstrate the involvement of LacCer in VEGF-induced angiogenesis, we used small interfering RNA (siRNA)-mediated silencing of LacCer synthase expression (GalT-V) in human umbilical vein endothelial cells. This gene silencing markedly inhibited VEGF-induced platelet endothelial cell adhesion molecule-1 (PECAM-1) expression and angiogenesis. Second, we used D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of LacCer synthase and glucosylceramide synthase, that significantly mitigated VEGF-induced PECAM-1 expression and angiogenesis. Interestingly, these phenotypic changes were reversed by LacCer but not by structurally related compounds such as glucosylceramide, digalactosylceramide, and ceramide. In a human mesothelioma cell line (REN) that lacks the endogenous expression of PECAM-1, VEGF/LacCer failed to stimulate PECAM-1 expression and tube formation/angiogenesis. In REN cells expressing human PECAM-1 gene/protein, however, both VEGF and LacCer-induced PECAM-1 protein expression and tube formation/angiogenesis. In fact, VEGF-induced but not LacCer-induced angiogenesis was mitigated by SU-1498, a VEGF receptor tyrosine kinase inhibitor. Also, VEGF/LacCer-induced PECAM-1 expression and angiogenesis was mitigated by protein kinase C and phospholipase A2 inhibitors. These results indicate that LacCer generated in VEGF-treated endothelial cells may serve as an important signaling molecule for PECAM-1 expression and in angiogenesis. This finding and the reagents developed in our report may be useful as anti-angiogenic drugs for further studies in vitro and in vivo.  相似文献   

16.
BACKGROUND: Atherosclerosis and vascular inflammation induced by hyperglycemia are important factors in the promotion of diabetic complications. One of the earliest events in the inflammatory process is increased binding of neutrophils to endothelial cells. Since vascular inflammation has been recently reported to be crucial for the onset of atherosclerosis-mediated serious diseases (acute myocardial infarction, stroke), in this study, we examined the effects of high glucose concentrations on endothelial-neutrophil cell adhesion and surface expression of endothelial adhesion molecules. We also evaluated the effects of various antidiabetic medicines on these events. METHODS: Human umbilical vein endothelial cells (HUVECs) were first cultured for 48 h in the glucose-rich medium, and neutrophils from healthy volunteers were then added and allowed to adhere for 30 min. Adhered neutrophils were quantified by measuring myeloperoxidase (MPO) activities, and surface expression of endothelial adhesion molecules was determined using an enzyme immunoassay. RESULTS: High glucose concentrations (over 27.8 mM) increased endothelial-neutrophil cell adhesion and expression of endothelial adhesion molecules (intercellular adhesion molecule-1 (ICAM-1), P-selectin, E-selectin). These events were protein kinase C (PKC) dependent, because PKC inhibitors, but not other intracellular second messenger inhibitors, significantly blocked them. Among antidiabetic medicines, a sulfonylurea, gliclazide (but not glibenclamide or glimepiride), and an aldose reductase inhibitor, epalrestat, significantly inhibited these events; however, a new K(ATP)-channel blocker, netegulinide, a biguanide, metformine, or an insulin sensitizer, troglitazone, did not. CONCLUSIONS: Our data is consistent with hyperglycemia-mediated vascular inflammation through increases in neutrophil adhesion and expression of endothelial adhesion molecules. These events might lead to the onset of atherosclerosis-mediated serious diseases, but could be inhibited by something perhaps, such as gliclazide and epalrestat.  相似文献   

17.
18.
BACKGROUND: Cell adhesion molecules and endothelial growth factors have an important role in the infiltrating of rheumatoid synovium with mononuclear cells, leading to the initiation and progression of the disease. OBJECTIVE: To investigate whether the serum profile of soluble adhesion molecules and of vascular endothelial growth factor (VEGF) is associated with the histological appearance of rheumatoid arthritis (RA). METHODS: Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-selectin), and VEGF were assessed by enzyme linked immunosorbent assay (ELISA) in 40 patients with RA and 32 patients with osteoarthritis (OA). RESULTS: Histological analysis of synovium specimens distinguished two types of rheumatoid synovitis. Twenty four RA samples presented diffuse infiltrates of mononuclear cells without any further microanatomical organisation, whereas in the remaining 16 samples lymphocytic follicles with germinal centre-like structures were identified. In comparison with patients with OA, constituting a control group, higher serum concentrations of sICAM-1 (p<0.001), sVCAM-1 (p<0.001), sE-selectin (p<0.01), and VEGF (p<0.001) were detected in patients with RA. Raised concentrations of sICAM-1, sVCAM-1, and VEGF dominated in the serum of patients with RA with follicular synovitis compared with those with diffuse synovitis (p<0.01 for all comparisons). The serum concentrations of sICAM-1, sVCAM-1, and VEGF correlated with markers of disease activity such as the erythrocyte sedimentation rate and C reactive protein levels. Furthermore, the clinical data analysed in our study indicated that patients with RA with follicular synovitis tend to have more severe disease. CONCLUSIONS: The distinct histological appearances of rheumatoid synovitis associated with different serum profiles of sICAM-1, sVCAM-1, and VEGF reflect varied clinical activity of the disease and confirm RA heterogeneity. Patients with different histological forms of synovitis may respond differently to the treatment regimens.  相似文献   

19.
Ito TK  Ishii G  Saito S  Yano K  Hoshino A  Suzuki T  Ochiai A 《Blood》2009,113(10):2363-2369
Vascular endothelial growth factor (VEGF) signaling in endothelial cells serves a critical role in physiologic and pathologic angiogenesis. Endothelial cells secrete soluble VEGF receptor-1 (sVEGFR-1/sFlt-1), an endogenous VEGF inhibitor that sequesters VEGF and blocks its access to VEGF receptors. This raises the question of how VEGF passes through this endogenous VEGF trap to reach its membrane receptors on endothelial cells, a step required for VEGF-driven angiogenesis. Here, we show that matrix metalloproteinase-7 (MMP-7) degrades human sVEGFR-1, which increases VEGF bioavailability around the endothelial cells. Using a tube formation assay, migration assay, and coimmunoprecipitation assay with human umbilical vein endothelial cells (HUVECs), we show that the degradation of sVEGFR-1 by MMP-7 liberates the VEGF(165) isoform from sVEGFR-1. The presence of MMP-7 abrogates the inhibitory effect of sVEGFR-1 on VEGF-induced phosphorylation of VEGF receptor-2 on HUVECs. These data suggest that VEGF escapes the sequestration by endothelial sVEGFR-1 and promotes angiogenesis in the presence of MMP-7.  相似文献   

20.
Inhibitors of HMG-CoA reductase (statins) reveal important pharmacological effects in addition to reducing the plasma LDL cholesterol level. In the pathogenesis of arteriosclerosis, transendothelial migration of various leukocytes including monocytes is a crucial step. We, therefore, investigated the expression of E-selectin, intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in vascular endothelial cells as influenced by lovastatin. Human umbilical vein endothelial cells (HUVECs) express significant amounts of selectins and cell adhesion molecules (CAMs) within a few hours after stimulation with TNF-alpha. This effect is potentiated by 100-200% when the cells are pretreated with 0.1-2.5 microM lovastatin. The lovastatin-mediated increase in the cytoplasm and at the cell surface is dose-dependent and significant at lovastatin concentrations comparable to plasma levels in patients under lovastatin treatment. The lovastatin-potentiated increase of E-selectin and CAMs is correlated with a corresponding increase of selectin- and CAM-specific mRNA. We conclude that, in vivo, statin treatment could trigger an enhanced recruitment of macrophages that might support the cholesteryl ester efflux from the arteriosclerotic plaque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号