首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
It is controversial whether mouse extrastriate cortex has a "simple" organization in which lateral primary visual cortex (V1) is adjoined by a single area V2 or has a "complex" organization, in which lateral V1 is adjoined by multiple distinct areas, all of which share the vertical meridian with V1. Resolving this issue is important for understanding the evolution and development of cortical arealization. We have used triple pathway tracing combined with receptive field recordings to map azimuth and elevation in the same brain and have referenced these maps against callosal landmarks. We found that V1 projects to 15 cortical fields. At least nine of these contain maps with complete and orderly representations of the entire visual hemifield and therefore represent distinct areas. One of these, PM, adjoins V1 at the medial border. Five areas, P, LM, AL, RL, and A, adjoin V1 on the lateral border, but only LM shares the vertical meridian representation with V1. This suggests that LM is homologous to V2 and that the lateral extrastriate areas do not represent modules within a single area V2. Thus, mouse visual cortex is "simple" in the sense that lateral V1 is adjoined by a single V2-like area, LM, and "complex" in having a string of areas in lateral extrastriate cortex, which receive direct V1 input. The results suggest that large numbers of areas with topologically equivalent maps of the visual field emerge early in evolution and that homologous areas are inherited in different mammalian lineages.  相似文献   

2.
The visuotopic organization of the primary visual cortex (area 17) and the extrastriate visual regions surrounding it (areas 18a and 18) has been studied in gray rats using standard microelectrode mapping techniques. The results confirm and extend previous observations in the rat. Apart from the representation of the contralateral visual field (VF) in area 17, in which the upper VF is represented caudally and the nasal VF laterally, there are additional representations of the VF in the extrastriate cortex. In lateral extrastriate cortex (area 18a) there are at least 4 such representations, namely lateromedial (LM), anterolateral (AL), laterointermediate (LI) and laterolateral (LL). In LM (second visual area) the upper VF is represented caudally and the nasal VF medially, being thus a mirror image of V1. In AL (third visual area) the upper VF is represented rostrally and the nasal VF, medially, being thus a mirror image of LM. In LI, the upper VF is medial and the nasal VF, lateral, being thus a mirror image of LM, or a reduced copy of V1. In medial extrastriate cortex (area 18) there are two representations of the temporal VF, labeled anteromedial (AM) and posteromedial (PM). In AM, the upper temporal VF is medial and the lower temporal VF, lateral, the extreme temporal field being rostral. The 30° azimuth provides the boundary between AM and PM. Thus, AM is organized as a counter-clockwise rotation by 90° of the V1 representation. In PM, the upper lower VF topography is like in AM, but the extreme temporal VF is caudal, being thus a mirror image of AM.  相似文献   

3.
Experiments were carried out on cats to ascertain whether corticocortical neurones of somatosensory areas I (SI) and II (SII) could be labelled by retrograde axonal transport of D-[3H]aspartate (D-[3H]Asp). This tritiated enantiomer of the amino acid aspartate is (1) taken up selectively by axon terminals of neurones releasing aspartate and/or glutamate as excitatory neurotransmitter, (2) retrogradely transported and accumulated in perikarya, (3) not metabolized, and (4) visualized by autoradiography. A solution of D-[3H]Asp was injected in eight cats in the trunk and forelimb zones of SI (two cats) or in the forelimb zone of SII (six cats). In order to compare the labelling patterns obtained with D-[3H]Asp with those resulting after injection of a nonselective neuronal tracer, horseradish peroxidase (HRP) was delivered mixed with the radioactive tracer in seven of the eight cats. Furthermore, six additional animals received HRP injections in SI (three cats; trunk and forelimb zones) or SII (three cats; forelimb zone). D-[3H]Asp retrograde labelling of perikarya was absent from the ipsilateral thalamus of all cats injected with the radioactive tracer but a dense terminal plexus of anterogradely labelled corticothalamic fibres from SI and SII was observed, overlapping the distribution area of thalamocortical neurones retrogradely labelled with HRP from the same areas. D-[3H]Asp-labelled neurones were present in ipsilateral SII (SII-SI association neurones) in cats injected in SI. In these animals a bundle of radioactive fibres was observed in the rostral portion of the corpus callosum entering the contralateral hemisphere. There, neurones retrogradely labelled with silver grains were present in SI (SI-SI callosal neurones). Association and callosal neurones labelled from SI showed a topographical distribution similar to that of neurones retrogradely labelled with HRP. The laminar patterns of corticocortical neurones labelled with D-[3H]Asp or with HRP were also similar, with one exception. In the inner half of layer II, SII-SI association neurones and SI-SI callosal neurones labelled with the radioactive marker were much less numerous than those labelled with HRP. In cats injected in SII, D-[3H]Asp retrogradely labelled cells were present in ipsilateral SI (SI-SII association neurones). Their topographical and laminar distribution overlapped that of neurones labelled with HRP but, as in cats injected in SI, association neurones labelled with silver grains were unusually rare in the inner layer III.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The visuotopic organization of the primary visual cortex (area 17) and the extrastriate visual regions surrounding it (areas 18a and 18) has been studied in gray rats using standard microelectrode mapping techniques. The results confirm and extend previous observations in the rat. Apart from the representation of the contralateral visual field (VF) in area 17, in which the upper VF is represented caudally and the nasal VF laterally, there are additional representations of the VF in the extrastriate cortex. In lateral extrastriate cortex (area 18a) there are at least 4 such representations, namely lateromedial (LM), anterolateral (AL), laterointermediate (LI) and laterolateral (LL). In LM (second visual area) the upper VF is represented caudally and the nasal VF medially, being thus a mirror image of V1. In AL (third visual area) the upper VF is represented rostrally and the nasal VF, medially, being thus a mirror image of LM. In LI, the upper VF is medial and the nasal VF, lateral, being thus a mirror image of LM, or a reduced copy of V1. In medial extrastriate cortex (area 18) there are two representations of the temporal VF, labeled anteromedial (AM) and posteromedial (PM). In AM, the upper temporal VF is medial and the lower temporal VF, lateral, the extreme temporal field being rostral. The 30 degrees azimuth provides the boundary between AM and PM. Thus, AM is organized as a counter-clockwise rotation by 90 degrees of the V1 representation. In PM, the upper lower VF topography is like in AM, but the extreme temporal VF is caudal, being thus a mirror image of AM.  相似文献   

5.
Data obtained by using various experimental approaches suggest that in the mammalian brain, most neurons within the visual system projecting to the striate cortex employ excitatory amino acids as transmitters. In order to investigate further the neurotransmitter phenotype of the ipsilateral afferents to area 17 of the cat, we have injected D-[3H]-aspartate, a retrograde tracer which selectively reveals putative glutamatergic and/or aspartatergic pathways, into this area. Retrogradely labelled neurons were observed in the dorsal lateral geniculate nucleus, visual claustrum, cortical areas 18, 19, 21a, and in both posteromedial and posterolateral parts of the suprasylvian areas but not in other known thalamic afferents such as the lateral posterior-pulvinar complex and the intralaminar nuclei. The distribution and localization of the labelled cells in all these regions were similar to that observed by using the non-selective tracer horseradish peroxidase conjugated to wheat germ agglutinin, though the number of cells was higher with the latter. Our findings provide additional evidence for the presence of excitatory amino acids as neurotransmitters in the major afferents to the cat striate cortex. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Interareal feedback connections are a fundamental aspect of cortical architecture, yet many aspects of their organization and functional relevance remain poorly understood. Previous studies have investigated the topography of feedback projections from extrastriate cortex to macaque area 17. We have extended this analysis to the ferret. We made restricted injections of cholera toxin B (CTb) into ferret area 17 and mapped the distribution of retrogradely labeled cells in extrastriate cortex. In addition to extensive label spreading within area 17, we found dense cell label in areas 18, 19, and 21 and the suprasylvian cortex and sparser connections from the lateral temporal and posterior parietal cortex. We made extensive physiological assessments of magnification factors in the extrastriate visual cortex and used these measures to convert the spread of labeled cortex in millimeters into a span in degrees of visual field. We also directly measured the visuotopic extents of receptive fields in the regions containing labeled cells in cases in which we made both CTb injections and physiological recordings in the same animals; we then compared the aggregate receptive field (ARF) of the labeled region in each extrastriate area with that of the injection site. In areas 18, 19, and 21, receptive fields of cells in regions containing labeled neurons overlapped those at the injection site but spanned a greater distance in visual space than the ARF of the injection site. The broad visuotopic extent of feedback connections is consistent with the suggestion that they contribute to response modulation by stimuli beyond the classical receptive field.  相似文献   

7.
D-[3H]aspartate was used to identify potential glutamatergic connections of the chinchilla inferior colliculus (IC). High-affinity uptake of D-[3H]aspartate is considered a selective marker for glutamatergic synapses, and neurons retrogradely labeled from such injections are believed to use glutamate, or a closely related compound, as a transmitter. Injections of D-[3H]aspartate suggest that glutamatergic endings in the IC arise primarily from intrinsic connections, the opposite IC, layer 5 of temporal cortex, nucleus sagulum, and lateral lemniscal nuclei. Neurons giving rise to the principal sensory (lemniscal) projections to the IC, i.e., those from the cochlear nuclei, superior olive, and the majority of projections from the lateral lemniscal nuclei, did not label in these experiments, indicating that their synapses do not recognize D-[3H]aspartate as a suitable substrate and may use inhibitory or other excitatory transmitters. After IC injections, fiber and diffuse labeling was found ipsilaterally in the medial geniculate body, superior colliculus, and dorsolateral pontine nuclei, contralaterally in the IC, and bilaterally in the superior olive and cochlear nuclei. Such labeling was attributed to anterograde transport of D-[3H]aspartate within the efferent collaterals of labeled IC neurons, suggesting that many of the IC's efferent projections may also be glutamatergic. This interpretation was confirmed in separate experiments in which D-[3H]aspartate, injected in the medial geniculate body, retrogradely labeled neurons in the IC as well as in layer 6 of temporal cortex. Finally, the mesencephalic trigeminal nucleus and tract labeled in some cases and may have local glutamatergic connections. © 1996 Wiley-Liss, Inc.  相似文献   

8.
In newborn kittens, cells in the striate cortex (visual area 17) that project to area 18 (part of extrastriate cortex) are distributed with uniform density in the superficial and in the deep layers. During postnatal weeks 2 – 3, some of these corticocortical connections are removed to generate an adult-like projection in which association cells are clustered mainly in the superficial layers of area 17. Axonal elimination, without cell death, is the major factor sculpting patches of corticocortical cells in superficial layers. In adult cats, few cells in area 17 (∼5%) have axons that bifurcate to multiple extrastriate areas. We have studied the possibility that the early exuberant innervation of area 18 by neurons in area 17 is largely from the transient collaterals of axons that also project to other visual areas. Kittens aged 2 – 21 days were each injected with a pair of retrogradely transported tracers, either diamidino yellow and fast blue, or diamidino yellow and a carbocyanine dye, at retinotopically corresponding points in area 18 and either area 19 or the posteromedial lateral suprasylvian cortex (PMLS). As for injections in area 18, those in area 19 and PMLS in kittens aged ≥5 days labelled cells in continuous bands in area 17; in older kittens neurons projecting from area 17 to extrastriate regions were in patches, mainly in superficial layers. In each animal, the labelling from the two injections overlapped by 51–92%. However, at all ages, never more than 4% of cells projecting to area 18 branched to PMLS; ≤6% of area 17-to-18 cells bifurcated to area 19 in kittens aged ≥15 days, although slightly more (10 – 12%) did so at 3 – 5 days. Thus, as in adults, we found no evidence of frequent collateralization among the axons of cells projecting from area 17 to other extrastriate areas in kittens.  相似文献   

9.
Cells in area 17 that are labelled by single, discrete injections of retrogradely transported tracers into extrastriate visual areas are discontinuously distributed in dense patches. In this study we made multiple, closely spaced injections of fluorescent dyes into extrastriate areas, to generate large deposits that would reveal whether the distributions of corticocortical cell bodies in area 17 are truly patchy or appear clustered only after small injections. By injecting a different tracer into each extrastriate area, or group of areas, we examined the spatial relationships between the populations of association cells. All deposits of tracers in areas 18, 19, or suprasylvian cortex, irrespective of size, label cells in a series of clusters in topographically related parts of area 17. We conclude that the complete populations of cells in area 17 that project to areas 18, 19, and the lateral suprasylvian cortex are all genuinely distributed in a patchy fashion. There appears to be a complex relationship between the sets of association cells projecting to different extrastriate regions: they do not completely overlap, only partially, and share some cortical zones but not others. In these experiments, only tiny percentages (2-5%) of labelled cells in the overlapping regions were filled with both tracers, suggesting that very few association cells in area 17 project to more than one of the extrastriate areas we studied. By comparing the dimensions of each injection site and of the labelled region in area 17, we estimated the extent of the convergence from area 17 to areas 18, 19, and posteromedial suprasylvian areas in retinotopic terms. The functional convergence was very similar in these pathways.  相似文献   

10.
The lateral posterior (LP) nucleus is a higher order thalamic nucleus that is believed to play a key role in the transmission of visual information between cortical areas. Two types of cortical terminals have been identified in higher order nuclei, large (type II) and smaller (type I), which have been proposed to drive and modulate, respectively, the response properties of thalamic cells (Sherman and Guillery [1998] Proc. Natl. Acad. Sci. U. S. A. 95:7121-7126). The aim of this study was to assess and compare the relative contribution of driver and modulator inputs to the LP nucleus that originate from the posteromedial part of the lateral suprasylvian cortex (PMLS) and area 17. To achieve this goal, the anterograde tracers biotinylated dextran amine (BDA) or Phaseolus vulgaris leucoagglutinin (PHAL) were injected into area 17 or PMLS. Results indicate that area 17 injections preferentially labelled large terminals, whereas PMLS injections preferentially labelled small terminals. A detailed analysis of PMLS terminal morphology revealed at least four categories of terminals: small type I terminals (57%), medium-sized to large singletons (30%), large terminals in arrangements of intermediate complexity (8%), and large terminals that form arrangements resembling rosettes (5%). Ultrastructural analysis and postembedding immunocytochemical staining for gamma-aminobutyric acid (GABA) distinguished two types of labelled PMLS terminals: small profiles with round vesicles (RS profiles) that contacted mostly non-GABAergic dendrites outside of glomeruli and large profiles with round vesicles (RL profiles) that contacted non-GABAergic dendrites (55%) and GABAergic dendritic terminals (45%) in glomeruli. RL profiles likely include singleton, intermediate, and rosette terminals, although future studies are needed to establish definitively the relationship between light microscopic morphology and ultrastructural features. All terminals types appeared to be involved in reciprocal corticothalamocortical connections as a result of an intermingling of terminals labelled by anterograde transport and cells labelled by retrograde transport. In conclusion, our results indicate that the origin of the driver inputs reaching the LP nucleus is not restricted to the primary visual cortex and that extrastriate visual areas might also contribute to the basic organization of visual receptive fields of neurons in this higher order nucleus.  相似文献   

11.
Summary The neuroactive sulphur-containing amino acids L-cysteate (CA), L-cysteine sulphinate (CSA), L-homocysteine sulphinate (HSA), S-sulpho-L-cysteine (SC) and L-homocysteate (HCA) evoked the release of previously accumulated D-[3H]aspartate from rat brain cerebrocortical and cerebellar synaptosome fractions in a manner that was wholly Ca2+-independent. However, analysis of endogenous release by hplc revealed the presence of both Ca2+-dependent and -independent components of L-glutamate release but only a Ca2+-independent component of L-aspartate release. CA, CSA, HSA and SC but not HCA evoked the release of previously accumulated [3H]GABA from synaptosome fractions by a mechanism shown to comprise both a Ca2+-dependent and -independent component. The specific antagonists of the N-methyl-D-aspartate (NMDA) receptor, 3-[(±)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (CPP) and the relatively selective competitive quisqualate (QUIS)/kainate (KA) receptor antagonist, 6-cyano-7-dinitroquinoxalinedione (CNQX), were ineffective in blocking the excitatory sulphur amino acid-evoked release of either D-[3H]aspartate, [3H]GABA or of endogenous established transmitter amino acids.  相似文献   

12.
Organization of the Visual Reticular Thalamic Nucleus of the Rat   总被引:2,自引:0,他引:2  
The visual sector of the reticular thalamic nucleus has come under some intense scrutiny over recent years, principally because of the key role that the nucleus plays in the processing of visual information. Despite this scrutiny, we know very little of how the connections between the reticular nucleus and the different areas of visual cortex and the different visual dorsal thalamic nuclei are organized. This study examines the patterns of reticular connections with the visual cortex and the dorsal thalamus in the rat, a species where the visual pathways have been well documented. Biotinylated dextran, an anterograde and retrograde tracer, was injected into different visual cortical areas [17; rostral 18a: presumed area AL (anterolateral); caudal 18a: presumed area LM (lateromedial); rostral 18b: presumed area AM (anteromedial); caudal 18b: presumed area PM (posteromedial)] and into the different visual dorsal thalamic nuclei (posterior thalamic, lateral posterior, lateral geniculate nuclei), and the patterns of anterograde and retrograde labelling in the reticular nucleus were examined. From the cortical injections, we find that the visual sector of the reticular nucleus is divided into subsectors that each receive an input from a distinct visual cortical area, with little or no overlap. Further, the resulting pattern of cortical terminations in the reticular nucleus reflects largely the patterns of termination in the dorsal thalamus. That is, each cortical area projects to a largely distinct subsector of the reticular nucleus, as it does to a largely distinct dorsal thalamic nucleus. As with each of the visual cortical areas, each of the visual dorsal thalamic (lateral geniculate, lateral posterior, posterior thalamic) nuclei relate to a separate territory of the reticular nucleus, with little or no overlap. Each of these dorsal thalamic territories within the reticular nucleus receives inputs from one or more of the visual cortical areas. For instance, the region of the reticular nucleus that is labelled after an injection into the lateral geniculate nucleus encompasses the reticular regions which receive afferents from cortical areas 17, rostral 18b and caudal 18b. These results suggest that individual cortical areas may influence the activity of different dorsal thalamic nuclei through their reticular connections.  相似文献   

13.
The mechanisms of synapse damage in Alzheimer's disease (AD) are not fully understood. Deficient functioning of glutamate transporters might be involved in synaptic pathology and neurodegeneration by failing to clear excess glutamate at the synaptic cleft. In AD, glutamate transporter activity as assessed by D-[3H]aspartate binding is decreased; however, it is not clear to what extent it is associated with the neurodegenerative process and cognitive alterations. For this purpose, levels of D- and L-[3H]asparate binding in midfrontal cortex were correlated with synaptophysin levels, brain spectrin degradation product levels, and clinical and neuropathological indicators of AD. Compared to control brains AD brains displayed a 34% decrease in levels of D-[3H]aspartate binding, a 30% decrease in L-[3H]aspartate binding, and a 48% loss of synaptophysin immunoreactivity. Increased levels of brain spectrin degradation products correlated with a decrease in levels of D-[3H] and L-[3H]aspartate binding, and decreased levels of synaptophysin immuno-reactivity. Levels of L-[3H]asparatate binding correlated with levels of synaptophysin immunoreactivity. These results suggest that decreased glutamate transporter activiyt in AD is associated with increased excitotoxicity and neurodegeneration, supporting the possibility that abnormal functioning of this system might be involved in the pathogenesis of synaptic damage in AD.  相似文献   

14.
Hierarchical organization is a common feature of mammalian neocortex. Neurons that send their axons from lower to higher areas of the hierarchy are referred to as "feedforward" (FF) neurons, whereas those projecting in the opposite direction are called "feedback" (FB) neurons. Anatomical, functional, and theoretical studies suggest that these different classes of projections play fundamentally different roles in perception. In primates, laminar differences in projection patterns often distinguish the two projection streams. In rodents, however, these differences are less clear, despite an established hierarchy of visual areas. Thus the rodent provides a strong test of the hypothesis that FF and FB neurons form distinct populations. We tested this hypothesis by injecting retrograde tracers into two different hierarchical levels of mouse visual cortex (area 17 and anterolateral area [AL]) and then determining the relative proportions of double-labeled FF and FB neurons in an area intermediate to them (lateromedial area [LM]). Despite finding singly labeled neurons densely intermingled with no laminar segregation, we found few double-labeled neurons (≈5% of each singly labeled population). We also examined the development of FF and FB connections. FF connections were present at the earliest timepoint we examined (postnatal day 2, P2), while FB connections were not detectable until P11. Our findings indicate that, even in cortices without laminar segregation of FF and FB neurons, the two projection systems are largely distinct at the neuronal level and also differ with respect to the timing of their axonal outgrowth.  相似文献   

15.
The binding of D-[3H]aspartate to the specific uptake site for the excitatory amino acids glutamate and aspartate was measured in homogenates of temporal lobe cortex taken at postmortem from 76 human infant and adult brains. Binding levels were very low in brains of preterm and term infants but increased rapidly during the first 20 postnatal weeks to reach levels which exceeded those in adult brains. Linear regression analysis which compared the amount of D-[3H]aspartate binding with the age of the infant, showed a positive correlation up to 25 postnatal weeks. Saturation analysis showed that the maximum number of D-[3H]aspartate binding sites (Bmax) in temporal cortex from infants aged 20 postnatal weeks was 3 times greater than the number of sites in adult brain. The findings show that the number of excitatory amino acid uptake sites, which may be associated in part with presynaptic terminals, increase in number rapidly after birth. Furthermore, the data may indicate that a slow regression of excitatory amino acid terminals occurs during the later stages of brain development.  相似文献   

16.
Previously we described patterns of connections that support the concept of V3 in small New World marmoset monkeys, three species of larger New World monkeys, and two species of Old World macaque monkeys. Here we describe a pattern of V1 connections with extrastriate visual cortex in Galago garnetti (also known as Otolemur garnetti) that demonstrates the existence of a V3 in a strepsirhine (prosimian) primate. Injections of fluorochromes or cholera toxin subunit-B (CTB) in V1 labeled cells and terminals in retinotopically matched regions in V2, V3, DL (V4), and MT. Labeled axon terminations were more focused primarily in middle layers of cortex, likely representing 'feedforward' input from V1, whereas labeled cells were more widespread and found in both superficial and deeper cortical layers, indicative of feedback projections. Averaged across injections, V3 had the third largest percentage of labeled cells (11%), following only V2 (47%) and the middle temporal area (MT; 19%). The dorsolateral area (DL, or V4; 9%) also contained a relatively large number of retrogradely labeled cells. These results indicate that V2, V3, DL (V4), and MT are retinotopically connected with V1, and provide major sources of feedback. Other extrastriate areas were less densely connected to V1, and there was no clear indication of labeled terminals. Inferotemporal cortex (IT) provided nearly 7% of feedback connections, whereas the dorsomedial area (DM) contributed about 3%. The remaining areas that have been proposed for galago extrastriate cortex, MTc, MST, FST, LPP and VPP, each accounted for about 1% or less of the total number of labeled cells. Thus, six extrastriate areas, V2, MT, V3, DL (V4), IT, and DM provide over 96% of visual cortex projections to V1. These areas also provide most of the projections to V1 in New and Old World monkeys.  相似文献   

17.
The various structures afferent to area 17 (or V1) of the macaque monkey have widely differing retinotopic organizations. It is likely that these differences are reflected in the topographic organizations of the projections from these structures to area V1. We have investigated this issue by placing side-by-side injections of two retrograde fluorescent tracers, fast blue and diamidino yellow, in V1. By examining the extent of mixing of the two populations of singly labelled cells and the presence of doubly labelled cells, in different structures, we have characterized the topography of each projection in terms of the size of its axonal arborization and the amount of convergence and divergence. The afferents from the lateral geniculate nucleus (LGN) and from the pulvinar are organized in a point-to-point fashion. The maximum extent of axonal arborization of these afferents is 0.5 mm and these projections demonstrate little scatter (i.e., neighboring LGN neurons project to adjacent regions of V1). The other two subcortical structures examined, the claustrum and the intralaminar nuclei, demonstrate a much larger scatter and wider axonal arborizations in their projections to V1 than do the LGN and pulvinar. Two-dimensional reconstructions were made of the distribution of labelled neurons in extrastriate cortical areas. Using the separation between patches of labelled cells and transitions in myelin-stained sections, we have identified seven separate cortical regions containing labelled cells. Two of these can be identified as area V2 and the middle temporal visual area (MT). Three other regions correspond to areas V3, V3A and V4t. Finally, two more regions of labelling have been distinguished that belong to area V4. These results demonstrate that, at least within the central 6 degrees of visual field, all the presently known extrastriate visual cortical areas project to V1. This result is interesting in view of the fact that only a few extrastriate cortical areas are reported to receive afferents from V1. Three groups of cortical areas can be distinguished on the basis of the characteristics of their cortical connections to V1. The first group contains area V2, V3, and the posterior region of V4. These areas project to V1 with infra- as well as supragranular layer neurons and show limited axonal arborization and scatter in the projection. The second group consists of two regions of labelling in the superior temporal sulcus corresponding to V4t and MT and another on the annectant gyrus (V3A). These regions contain almost exclusively infragranular labelling and show wide axonal arborization and scatter in their projections to V1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4–10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult‐like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. J. Comp. Neurol. 522:3208–3228, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The principal finding in this study is that the callosal projection to the occipital cortex in rats and mice follows a complex and highly reproducible pattern which has not previously been described in detail. In some regions, the callosal projection is associated with well defined cytoarchitectonic boundaries such as the border between areas 17 and 18a. However, extrastriate cortex lateral to area 17 receives callosal inputs which are not related to previously defined cytoarchitectonic boundaries. Following intraocular injections of [3H]fucose, transneuronal label occupies area 17 and mainly the posterior part of area 18a. A region in posterolateral area 18a which is ‘subdivided’ into callosal and sparsely callosal regions appears to receive an input from the lateral geniculate nucleus, based on transneuronal autoradiography. Comparison of the distribution of callosal axons and transneuronal label suggests that regions of murid cortex similar to areas 18, 19 and lateral suprasylvian cortex in cats may be located posteriorly in area 18a.  相似文献   

20.
We are interested in the postnatal development of corticocortical connections in the cat's visual cortex. In this study, we injected the anterograde tracer 3H-proline into visual cortical area 17 of kittens, aged 4-70 d, and adult cats to visualize the distribution of terminals of the association projections to areas 18, 19, 21a, and the lateral suprasylvian visual cortex. The density of anterograde label was quantified using computerized image analysis. There was dense labeling at topographically appropriate locations in area 18 in animals of all ages. In 4- and 8-d-old kittens, other extrastriate areas (19, 21a and the lateral suprasylvian cortex) contained only sparse label, localized in a few solitary axons; these areas were densely labeled in animals aged 12 d or more. In kittens aged 4-20 d there was considerable, widespread label within fibers located in the white matter, and many of these axons lay underneath regions of extrastriate, and also striate, cortex that were almost certainly not destined to be persistently innervated by cells at the injection site. This pattern of extensive white matter label was not seen in animals older than 20 d. In each extrastriate region, from the earliest age at which we identified dense cortical innervation from area 17, the terminals were distributed in clusters. At first these patches were mainly in infragranular layers, but later, during the second and third postnatal weeks, they began to appear in more superficial laminae. By 70 d, an adult-like distribution of terminals was found in each extrastriate area: most fibers appeared to end in layers II and III in areas 18, 19, and 21a and centered on layer IV in the medial bank of the middle suprasylvian sulcus in adult cats. We suggest that the development of ipsilateral association projections from area 17 to extrastriate cortex is a 2-stage process. First, cells at a particular point in area 17 send immature fibers in a nonspecific fashion through white matter towards a very wide area of extrastriate cortex. Second, corticocortical axons penetrate extrastriate cortex mainly in patches at topographically appropriate regions and grow to their targets in a specific fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号