首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cytochromes P450 1A1 (CYP1A1) and P450 1B1 (CYP1B1) catalyze the metabolic activation of a number of procarcinogens and the hydroxylation of 17beta-estradiol (E2) at the C-2 and C-4 positions, respectively. The aromatic hydrocarbon receptor (AhR) agonist 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) has a marked effect on estrogen metabolism in MCF-7 breast-tumor cells by induction of these two enzymes. To investigate whether induction of CYP1A1 and CYP1B1 by AhR agonists and the associated increase in E2 metabolism are common to all breast epithelial cells and breast-tumor cells, we determined the effects of TCDD on E2 metabolism, and CYP1A1 and CYP1B1 mRNA levels in a series of non-tumor-derived breast epithelial (184A1 and MCF-10A) and breast-tumor (MCF-7, T-47D, ZR-75-1, BT-20, MDA-MB-157, MDA-MB-231 and MDA-MB-436) cell lines. In 184A1 cells, which did not express detectable estrogen receptor (ER) alpha mRNA, CYP1A1 mRNA and activity were induced by TCDD, and enhanced E2 metabolism in TCDD-treated cells was predominantly E2 2-hydroxylation. In MCF-10A, MCF-7, T-47D, ZR-75-1 and BT-20 cells, which expressed varying levels of ER alpha mRNA, both CYP1A1 and CYP1B1 mRNA levels and rates of both E2 2- and 4- hydroxylation were highly elevated following exposure to TCDD. In MDA- MB-157, MDA-MB-231 and MDA-MB-436 cells, which did not express detectable ER alpha mRNA and generally displayed fibroblastic or mesenchymal rather than epithelial morphology, CYP1B1 induction was favored, and the rate of E2 4-hydroxylation exceeded that of 2- hydroxylation in TCDD-treated cells. These results show that breast epithelial cells and tumor cells vary widely with regard to AhR- mediated CYP1A1 and CYP1B1 induction, suggesting that factors in addition to the AhR regulate CYP1A1 and CYP1B1 gene expression. In these cell lines, significant CYP1A1 inducibility was restricted to cultures displaying epithelial morphology, whereas CYP1B1 inducibility was observed in cells of both epithelial and mesenchymal morphology.   相似文献   

2.
Estrogen regulates Ah responsiveness in MCF-7 breast cancer cells   总被引:9,自引:0,他引:9  
Cytochrome P450 (CYP)1A1 and CYP1B1, which are under the regulatory control of the aryl hydrocarbon (Ah) receptor (AhR), catalyze the metabolic activation of numerous procarcinogens and the hydroxylation of 17beta-estradiol (E2) at the C-2 and C-4 positions, respectively. There is evidence of cross-talk between estrogen receptor alpha (ERalpha)- and AhR-mediated signaling in breast and endometrial cells. To further examine these interactions, we investigated the short- and long-term effects of E2 exposure on Ah responsiveness in MCF-7 human breast cancer cells. Short-term exposure to 1 nM E2 elevated the ratio of the 4- to 2-hydroxylation pathways of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced E2 metabolism and the ratio of the induced CYP1B1 to CYP1A1 mRNA levels, as determined by real-time PCR. Cells maintained long-term (9-12 months) in low-E2 medium progressively lost Ah responsiveness, as indicated by diminished rates of TCDD-induced E2 metabolism and ethoxyresorufin O-deethylase activity, and the reduced expression of the CYP1A1 and CYP1B1 mRNAs and proteins levels. These E2-deprived cells showed elevated levels of ERalpha mRNA, depressed levels of AhR mRNA, and unchanged levels of the AhR nuclear translocator mRNA. Transient transfection studies using a CYP1B1-promoter-luciferase reporter construct showed that reduced CYP1B1 promoter activity in E2-deprived cells could be restored by co-transfection with an AhR expression construct, indicating that AhR expression was limiting in these cells. The reduced Ah responsiveness of E2-deprived cells was reversed by culture for four passages in medium supplemented with 1 nM E2; ERalpha and AhR mRNAs returned to near-normal levels and the inducibility of the CYP1A1 and CYP1B1 mRNAs, proteins, and E2 metabolic activities by TCDD was restored. These studies indicate that the continued presence of estrogen is required to maintain high levels of AhR expression and inducibility of the procarcinogen-bioactivating enzymes, CYP1A1 and CYP1B1, in MCF-7 cells.  相似文献   

3.
Human CYP1B1 is regulated by estradiol via estrogen receptor   总被引:14,自引:0,他引:14  
  相似文献   

4.
5.
Several epidemiologic studies associate certain CYP1A1 genotypes, alone or in combination, with an increased risk of estrogen-related cancers. To answer the question of whether genotype-dependent activation of estrogens by CYP1A1 could be the underlying mechanism, we studied the hydroxylation activity of the most common allelic variants of human CYP1A1 towards both endogenously occurring estrogens, 17beta-estradiol (E2) and estrone (E1). We expressed and purified CYP1A1.1 (wild-type), CYP1A1.2 (Ile(462)Val), and CYP1A1.4 (Thr(461)Asn) and did enzymatic assays of NADPH-dependent estrogen hydroxylation in reconstituted CYP1A1 systems. All CYP1A1 variants catalyzed the formation of 2-, 4-, 6alpha-, and 15alpha-hydroxylated estrogen metabolites from E2 and E1, yet with varying catalytic efficiency and distinct regiospecificity. Whereas the variant CYP1A1.2 (Ile(462)Val) had a significant higher catalytic activity for all hydroxylation sites and both substrates, it was most pronounced for 2-hydroxylation. Catalytic efficiencies for the formation of the major metabolites, 2-OH-E2 and 2-OH-E1, by CYP1A1.2 were 5.7- and 12-fold higher, respectively, compared with the wild-type enzyme. The catalytic efficiencies for hydroxylations catalyzed by CYP1A1.4 were roughly comparable with those of the wild-type enzyme. Enzyme kinetics showed that the superior activity of CYP1A1.2 (Ile(462)Val) is mainly caused by a higher V(max), whereas K(m) values of all variants were similar. The data suggest that risk of estrogen-induced cancers and cardiovascular diseases might be-at least partially-determined by the CYP1A1 genotype.  相似文献   

6.
Methoxyestrogens exert feedback inhibition on cytochrome P450 1A1 and 1B1   总被引:3,自引:0,他引:3  
Dawling S  Roodi N  Parl FF 《Cancer research》2003,63(12):3127-3132
Cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1) catalyze the oxidative metabolism of 17 beta-estradiol (E2) to catechol estrogens (2-OHE2 and 4-OHE2) and estrogen quinones, which may lead to DNA damage. Catechol-O-methyltransferase catalyzes the methylation of catechol estrogens to methoxyestrogens (2-MeOE2, 2-OH-3-MeOE2, and 4-MeOE2), which simultaneously lowers the potential for DNA damage and increases the concentration of 2-MeOE2, an antiproliferative metabolite. In this study, we showed that CYP1A1 and CYP1B1 recognized as substrates both the parent hormone E2 and the methoxyestrogens. Using purified recombinant enzymes, we demonstrated that CYP1A1 and CYP1B1 O-demethylated the methoxyestrogens to catechol estrogens according to Michaelis-Menten kinetics. Both CYP1A1 and CYP1B1 demethylated 2-MeOE2 and 2-OH-3-MeOE2 to 2-OHE2, whereas CYP1B1 additionally demethylated 4-MeOE2 to 4-OHE2. Because the P450-mediated oxidation of E2 and the O-demethylation of methoxyestrogens both yielded identical catechol estrogens as products, we used deuterated E2 (E2-d4), unlabeled methoxyestrogens, and gas chromatography/mass spectrometry to examine both reactions simultaneously. Kinetic analysis revealed that methoxyestrogens acted as noncompetitive inhibitors of E2 oxidation with K(i) ranging from 27 to 153 micro M. For both enzymes, the order of inhibition by methoxyestrogens was 2-OH-3-MeOE2 > or = 2-MeOE2 > 4-MeOE2. Thus, methoxyestrogens exert feedback inhibition on CYP1A1- and CYP1B1-mediated oxidative estrogen metabolism, thereby reducing the potential for estrogen-induced DNA damage.  相似文献   

7.
A human carcinogen, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces liver tumors in female rats. In this study, we examined the effects of estrogen on an arylhydrocarbon receptor (AhR)-responsible protein, CYP1A1 expression induced by TCDD in female rat livers. The induction of CYP1A1 by a dose of 300 ng TCDD/kg and its resultant enzymatic activity were significantly enhanced by 5 microg 17beta-estradiol/kg body weight treatment to both intact and ovariectomized rats. Immunoblot analysis showed a increase in nuclear AhR due to estrogen, TCDD or both, suggesting that estrogen is involved in the activation of CYP1A1 gene after the formation of AhR-TCDD complex.  相似文献   

8.
Knowledge of the response of cytochrome P450 1B1 (CYP1B1) to exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in both humans and rodents is limited. To improve the analysis of CYP1 proteins, specific CYP1B1 and CYP1A1 polypeptides were expressed as hexahistidine-tagged fusion proteins in Escherichia coli, purified to homogeneity and used to produce polyclonal antibodies in rabbits. Immunoblot analyses showed that these antibodies were specific and sensitive, detecting both the human and rat forms of the respective isozymes and exhibiting negligible cross-reactivity between the two known CYP1 subfamilies. We show that CYP1B1, CYP1A1 and CYP1A2 protein levels were induced in the livers of female Sprague-Dawley rats following either acute (single dose of 25 microg TCDD/kg) or chronic (125 ng TCDD/kg/day for 30 weeks) exposure to TCDD. CYP1B1 protein exhibited a dose-response to TCDD that was different from those of CYP1A1 and CYP1A2. CYP1B1 induction appeared to be less sensitive to TCDD exposure, with induction occurring at higher doses of TCDD than that required for induction of CYP1A1 or CYP1A2. Immunohistochemical analysis showed that in animals chronically exposed to TCDD (35 ng/kg/day for 30 weeks), CYP1B1 was induced only in centrilobular hepatocytes, a pattern of expression similar to that of CYP1A1 and CYP1A2. These observations of cellular co- localization of the CYP1 cytochromes in livers of TCDD-treated rats and apparent differences in both protein amounts and dose-response are indicative of both common and unique regulation of CYP1 induction.   相似文献   

9.
2-Hydroxylated metabolites of estrogen have been shown to have antiangiogenic effects and inhibit tumor cell proliferation, whereas 4-hydroxylated metabolites have been implicated in carcinogenesis. We examined whether polymorphisms in certain genes involved in estrogen metabolism are associated with endometrial cancer risk in a population-based case-control study with 371 cases and 420 controls. Based on previously published genotype-phenotype correlation studies, we defined variant alleles thought to increase estrogen 2-hydroxylation as presumptively low-risk (CYP1A1 m1 T6235C and m2 Ile(462)Val) and those thought to increase estrogen 4-hydroxylation as high-risk (CYP1A1 m4 Thr(461)Asn, CYP1A2 A734C, and CYP1B1 Leu(432)Val). Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated using unconditional logistic regression. Carrying at least one CYP1A1 m1 or m2 variant allele was associated with a decreased risk of endometrial cancer [ORs (95% CIs), 0.64 (0.44-0.93) and 0.54 (0.30-0.99), respectively]. No strong alteration in risk was observed among women with any of the putative high-risk alleles. When CYP1A1, CYP1A2, and CYP1B1 genotypes were combined and ranked by the number of putative low-risk genotypes carried, women with four or five low-risk genotypes had a reduced risk of endometrial cancer (OR, 0.29; 95% CI, 0.15-0.56) compared with women with one or none. No appreciable alteration in risk was observed among women carrying two or three low-risk genotypes. Some of our findings are consistent with the hypothesis that increased estrogen 2-hydroxylation is associated with decreased endometrial cancer risk, but replication of these results is required before any firm conclusions can be reached.  相似文献   

10.
Estrogens are considered the major breast cancer risk factor, and the carcinogenic potential of estrogens mightbe attributed to DNA modification caused by derivatives formed during metabolism. 17β-estradiol (E2), the mainsteroidal estrogen present in women, is metabolized via two major pathways: formation of 2-hydroxyestradiol(2-OH E2) and 4-hydroxyestradiol (4-OH E2) through the action of cytochrome P450 (CYP) 1A1 and 1B1,respectively. Previous reports suggested that 2-OH E2 has putative protective effects, while 4-OH E2 is genotoxicand has potent carcinogenic activity. Thus, the ratio of 2-OH E2/4-OH E2 is a critical determinant of the toxicityof E2 in mammary cells. In the present study, we investigated the effects of berberine on the expression profileof the estrogen metabolizing enzymes CYP1A1 and CYP1B1 in breast cancer MCF-7 cells. Berberine treatmentproduced significant induction of both forms at the level of mRNA expression, but with increased doses produced16~ to 52~fold greater induction of CYP1A1 mRNA over CYP1B1 mRNA. Furthermore, berberine dramaticallyincreased CYP1A1 protein levels but did not influence CYP1B1 protein levels in MCF-7 cells. In conclusion,we present the first report to show that berberine may provide protection against breast cancer by altering theratio of CYP1A1/CYP1B1, could redirect E2 metabolism in a more protective pathway in breast cancer MCF-7cells.  相似文献   

11.
Cytochrome P4501A1 (CYP1A1) has been implicated in the conversion of numerous polycyclic aromatic hydrocarbons into electrophilic species capable of binding covalently to DNA and has therefore been postulated to be involved in the initiation of carcinogenesis. The expression of CYP1A1 protein appears not to be constitutive, but is readily inducible by aryl hydrocarbon (Ah) receptor ligands in a majority of tissues of experimental animals, especially the liver. To date, there is conflicting evidence for the expression or inducibility of CYP1A1 protein in human liver. In this present study, we report the detection of CYP1A1 in all 20 human liver microsomal samples tested by standard western immunoblotting with chemiluminescent detection using a specific monoclonal antibody (mAb 1-12-3) directed against a marine fish (scup) cytochrome P450E. mAb 1-12-3 has been shown previously to specifically recognize CYP1A1 in mammals. This system consistently demonstrated a detection sensitivity as low as 0.01-0.025 pmol CYP1A1 per lane. In the samples where CYP1A1 protein levels were quantitated, CYP1A1 ranged from approximately 0.4 to 5 pmol CYP1A1/mg microsomal protein. Additionally, the inducibility of CYP1A1 protein was demonstrated by incubating precision-cut human liver slices in dynamic organ culture for up to 96 h in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The specificity of mAb 1-12-3 was tested using several purified human and rat cytochrome P450s to ensure that the protein being detected was CYP1A1. mAb 1-12-3 did not cross-react with human CYP1A2 or CYP3A4 or rat CYP1B1, but did strongly recognize CYP1A1. However, there was a very weak cross-reactivity of mAb 1-12-3 with human CYP2E1, approximately 75-fold less compared with CYP1A1. In order to confirm CYP1A1 as the immunoreactive protein detected in human liver, microsomal samples were subjected to two-dimensional electrophoresis involving isoelectric focusing followed by SDS-PAGE and immunoblotting. Utilizing mAb 1-12-3, the human liver microsomal samples displayed an immunoblotting profile matching that obtained from a microsomal preparation from a AHH-1 TK+/- cell line expressing solely human CYP1A1 and differing from the profile obtained using a polyclonal antibody directed against CYP2E1 and cells expressing CYP2E1. Furthermore, mAb 1- 12-3 recognized only one protein of identical mobility on the two- dimensional blots from human liver microsomes and AHH-1 TK+/- cells expressing CYP1A1, while displaying no reaction to cells expressing only CYP2E1. In conclusion, CYP1A1 appears to be expressed in human liver at low levels and is inducible upon exposure to TCDD.   相似文献   

12.
The mechanisms responsible for the braod spectrum of effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are not entirely clear but seem to involve an initial interaction with the Ah receptor. A major uncertainty in risk assessment for TCDD is the lack of adequate dose-response relationships following chronic exposure to TCDD. Induction of cytochrome P-450 enzymes (CYP1A1 and CYP1A2) is one of the most sensitive responses to TCDD and its structural analogues. We have used a two-stage model for hepatocarcinogenesis in female Sprague-Dawley rats to evaluate dose-response relationships for induction of CYP1A1 and CYP1A2 in diethylnitrosamine-initiated as well as in noninitiated rats. After initiation with a single dose of diethylnitrosamine, TCDD was administered biweekly by p.o. gavage at doses equivalent to 3.5, 10.7, 35.7, and 125 ng/kg/day for 30 weeks. CYP1A1 and CYP1A2 concentrations were quantified in hepatic microsomes by radioimmunoassay and localized in hepatic tissue slices by immunohistochemical techniques. Radioimmunoassay data revealed a maximum induction of 200-fold for CYP1A1 and 10-fold for CYP1A2 and there were no statistically significant differences between initiated and noninitiated rats. Induction at the lowest dose (3.5 ng/kg/day) was 20-fold for CYP1A1 and 3-fold for CYP1A2. Mathematical analysis indicates that the best fit of the induction data are inconsistent with a threshold for this response. There was a linear relationship between administered dose and TCDD liver concentration over the entire dose range of the study. This indicates that induction of CYP1A2 does not significantly alter the distribution of TCDD in our chronic dosing regimen. Immunolocalization of CYP1A1 and CYP1A2 revealed the same localization and induction pattern for both isozymes in the cytoplasm of hepatocytes. However, the hepatic distribution pattern was not uniform with the most intense staining observed around central veins. These studies help to clarify dose-response relationships for dioxin-mediated effects and demonstrate different sensitivity of hepatocytes to the effects of TCDD.  相似文献   

13.
Cytochrome P450-mediated metabolism of estrogens and its regulation in human   总被引:14,自引:0,他引:14  
Estrogens are eliminated from the body by metabolic conversion to estrogenically inactive metabolites that are excreted in the urine and/or feces. The first step in the metabolism of estrogens is the hydroxylation catalyzed by cytochrome P450 (CYP) enzymes. Since most CYP isoforms are abundantly expressed in liver, the metabolism of estrogens mainly occurs in the liver. A major metabolite of estradiol, 2-hydroxyestradiol, is mainly catalyzed by CYP1A2 and CYP3A4 in liver, and by CYP1A1 in extrahepatic tissues. However, CYP1B1 which is highly expressed in estrogen target tissues including mammary, ovary, and uterus, specifically catalyzes the 4-hydroxylation of estradiol. Since 4-hydroxyestradiol generates free radicals from the reductive-oxidative cycling with the corresponding semiquinone and quinone forms, which cause cellular damage, the specific and local formation of 4-hydroxyestradiol is important for breast and endometrial carcinogenesis. Changes in the expression level of estrogen-metabolizing CYP isoforms not only alter the intensity of the action of estrogen but may also alter the profile of its physiological effect in liver and target tissues. Generally, many CYP isoforms are induced by the substrates themselves, resulting in enhanced metabolism and elimination from the body. Of particular interest is a novel finding that human CYP1B1 is regulated by estradiol via the estrogen receptor. This fact suggests that the regulation of CYP enzymes involved in estrogen metabolism by estrogen itself would be physiologically significant for the homeostasis of estrogens at local organs. In this mini-review, we discuss the CYP-mediated metabolism of estrogens and the regulation of the estrogen-metabolizing CYP enzymes in relation to the risk of cancer.  相似文献   

14.
15.
Chen ZH  Hurh YJ  Na HK  Kim JH  Chun YJ  Kim DH  Kang KS  Cho MH  Surh YJ 《Carcinogenesis》2004,25(10):2005-2013
Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring phytoalexin present in grapes and other foods, has been reported to possess chemopreventive effects as revealed by its striking inhibition of diverse cellular events associated with tumor initiation, promotion and progression. In our present study, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), when treated with the cultured human mammary epithelial (MCF-10A) cells, induced the expression of cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1) that are responsible for the oxidation of 17beta-estradiol to produce catechol estrogens. Resveratrol strongly inhibited the TCDD-induced aryl hydrocarbon receptor (AhR) DNA binding activity, the expression of CYP1A1 and CYP1B1 and their catalytic activities in MCF-10A cells. It also reduced the formation of 2-hydroxyestradiol and 4-hydroxyestradiol from 17beta-estradiol by recombinant human CYP1A1 and CYP1B1, respectively. Furthermore, resveratrol significantly attenuated the intracellular reactive oxygen species (ROS) formation and oxidative DNA damage as well as the cytotoxicity induced by the catechol estrogens. Our data suggest that CYP1A1- and CYP1B1-catalyzed catechol estrogen formation might play a key role in TCDD-induced oxidative damage, and resveratrol can act as a potential chemopreventive against dioxin-induced human mammary carcinogenesis by blocking the metabolic formation of the catechol estrogens and scavenging the ROS generated during their redox cycling.  相似文献   

16.
Boyapati SM  Shu XO  Gao YT  Cai Q  Jin F  Zheng W 《Cancer》2005,103(11):2228-2235
BACKGROUND: Cytochrome P450 1A1 (CYP1A1) is involved in the 2-hydroxylation of estrogen, the hormone that plays a critical role in the etiology of breast carcinoma. METHODS: The authors evaluated common polymorphisms in the CYP1A1 gene in relation to breast carcinoma risk in a large population-based case-control study among Chinese women, the Shanghai Breast Cancer Study. Because the CYP1A1*3 and CYP1A1*4 alleles were not detected in the study population, analyses were performed for CYP1A1*2A (T-->C transition in the 3' noncoding region) and CYP1A1*2C (A-->G transition in exon 7, resulting in a substitution of Val for Ile) in 1134 patients with breast carcinoma and 1227 controls. RESULTS: The frequencies of the variant allele were 38.3% and 38.8% among cases and controls (P = 0.91), respectively, for the CYP1A1*2A polymorphism, and 23.1% and 24.8% (P = 0.26) for the CYP1A1*2C polymorphism. Homozygosity for both variant alleles in these 2 polymorphic sites (CYP1A1*2B) was associated with a borderline significant odds ratio (OR) of 0.71 (95% confidence interval [CI], 0.47-1.06). The reduced risk was more pronounced among postmenopausal women with long duration (> 30 yrs) of menstruation (OR = 0.43; 95% CI, 0.19-0.99) or among women with a low waist-to-hip ratio (OR = 0.52; 95% CI, 0.28-0.94). CONCLUSIONS: Results from the current study suggest that homozygosity for the CYP1A1*2A and CYP1A1*2C alleles in the CYP1A1 gene may be associated with a reduced risk for breast carcinoma, particularly among lean women with long-term endogenous estrogen exposure.  相似文献   

17.
Lee AJ  Conney AH  Zhu BT 《Cancer research》2003,63(19):6532-6536
Like catechol estrogens, 16alpha-hydroxylated estrogens are hormonally active, chemically reactive, and potentially mutagenic. We report here our novel findings that human CYP3A7 has a distinct high catalytic activity for the NADPH-dependent 16alpha-hydroxylation of estrone (E(1); at 10 nM to 200 microM substrate concentrations) but not for the 16alpha-hydroxylation of 17beta-estradiol (E(2)). At a physiologically relevant low substrate concentration (10 nM), CYP3A7 had a strong catalytic activity for the 16alpha-hydroxylation of E(1), and the ratio of its 16alpha-hydroxylation to 2-hydroxylation was 107%. In addition to 16alpha-hydroxylation, CYP3A7 also had catalytic activity for the 2-, 4-, 6beta-, and 16beta-hydroxylation of E(1). However, when E(2) was the substrate, CYP3A7 had only very weak catalytic activity for its 16alpha-hydroxylation (<6% of E(1) 16alpha-hydroxylation), and the ratio of its 16alpha-hydroxylation to 2-hydroxylation was 10-33%. Enzyme kinetic analysis showed that the maximal velocity and substrate-binding affinity (1/K(m)) for CYP3A7-mediated 16alpha-hydroxylation of E(1) were both approximately 10 times higher than those for E(2), thereby giving the maximal velocity:K(m) ratio of >100 times higher for the 16alpha-hydroxylation of E(1) than for E(2). Given the recent findings that human CYP3A7 is a polymorphic isoform also expressed in adult liver and certain extrahepatic tissues (in addition to fetal tissues), our data raise the possibility that CYP3A7 may be an important catalyst for the local and/or systemic formation of the procarcinogenic 16alpha-hydroxyestrone in women.  相似文献   

18.
Wilson AM  Reed GA 《Carcinogenesis》2001,22(2):257-263
The ACI rat is extremely sensitive to estrogens as mammary carcinogens, whereas the Sprague-Dawley strain is relatively resistant. Comparison of the disposition and effects of estrogens in these two strains should provide insights into the mechanisms of estrogen carcinogenicity. We have begun this investigation by comparing the metabolism of [(3)H]17beta-estradiol (E2) by liver microsomes prepared from female rats from each strain. Both strains produce estrone (E1) as the major product at E2 concentrations >1 microM, with smaller amounts of 2-hydroxy-E2 formed. As the E2 concentration is decreased, however, aromatic hydroxylation becomes a more dominant pathway for both strains. At starting E2 concentrations as low as 3 nM, Sprague-Dawley liver microsomes produced comparable yields of 2-hydroxy-E2 and E1. In contrast, ACI liver microsomes yielded a profound shift to aromatic hydroxylation as the dominant pathway as E2 concentrations dropped below 1 microM, and this shift reflected the production of 4-hydroxy-E2 as the predominant product. The apparent K(m) for 4-hydroxylation of E2 is <0.8 microM, as opposed to approximately 4 microM for 2-hydroxylation, suggesting that different cytochrome P450s (CYPs) are responsible. Western immunoblotting of the liver microsomal preparations from ACI and Sprague-Dawley rats for CYPs known to catalyze 2- and 4-hydroxylation of E2 revealed that both strains contained comparable amounts of CYP 2B1/2 and 3A1/2, but no detectable amounts of CYP 1B1, the proposed E2 4-hydroxylase. Although this enzyme is not a constitutive CYP in Sprague-Dawley rat liver, its presence in ACI liver could provide a ready explanation for the predominance of 4-hydroxy-E2 as a product. The identity of the estradiol 4-hydroxylase in ACI rat liver and the role of this unique reaction in the heightened sensitivity to E2 carcinogenicity remain to be elucidated.  相似文献   

19.
Rat liver epithelial cells express functional cytochrome P450 2E1   总被引:2,自引:0,他引:2  
Rat liver epithelial cells (RLECs) isolated by trypsinizationof the livers of normal 10 day old rats are largely used inco-culture with primary hepatocytes. The aim of the presentstudy was to investigate the expression of biotransformationenzyme-encoding genes in three preparations of RLEC lines. Althoughno expression of cytochrome P450 1A1/2 (CYP1A1/2), CYP2B1/2,CYP2C6 or CYP3A mRNAs could be detected, we found that all ofthe different preparations of RLECs expressed a high level ofCYP2E1 mRNA. We demonstrated the presence of the CYP2E1 apoproteinin microsomes of RLECs by immunoblot analyses, together withchlorzoxazone 6-hydroxylation, an activity known to be mainlycatalyzed by CYP2E1. In addition, acetone treatment of thesecells resulted in an increase in both CYP2E1 apoprotein andchlorzoxazone 6-hydroxylation activity levels. Finally, we showedthe susceptibility of RLECs to N-methyl formamide- and diethylnitrosamine-inducedtoxicity, suggesting metabolic activation by CYP2E1. Thus, RLECsmay cooperate with hepatocytes to CYP2El-mediated metabolismin the co-culture model. In addition, transfection experimentswith a CYP2E1 promoter construct, in which the proximal 539bp containing the binding site for HNF1  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号