首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this project was to test the hypothesis that internal temperature modulates the sweating response to sustained handgrip exercise. Ten healthy male subjects immersed their legs in 43 degrees C water for 30-40 min at an ambient temperatures of 30 degrees C and a relative humidity of 50%. Sweating responses to 50% maximal voluntary contraction isometric handgrip exercise (IH) were measured following the onset of sweating (i.e. following slight increases in internal temperature), and after more pronounced increases in internal temperature. Oesophageal temperature (Tes) was significantly lower during the first bout of exercise (37.54 +/- 0.07 degrees C) relative to the second bout (37.84 +/- 0.12 degrees C; P < 0.05). However, the increase in mean sweating rate (SR) from both the chest and forearm (non-glabrous skin) was significantly greater during the first IH bout relative to the second bout (P < 0.05). Increases in mean arterial blood pressure and palm SR (glabrous skin) did not differ significantly between exercise bouts, while heart rate and rating of perceived effort were significantly greater during the second bout of IH. As Tes and mean skin temperature did not change during either bout of exercise, the changes in SR from non-glabrous skin between the bouts of IH were likely because of non-thermal factors. These data suggest that sweating responses from non-glabrous skin during IH vary depending on the magnitude of thermal input as indicated by differing internal temperatures between bouts of IH. Moreover, these data suggest that the contribution of non-thermal factors in governing sweating from non-glabrous skin may be greatest when internal temperature is moderate (37.54 degrees C), but has less of an effect after greater elevations in internal temperature (i.e. 37.84 degrees C).  相似文献   

2.
Isometric handgrip exercise (IHG) increases sweating rate without changing core or skin temperatures. The contribution of central command resulting in increases in sweating rate during IHG is unknown. To investigate this question, seven subjects performed IHG (35 % maximum voluntary contraction (MVC) for 2 min) followed by 2-min of post-exercise ischaemia (PEI), with and without partial neuromuscular blockade (PNB). PNB was performed to augment central command during the IHG bout. These trials were conducted while the subject was normothermic, mildly heated, and moderately heated. On the non-exercising arm, forearm sweating rate was monitored over a microdialysis membrane perfused with neostigmine (acetylcholinesterase inhibitor), and at an adjacent untreated site. In normothermia with PNB, despite reduced force production during IHG (17 ± 9 versus 157 ± 13 N;   P < 0.001  ), the elevation in sweating rate at the neostigmine-treated site was greater relative to the control IHG bout (   P < 0.05  ). During subsequent PEI, for the PNB trial mean arterial blood pressure (MAP) and sweating rate returned towards pre-IHG levels, while during the control trial these variables remained elevated. During IHG while mildly heated, the elevation in sweating rate was greater during the PNB trial relative to the control trial. In contrast, during moderate heating sweating increased during IHG for both trials, however the elevation in sweating rate during the PNB trial was not greater than during the control trial. These results suggest that central command is capable of modulating sweating rate in all thermal conditions, however its effect is reduced when body temperatures and/or sweating rate are substantially elevated.  相似文献   

3.
To investigate the influence of nonthermal factors in the time-of-day effect on the sweating response to maintained static exercise, eight healthy male subjects performed handgrip exercise at 20%, 35% and 50% maximal voluntary contraction (MVC) for 60 s at 0600 hours (morning) and at 1800 hours (evening). Oesophageal temperature (T oes) before the experiment showed a diurnal rhythm [mean (SEM)] [36.3 (0.1) (morning) compared to 36.8 (0.1) °C (evening), P<0.01]. Experiments were conducted with subjects in a state of mild hyperthermia during which the mean skin temperature (T sk) was kept constant at 35.5–36.5 °C using a water-perfused suit to activate sudomotor responses. The T oes and mean T sk remained stable during the pre-exercise, handgrip exercise and recovery periods. The response in sweating rate (ΔSR) on the chest and forearm to handgrip exercise increased significantly with increasing exercise intensity in both the morning and evening tests (P<0.05). The ΔSR on the palm did not change significantly with increasing exercise intensity in the morning test (P>0.1). During handgrip exercise at 50% MVC only, ΔSR on the chest, forearm and palm in the evening was significantly higher than in the morning (P<0.05). On the other hand, mean arterial blood pressure and the rating of perceived exertion during 50% MVC handgrip exercise were not significantly different between the morning and evening (P>0.1). These results indicate the presence of a time-of-day effect on nonthermal control of the sweating response to isometric handgrip exercise, and that this effect is dependent on exercise intensity. Electronic Publication  相似文献   

4.
The thermoregulatory response to exercise in the heat, especially sweating pattern, differs between children and adults. This study investigated the changes with physical maturation in the thermoregulatory response to exercise (50% V?O2max) in the heat (42°C 20% RH) among circum-pubertal boys, using a mixed cross-sectional, longitudinal design. Subjects were initially divided into three groups, based on Tanner (pubic hair) criteria: 16 pre-pubertal (PP, stage I), 15 mid-pubertal (MP, stages II, III, IV), and 5 late-pubertal (LP, stage V). The thermoregulatory response was observed every 6 months for a period of 18 months (4 sessions). Thirty of the 36 boys completed the four sessions. During each session, the exercise task consisted of three 20-min bouts of cycling with 10-min rest periods. Measurements included rectal and skin temperatures and heart rate continuously, V?O2 at the midpoint of the second bout, sweat collection during each bout, photography of sweat drops after bouts 1 and 2, and whole body sweating rate. During each session, body temperatures tended to be higher among LP relative to the other two groups; however, the rate of increase in body temperatures was similar among groups. Sweating rate per body surface area and per gland were consistently higher among LP compared to PP. This was accompanied by lower sweat lactate concentrations during the initial stages of exercise and lower activated sweat gland population density. Longitudinal observations tended to support cross-sectional findings. It is concluded that physical maturation is characterized by enhanced sweating rate per body surface area and per gland, and that this may be associated with increased sweat gland anaerobic metabolism. © 1992 Wiley-Liss, Inc.  相似文献   

5.
Abstract Data on the metabolic responses to repeated endurance exercise sessions are limited. Thus, the aims of this study were to examine (1) the impact of prior exercise on metabolic responses to a subsequent exercise session and (2) the effect of different recovery periods between two daily exercise sessions on metabolic responses to the second bout of exercise. Nine male elite athletes participated in four 25-h trials: one bout of exercise (ONE), two bouts of exercise separated by 3 h of rest and one meal (SHORT), two bouts of exercise separated by 6 h of rest and two meals (LONG), and a trial with no exercise (REST). All exercise bouts consisted of 10 min cycling at 50% followed by 65 min at 75% of maximal O2 uptake. Compared to no prior exercise (ONE), a previous bout of exercise (SHORT) was followed by higher mean O2 uptake, heart rate (HR), rectal temperature (TR), excess post-exercise oxygen consumption and lower respiratory exchange ratio (R) during and after a similar exercise session 3 h later. A longer rest interval between the two exercise bouts (6 h versus 3 h) and an additional meal resulted in a decrease in O2 uptake, HR, TR and an increase in R during the second bout of exercise, but no effects on post-exercise metabolism were found. Thus, augmented metabolic stress was observed when strenuous exercise was repeated after only 3 h of recovery, but this was attenuated when a longer recovery period including an additional meal was provided between the exercise sessions.  相似文献   

6.
Time course of muscle adaptation after high force eccentric exercise   总被引:2,自引:0,他引:2  
Summary The repeated bout effect on changes in muscle damage indicators was examined in two groups of subjects following two bouts of 70 maximal eccentric actions of the forearm flexors. Fourteen college age female subjects were placed into two groups. The two bouts were separated by 6 weeks (n=6), and 10 weeks (n = 8). The subjects performed the same amount of work for the bouts. The muscle damage indicators were isometric strength (STR), relaxed elbow joint angle (RANG), flexed elbow joint angle (FANG), perceived muscle soreness ratings (SOR), and plasma creatine kinase activity (CK). These measures were obtained pre-exercise and 5 days following each bout. The first bout showed significant changes in all measures over time for both groups (P<0.01). For the 6-week group, significantly smaller changes in RANG (P < 0.01), SOR (P<0.05), and CK (P<0.01), as well as significantly faster recoveries (P<0.05) for STR and FANG were produced in the second bout. For the 10-week group, significantly smaller changes in RANG (P<0.05) and CK (P<0.01) were demonstrated by the second bout, but no significant difference was found for STR, FANG, and SOR between bouts 1 and 2. Changes in CK were still significantly smaller than that of the first bout when 6 subjects (3 subjects from each group) performed the same exercise 6 months after the second bout, but no difference in other measures. It is concluded that the length of the adaptation effect varies among the indicators of muscle damage and that the duration of the adaptation for CK is dramatic.  相似文献   

7.
Aim: Unaccustomed physical exercise with a large eccentric component is accompanied by muscle damage and impaired contractile function, especially at low stimulation frequencies. A repeated bout of eccentric exercise results in less damage and improved recovery of contractile function. Here we test the hypotheses that (1) a prior stretch–shortening cycle (SSC) exercise protects against impaired muscle function during a subsequent bout of SSC exercise and (2) the protection during exercise is transient and becomes less effective as the exercise progresses. Methods: Healthy untrained men (n = 7) performed SSC exercise consisting of 100 maximal drop jumps at 30 s intervals. The same exercise was repeated 4 weeks later. Peak quadriceps muscle force evoked by electrical stimulation at 15 (P15) and 50 (P50) Hz was measured before exercise, after 10, 25, 50 and 100 jumps as well as 1 and 24 h after exercise. Results: P15 and P50 were higher during the initial phase of the repeated bout compared with the first exercise bout, but there was no difference between the bouts at the end of the exercise periods. P15 and P50 were again larger 24 h after the repeated bout. The P15/P50 ratio during exercise was not different between the two bouts, but it was higher after the repeated bout. Conclusion: A prior bout of SSC exercise temporarily protects against impaired contractile function during a repeated exercise bout. The protection can again be seen after exercise, but the underlying mechanism then seems to be different.  相似文献   

8.
Previous studies have shown that the muscle metaboreflex, along with its effect on peripheral vasculature, is capable of inducing substantial enhancement in cardiac performance, stroke volume and cardiac output. This study was designed to determine whether the metaboreflex recruited by means of postexercise muscle ischaemia (PEMI) after running at two intensities was capable of eliciting similar enhancement in these cardiovascular parameters. In eight healthy male athletes the metaboreflex was studied with the PEMI method at the start of recovery from running bouts at a velocity of 30% above (PEMI-AV(AT)) or below (PEMI-BV(AT)) the anaerobic threshold previously assessed. Control exercise recovery tests at the same intensities were also conducted. Haemodynamics were evaluated by means of impedance cardiography. The main results were that: (1) the PEMI-AV(AT) test induced an increase in stroke volume, which was not present during the other protocol conditions; (2) the PEMI-AV(AT) test also induced a blunted heart rate response compared with the control situation, but this relative bradycardia was fully compensated by the stroke volume increment so that cardiac output was maintained and even increased in comparison with the other protocol sessions; and (3) finally, there was no detectable increase in systemic vascular resistance during PEMI-AV(AT). These results provide evidence that, like what has previously been reported for small muscle mass exercise, metaboreflex activation after running is capable of enhancing cardiac performance and stroke volume. Moreover, this study strengthens the concept that the cardiovascular response to metaboreflex is not merely the consequence of an increase in systemic vascular resistance.  相似文献   

9.
Acute cardiovascular exercise and executive control function.   总被引:2,自引:0,他引:2  
Acute cardiovascular exercise effects on cognitive function were examined using an executive control task by comparing neuroelectric and behavioral performance at baseline with post-exercise in 20 undergraduates. A within-subjects design was used to assess the P3 component of an event-related brain potential (ERP) and behavioral performance using a task that varied the amount of executive control required. The baseline session involved participation on the Eriksen flankers task followed by a graded maximal exercise test to measure cardiovascular fitness. The exercise session consisted of a 30-min acute bout of exercise on a treadmill followed by the Eriksen flankers task after heart rate returned to within 10% of pre-exercise levels. Across midline recordings sites, results indicated larger P3 amplitude following acute exercise compared to baseline. Shorter P3 latency was observed during the baseline Eriksen flankers task for the neutral compared to the incompatible condition; an effect not found following the acute bout of exercise. These findings suggest that acute bouts of cardiovascular exercise affect neuroelectric processes underlying executive control through the increased allocation of neuroelectric resources and through changes in cognitive processing and stimulus classification speed.  相似文献   

10.
Exercise-induced damage significantly and predictably alters indirect indicators of muscle damage after one bout of damaging exercise but this response is dampened following a second bout of the same exercise performed 1-6 weeks later. Previously we have described a marked increase in the levels of heat shock proteins (HSPs) HSP27 and HSP70 in human biceps muscle following one bout of high-force eccentric exercise. The purpose of the present study was to examine the intramuscular HSP27 and HSP70 response following two identical bouts of exercise [bout 1 (B1) and bout 2 (B2), separated by 4 weeks] relative to indirect indices of muscle damage. Ten human subjects performed 50 high-force eccentric contractions with their non-dominant forearm flexors; muscle damage of the biceps brachii was evaluated 48 h post-exercise with indirect indices [serum creatine kinase (CK) activity, soreness, isometric maximal voluntary contraction (MVC) force and relaxed arm angle] and immunoblotting of high ionic strength muscle biopsy extracts for both HSPs. Not unexpectedly, the indirect indicators of damage changed dramatically and significantly (P < 0.01) after B1 but had a much smaller response after B2. The magnitude of the HSP response was the same after both bouts of exercise, though the control and exercised samples of B2 demonstrated a lower basal HSP expression. Thus, though both indirect and cellular indicators of exercise-induced muscle damage demonstrate an adaptation consequent to the first bout of exercise, these adaptations are quite different. It is possible that the lower basal HSP expression of the cellular response mediates the attenuation of damage associated with B2 as indicated by indirect indices.  相似文献   

11.
OBJECTIVE: To determine the temporal pattern of the repeated bout effect of eccentric exercise on perceived pain and muscular tenderness associated with delayed-onset muscle soreness (DOMS). DESIGN AND SETTING: Subjects completed 2 identical eccentric exercise bouts separated by 6, 7, 8, or 9 weeks. The experiment was conducted in a biokinetics research laboratory. SUBJECTS: Sixteen male and 15 female untrained subjects (age = 24.59 +/- 4.42 years, height = 171.71 +/- 7.81 cm, weight = 73.00 +/- 11.20 kg). MEASUREMENTS: Two physiologic characteristics of DOMS were measured immediately before and 0, 24, 48, and 72 hours after each eccentric exercise bout. Perceived pain was measured using a visual analog scale (VAS), and muscular tenderness was measured using a punctate tenderness gauge (PTG). RESULTS: Two 4 x 2 x 5 (group x bout x time) analyses of variance with repeated measures on the bout and time factors were performed on the VAS and PTG data. Significant (P <.05) main effects were found for group, bout, and time for the VAS and the PTG data. No significant interactions were detected. Post hoc analysis revealed significantly less perceived pain for the 9-week group than the 8-week group. The 7-week group had significantly less and the 8-week group had significantly more muscular tenderness than any other group. Perceived pain and muscular tenderness were significantly less after exercise bout 2 than after exercise bout 1. All subjects had significantly less perceived pain and muscular tenderness pre-exercise than 0 and 24 hours after the eccentric exercise bouts. CONCLUSIONS: An effective prophylaxis for perceived pain and muscular tenderness associated with DOMS is the performance of an eccentric exercise bout 6 to 9 weeks before a similar exercise bout.  相似文献   

12.
The effect of an acute bout of moderate treadmill walking on behavioral and neuroelectric indexes of the cognitive control of attention and applied aspects of cognition involved in school-based academic performance were assessed. A within-subjects design included 20 preadolescent participants (age=9.5±0.5 years; eight female) to assess exercise-induced changes in performance during a modified flanker task and the Wide Range Achievement Test 3. The resting session consisted of cognitive testing followed by a cardiorespiratory fitness assessment to determine aerobic fitness. The exercise session consisted of 20 min of walking on a motor-driven treadmill at 60% of estimated maximum heart rate followed by cognitive testing once heart rate returned to within 10% of pre-exercise levels. Results indicated an improvement in response accuracy, larger P3 amplitude, and better performance on the academic achievement test following aerobic exercise relative to the resting session. Collectively, these findings indicate that single, acute bouts of moderately-intense aerobic exercise (i.e. walking) may improve the cognitive control of attention in preadolescent children, and further support the use of moderate acute exercise as a contributing factor for increasing attention and academic performance. These data suggest that single bouts of exercise affect specific underlying processes that support cognitive health and may be necessary for effective functioning across the lifespan.  相似文献   

13.
The aim of this study was to compare the possible changes in muscle activation level between a first and second bout of damaging eccentric exercise performed at 2 weeks interval (i.e. repeated bout effect). To that purpose, ten physically active males took part in this study. The eccentric exercise consisted of 10 sets of 12 maximal voluntary contractions (MVC) produced by the knee extensors during movements performed at a constant speed of 160°s−1. Changes in voluntary and electrically evoked torque in concentric and/or isometric conditions were assessed at the following time points: pre-exercise, and 2 min, 1 and 24 h after each eccentric exercise. At the same time points, voluntary activation was quantified by the superimposed electrical stimulation technique. Muscle soreness and plasma CK activity were measured within 48 h after the eccentric exercise. The results showed that the decrease in eccentric peak torque was linear throughout the exercise protocol. At the end of bouts 1 and 2, torque was significantly reduced by 27.7 ± 9.1 and 23.4 ± 11.2, respectively, with no difference between bouts (P > 0.05). At 24 h post-exercise, a lower reduction (P < 0.05) in MVC (17.8 ± 5.4%) and electrically evoked (16.7 ± 4.6%) isometric torque was observed for bout 2. In contrast, no statistical difference was found in the deficit in voluntary activation between the two bouts. In conclusion, our results indicate that the repeated bout effect of eccentric exercise appears to reduce muscle damage, but does not influence the level of voluntary activation.  相似文献   

14.

Purpose

The purpose of this study was to investigate the effect of repeated bouts of eccentric exercise on the nociceptive withdrawal reflex (NWR) threshold, a measure of sensitivity in the spinal nociceptive system.

Methods

Sixteen healthy students (age 25.7 ± 0.6 years, BMI 24.8 ± 1 kg m?2) participated in this randomized, controlled, crossover study. Two identical bouts of high-intensity eccentric exercises were performed on the tibialis anterior muscle 7 days apart. Control sessions involving no exercise were performed 4 weeks apart the exercise sessions. Pressure pain thresholds (PPT) and the NWR threshold were recorded before, immediately after, and 1 day after both bouts of exercise.

Results

Pressure pain thresholds decreased significantly at two of the muscle belly sites on the day after initial bout compared with baseline. NWR threshold decreased by 25 ± 4 % immediately after initial bout and by 30 ± 5 % the next day (p < 0.05) as an indication of generalized pain hypersensitivity. On the contrary, no changes were found in both pain thresholds after second bout of eccentric exercise indicating that both localized and generalized pain sensitivity were normalized.

Conclusion

In conclusion, this study for the first time documented that an initial bout of unaccustomed high-intensity eccentric exercise, which results in muscle soreness can induce central sensitization. A repeated bout of exercise, however, facilitates inherent protective spinal mechanisms against the development of muscle soreness.  相似文献   

15.
Muscle adaptation prior to recovery following eccentric exercise   总被引:5,自引:0,他引:5  
Summary The effects of performing a second eccentric exercise bout prior to and after recovery from the first bout were compared. Twenty subjects performed 70 eccentric actions with the forearm flexors. Group A (n = 9) and group B (n = 11) repeated the same exercise 5 and 14 days after the initial bout, respectively. Dependent variables included muscle soreness, elbow joint angles, isometric strength, and serum creatine kinase (SCK). Subjects were tested pre-exercise and up to day 5 following each bout. The first bout produced significant changes in all measures for both groups (P < 0.01). Values remained significantly different from baseline on day 5 when group A repeated the exercise (P < 0.01) but were back to normal when group B performed bout 2. For both groups an adaptation occurred; significantly smaller changes in dependent variables were produced by the second bout, and recovery time was faster whether or not muscles were fully restored (P < 0.01). The repeated bout did not exacerbate soreness, performance decrements, and elevation of SCK when performed by affected muscles that had not fully recovered from the first bout. Thus, the results suggest that an adaptation response had taken place prior to full recovery and restoration of muscle function following the initial eccentric exercise bout.  相似文献   

16.
Healthy males (n = 14) performed three bouts of 32 unilateral, maximal voluntary concentric (CON) or eccentric (ECC) quadriceps muscle actions on separate days. Surface electromyography (EMG) of the m. vastus lateralis (VL) and m. rectus femoris (RF) and torque were measured. Integrated EMG (IEMG), mean (MPF) and median power frequencies and torque were averaged for seven separate blocks of four consecutive muscle actions. Torque was greater (P less than 0.05) for ECC than for CON muscle actions at the start of exercise. It did not decline throughout ECC exercise, but decreased (P less than 0.05) markedly for each bout and over bouts of CON exercise. Thus, torque overall was substantially greater (P less than 0.05) for ECC than for CON exercise. At the start of exercise IEMG of VL or RF was greater (P less than 0.05) for CON than for ECC muscle actions. This was also true for overall IEMG activity during exercise. The IEMG increased (P less than 0.05) modestly for both muscles during each bout of CON or ECC muscle actions, but did not change for the VL over bouts. The IEMG of RF decreased (P less than 0.05) modestly over CON but not ECC exercise bouts. At the beginning of the first bout of exercise the IEMG/torque ratio was twofold greater (P less than 0.05) for CON than ECC muscle actions. The ratio of IEMG/torque increased (P less than 0.05) markedly during CON but did not change during ECC exercise. Thus, by the end of the third bout there was a fivefold difference (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Since little is known about the repeated bout effect of more than two eccentric exercise bouts, this study compared muscle damage responses among four exercise bouts. Fifteen young (21.8 ± 1.9 years) men performed four bouts of 30 maximal isokinetic eccentric contractions of the elbow flexors every 4 weeks. Maximal voluntary elbow flexion isometric and concentric strength, range of motion at the elbow joint (ROM), upper arm circumference, blood markers of muscle damage, and muscle soreness were measured before and up to 120 h following each bout. Changes in all measures following the second to fourth bouts were significantly (P < 0.05) smaller than those after the first bout. The decreases in strength and ROM immediately after the fourth bout were significantly (P < 0.05) smaller than other bouts. It is concluded that the first bout confers the greatest adaptation, but further adaptation is induced when the exercise is repeated more than three times.  相似文献   

18.
Sixteen, cross-trained, premenopausal women participated in an endurance, resistance, and control session to compare hormone responses. The resistance session included 3 sets of eight exercises at 10 RM intensity. The endurance session consisted of a 40-min cycling protocol at 75% of maximal heart rate. During the control session, subjects rested for 35 min. Serum DHEA, estradiol, testosterone, growth hormone, IGF-I, cortisol, and plasma lactate concentrations were measured pre-exercise, post-exercise, and 30 min into recovery. Differences in intensity variables existed between the three sessions. Endurance exercise elicited increases in growth hormone, estradiol, and testosterone compared to the control session, and growth hormone increased after the resistance compared to the control session. The exercise protocols used in this study indicate that an acute bout of exercise can stimulate the endocrine system in premenopausal females. In addition, these results indicate that differences exist between these two exercise protocols when compared to a control session.  相似文献   

19.
The aim of this study was to evaluate the effect of repeated bouts of exercise on the cytoskeletal proteins titin, desmin, and dystrophin. Rats were made to run downhill for 90 min 1 or 5 times separated by 14 days. Samples were taken from quadriceps femoris muscle 3, 48, 96 h and 50 days after the last exercise session and detected by quantitative PCR, histochemical stainings, and western blot analyses. Histopathological changes in titin, desmin, and dystophin stainings, an increase in β-glucuronidase activity (a quantitative indicator of muscle damage), a significant decrease in the relative content of dystrophin, and intramyocellular Evans blue staining (signs of changes in sarcolemmal permeability) observed after one exercise session were attenuated after 5 exercise sessions. Titin mRNA level was not increased after the initial exercise session but was increased after the fifth session. Desmin and dystrophin mRNA levels were increased after the first and fifth sessions with desmin showing a smaller increase after the fifth session compared to the first session. Prior exercise induces adaptation that protects the sarcolemma as well as subsarcolemmal, intermediate filament, and sarcomeric proteins against disruption. Changes in mRNA levels of titin, desmin, and dystophin after an acute exercise session obviously reflect the need of these proteins in the repair process following damage. After five sessions increase in mRNA of studied proteins suggest a strong involvement in continuing adaptation to the increased exercise.  相似文献   

20.
(31)Phosphate-magnetic resonance spectroscopy and near infrared spectroscopy (NIRS) were used for the simultaneous assessment of changes in quadriceps muscle metabolism and oxygenation during consecutive bouts of high-intensity exercise. Six male subjects completed two 6 min bouts of single-legged knee-extension exercise at 80% of the peak work rate separated by 6 min of rest while positioned inside the bore of a 1.5 T superconducting magnet. The total haemoglobin and oxyhaemoglobin concentrations in the area of the quadriceps muscle interrogated with NIRS were significantly higher in the baseline period prior to the second compared with the first exercise bout, consistent with an enhanced muscle oxygenation. Intramuscular phosphorylcreatine concentration ([PCr]) dynamics were not different over the fundamental region of the response (time constant for bout 1, 51 +/- 15 s versus bout 2, 52 +/- 17 s). However, the [PCr] dynamics over the entire response were faster in the second bout (mean response time for bout 1, 72 +/- 16 s versus bout 2, 57 +/- 8 s; P < 0.05), as a consequence of a greater fall in [PCr] in the fundamental phase and a reduction in the magnitude of the 'slow component' in [PCr] beyond 3 min of exercise (bout 1, 10 +/- 6% versus bout 2, 5 +/- 3%; P < 0.05). These data suggest that the increased muscle O(2) availability afforded by the performance of a prior bout of high-intensity exercise does not significantly alter the kinetics of [PCr] hydrolysis at the onset of a subsequent bout of high-intensity exercise. The greater fall in [PCr] over the fundamental phase of the response following prior high-intensity exercise indicates that residual fatigue acutely reduces muscle efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号