首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.  相似文献   

2.
Granulocyte-macrophage colony stimulating factor (GM-CSF) functions to drive nasopharyngeal cancer (NPC) metastasis via recruitment and activation of macrophages. However, the source and the regulation of GM-CSF in tumor microenvironment of NPC are not fully understood. In this study, we found that TNFα induced GM-CSF production in NPC CNE1, CNE2, and 5-8F cells in time- and dose-dependent manners. GM-CSF production was tolerant, because the pre-treatment of NPC cells with TNFα down-regulated the GM-CSF production induced by TNFα re-treatment. TNFα activated glycogen synthase kinase-3 (GSK-3), which is an enzyme to regulate glycogen synthesis, and also is a critical downstream element of the PI3K/Akt to regulate cell survival. GSK3 inhibitors up-regulated TNFα-induced GM-CSF, and reversed GM-CSF tolerance induced by TNFα pre-treatment, suggesting that GSK3 activation down-regulated GM-CSF production. GM-CSF down-regulation was not related to ubiquitin-editing enzyme A20. The over-expression of A20 did not regulate GM-CSF production induced by TNFα. However, GSK3 inhibitors up-regulated ERK activation, which contributed to the production of GM-CSF induced by TNFα, suggesting that GSK3 negatively regulated TNFα-induced GM-CSF via down-regulation of ERK signaling. Taking together, these results suggested that GSK3 pathway may be a target for the regulation of TNFα-induced GM-CSF in the tumor microenvironment.  相似文献   

3.
Liver disease is a global health problem and is a primary cause of mortality and morbidity worldwide. Specifically, it accounts for approximately two million deaths per year worldwide. The common causes of mortality are the complications of liver cirrhosis, viral hepatitis and hepatocellular carcinoma (HCC). The mechanism of immune response and infiltration of cellular immunity is essential for promoting hepatic inflammatory, especially when the liver is abundant with lymphocytes and phagocytic cells. The injured and immunity cells secret different types of interleukins (cytokines), which can directly or indirectly amplify or inhibit liver inflammation. Many types of cells can produce interleukin-34 (IL-34) that induces the release of multiple inflammatory factors in patients via interaction with various cytokines. This phenomenon leads to the enlargement of the inflammatory response to liver diseases and induces liver fibrosis. This review highlights the proposed roles of IL-34 in liver diseases and discusses the recent findings of IL-34 that support its emerging role in HCC. Specifically, the facilitating effects of these new insights on the rational development of IL-34 for targeted therapies in the future are explored.  相似文献   

4.
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases characterized by the formation of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Growing evidence suggested that there is an association between neuronal dysfunction and neuroinflammation (NI) in AD, coordinated by the chronic activation of astrocytes and microglial cells along with the subsequent excessive generation of the proinflammatory molecule. Therefore, a better understanding of the relationship between the nervous and immune systems is important in order to delay or avert the neurodegenerative events of AD. The inflammatory/immune pathways and the mechanisms to control these pathways may provide a novel arena to develop new drugs in order to target NI in AD. In this review, we represent the influence of cellular mediators which are involved in the NI process, with regards to the progression of AD. We also discuss the processes and the current status of multiple anti-inflammatory agents which are used in AD and have gone through or going through clinical trials. Moreover, new prospects for targeting NI in the development of AD drugs have also been highlighted.  相似文献   

5.
Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.  相似文献   

6.
《Drug discovery today》2022,27(2):612-625
Evasion of regulated cell death (RCD), mainly referring to apoptosis, autophagy-dependent cell death, necroptosis, and other subroutines, is one of the well-established hallmarks of cancer cells. Accumulating evidence has revealed several small-molecule compounds that target different subroutines of RCD in cancer therapy. In this review, we summarize key pathways of apoptosis, autophagy-dependent cell death and necroptosis in cancer, and describe small-molecule compounds that target these pathways and have potential as therapeutics. These inspiring findings light the way towards the discovery of more ‘magic bullets’ that could work individually or cooperatively to target precisely the three RCD subroutines and so improve cancer treatment.  相似文献   

7.
Cancer therapy is a strategic measure in inhibiting breast cancer stem cell (BCSC) pathways. Naringenin, a citrus flavonoid, was found to increase breast cancer cells’ sensitivity to chemotherapeutic agents. Bioinformatics study and 3D tumorsphere in vitro modeling in breast cancer (mammosphere) were used in this study, which aims to explore the potential therapeutic targets of naringenin (PTTNs) in inhibiting BCSCs. Bioinformatic analyses identified direct target proteins (DTPs), indirect target proteins (ITPs), naringenin-mediated proteins (NMPs), BCSC regulatory genes, and PTTNs. The PTTNs were further analyzed for gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein–protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured in serum-free media. The effects of naringenin were measured by MTT-based cytotoxicity, mammosphere forming potential (MFP), colony formation, scratch wound-healing assay, and flow cytometry-based cell cycle analyses and apoptosis assays. Gene expression analysis was performed using real-time quantitative polymerase chain reaction (q-RT PCR). Bioinformatics analysis revealed p53 and estrogen receptor alpha (ERα) as PTTNs, and KEGG pathway enrichment analysis revealed that TGF-ß and Wnt/ß-catenin pathways are regulated by PTTNs. Naringenin demonstrated cytotoxicity and inhibited mammosphere and colony formation, migration, and epithelial to mesenchymal transition in the mammosphere. The mRNA of tumor suppressors P53 and ERα were downregulated in the mammosphere, but were significantly upregulated upon naringenin treatment. By modulating the P53 and ERα mRNA, naringenin has the potential of inhibiting BCSCs. Further studies on the molecular mechanism and formulation of naringenin in BCSCs would be beneficial for its development as a BCSC-targeting drug.  相似文献   

8.
《Saudi Pharmaceutical Journal》2021,29(11):1289-1302
BackgroundGlioblastoma is one of the most aggressive and deadliest malignant tumors. Acquired resistance decreases the effectiveness of bevacizumab in glioblastoma treatment and thus increases the mortality rate in patients with glioblastoma. In this study, the potential targets of pentagamavunone-1 (PGV-1), a curcumin analog, were explored as a complementary treatment to bevacizumab in glioblastoma therapy.MethodsTarget prediction, data collection, and analysis were conducted using the similarity ensemble approach (SEA), SwissTargetPrediction, STRING DB, and Gene Expression Omnibus (GEO) datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted using Webgestalt and DAVID, respectively. Hub genes were selected based on the highest degree scores using the CytoHubba. Analysis of genetic alterations and gene expression as well as Kaplan–Meier survival analysis of selected genes were conducted with cBioportal and GEPIA. Immune infiltration correlations between selected genes and immune cells were analyzed with database TIMER 2.0.ResultsWe found 374 targets of PGV-1, 1139 differentially expressed genes (DEGs) from bevacizumab-resistant-glioblastoma cells. A Venn diagram analysis using these two sets of data resulted in 21 genes that were identified as potential targets of PGV-1 against bevacizumab resistance (PBR). PBR regulated the metabolism of xenobiotics by cytochrome P450. Seven potential therapeutic PBR, namely GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110 were found to have genetic alterations in 1.2%–30% of patients with glioblastoma. Analysis using the GEPIA database showed that the mRNA expression of ADAM10, AKR1B1, and HSD17B10 was significantly upregulated in glioblastoma patients. Kaplan–Meier survival analysis showed that only patients with low mRNA expression of AKR1B1 had significantly better overall survival than the patients in the high mRNA group. We also found a correlation between PBR and immune cells and thus revealed the potential of PGV-1 as an immunotherapeutic agent via targeting of PBR.ConclusionThis study highlighted seven PBR, namely, GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110. This study also emphasized the potential of PBR as a target for immunotherapy with PGV-1. Further validation of the results of this study is required for the development of PGV-1 as an adjunct to immunotherapy for glioblastoma to counteract bevacizumab resistance.  相似文献   

9.
《Drug discovery today》2022,27(1):246-256
Bromodomain-containing protein 4 (BRD4) is emerging as a therapeutic target that acts synergistically with other targets of small-molecule drugs in cancer. Therefore, the discovery of potential new dual-target inhibitors of BRD4 may be a promising strategy for cancer therapy. In this review, we highlight a series of strategies to design therapeutic dual-target inhibitors of BRD4 that focus on the synergistic functions of this protein. Drug combinations that exploit synthetic lethality, protein–protein interactions, functional complementarity, and blocking of resistance mechanisms could ultimately overcome the barriers inherent to the development of BRD4 inhibitors as future cancer drugs.  相似文献   

10.
11.
Since accelerated metabolism produces much higher levels of reactive oxygen species (ROS) in cancer cells compared to ROS levels found in normal cells, human MutT homolog 1 (MTH1), which sanitizes oxidized nucleotide pools, was recently demonstrated to be crucial for the survival of cancer cells, but not required for the proliferation of normal cells. Therefore, dozens of MTH1 inhibitors have been developed with the aim of suppressing cancer growth by accumulating oxidative damage in cancer cells. While several inhibitors were indeed confirmed to be effective, some inhibitors failed to kill cancer cells, complicating MTH1 as a viable target for cancer eradication. In this review, we summarize the current status of developing MTH1 inhibitors as drug candidates, classify the MTH1 inhibitors based on their structures, and offer our perspectives toward the therapeutic potential against cancer through the targeting of MTH1.  相似文献   

12.
Human serum albumin (HSA), one of the most copious plasma proteins is responsible for binding and transportation of many exogenous and endogenous ligands including drugs. In this study, we intended to explore the extent and types of binding interaction present between HSA and the antihypertensive drug, telmisartan (TLM). The conformational changes in HSA due to this binding were also studied using different spectroscopic and molecular docking techniques. The spectral shifting and intensity variations upon interaction with TLM were studied using FT-IR spectroscopy. Binding constant and the change in absorption of HSA at its λmax was analyzed using absorption spectroscopy. Eventually, the types and extent of binding interactions were confirmed using molecular docking technique. Results have shown that TLM significantly interacts with the binding site-1 of HSA utilizing strong hydrogen bonding with Glu292, and Lys195 residues. The UV-absorption intensities were found to be decreased serially as the drug concentration increased with a binding constant of 1.01 × 103 M−1. The secondary structure analysis using FT-IR spectroscopy also revealed a marked reduction in the α-helix (56%) component of HSA on interaction. This study gives critical insights into the interaction of TLM with HSA protein which eventually affects the concentration of TLM reaching the site of action and ultimately its therapeutic profile.  相似文献   

13.
14.
《药学学报(英文版)》2020,10(8):1347-1359
Gene therapy is rapidly emerging as a powerful therapeutic strategy for a wide range of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Some early clinical trials have failed to achieve satisfactory therapeutic effects. Efforts to enhance effectiveness are now concentrating on three major fields: identification of new vectors, novel therapeutic targets, and reliable of delivery routes for transgenes. These approaches are being assessed closely in preclinical and clinical trials, which may ultimately provide powerful treatments for patients. Here, we discuss advances and challenges of gene therapy for neurodegenerative disorders, highlighting promising technologies, targets, and future prospects.  相似文献   

15.
《Drug discovery today》2022,27(1):326-336
Tuberculosis (TB), an airborne infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of human morbidity and mortality worldwide. Given the alarming rise of resistance to anti-TB drugs and latent TB infection (LTBI), new targets and novel bioactive compounds are urgently needed for the treatment of this disease. We provide an overview of the recent advances in anti-TB drug discovery, emphasizing several newly validated targets for which an inhibitor has been reported in the past five years. Our review presents several attractive directions that have potential for the development of next-generation therapies.  相似文献   

16.
IntroductionAllogenic hematopoietic stem cell transplantation is a curative option for malignant and non-malignant pediatric diseases. Serotherapy is often employed to avoid graft-versus-host disease (GvHD) on one hand and graft rejection on the other hand. Therapeutic drug monitoring is increasingly used to allow for more precise dosing especially in pediatric patients due to their specific pharmacological characteristics. Application of T-cell directed antibodies is not routinely monitored, but may benefit from more precise dosing regimens.MethodsTwo different preparations of rabbit anti-thymocyte globulin (rATG), Thymoglobuline® and ATG-F (Grafalon®), are frequently used to prevent GvHD in pediatric patients by in vivo T-cell depletion. Total rATG levels and active rATG levels were analyzed prospectively in pediatric patients undergoing HSCT. Clinical and laboratory outcome parameters were recorded.ResultsrATG levels were measured in 32 patients, 22 received thymoglobuline and 10 received ATG-F. The median total peak plasma level was 419.0 µg/ml for ATG-F and 60.4 µg/ml for thymoglobuline. For ATG-F, exposure could be predicted from the calculated dose more precisely than for thymoglobuline. Active peak plasma levels neither of ATG-F, nor of thymoglobuline correlated significantly with the number of lymphocytes prior to serotherapy. There was no significant difference in incidence of aGvHD, cGvHD, rejection, mixed chimerism or viral infections in the two cohorts. However, in our cohort, patients with high thymoglobuline exposure showed a compromised reconstitution of T cells.ConclusionsATG-F and thymoglobuline show different pharmacological and immunological impact in children, whose clinical significance needs to be investigated in larger cohorts.  相似文献   

17.
《药学学报(英文版)》2020,10(6):1122-1133
This study aimed to explore the link between block copolymers’ interfacial properties and nanoscale carrier formation and found out the influence of length ratio on these characters to optimize drug delivery system. A library of diblock copolymers of PEG-PCL and triblock copolymers with additional PEI (PEG-PCL-PEI) were synthesized. Subsequently, a systematic isothermal investigation was performed to explore molecular arrangements of copolymers at air/water interface. Then, structural properties and drug encapsulation in self-assembly were investigated with DLS, SLS and TEM. We found the additional hydrogen bond in the PEG-PCL-PEI contributes to film stability upon the hydrophobic interaction compared with PEG-PCL. PEG-PCL-PEI assemble into smaller micelle-like (such as PEG-PCL4006-PEI) or particle-like structure (such as PEG-PCL8636-PEI) determined by their hydrophilic and hydrophobic block ratio. The distinct structural architectures of copolymer are consistent between interface and self-assembly. Despite the disparity of constituent ratio, we discovered the arrangement of both chains guarantees balanced hydrophilic–hydrophobic ratio in self-assembly to form stable construction. Meanwhile, the structural differences were found to have significant influence on model drugs incorporation including docetaxel and siRNA. Taken together, these findings indicate the correlation between molecular arrangement and self-assembly and inspire us to tune block compositions to achieve desired nanostructure and drug loading.  相似文献   

18.
《Saudi Pharmaceutical Journal》2022,30(10):1387-1395
BackgroundMuscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.  相似文献   

19.
20.
《Drug discovery today》2023,28(3):103469
Antitumor agents are delivered via nanoparticles (NPs) to the mitochondria. The drugs attack the mitochondria resulting in mitochondrial damage and the release of cytochrome C (Cyto-C). Cyto-C binds with Apaf1 and Caspase-9 to form an apoptosome. The apoptosome activates Caspase 3, which ultimately results in the death of cancer cells.
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号