首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vincristine is a chemotherapeutic agent that disrupts microtubules. We noted that paclitaxel (Taxol), which stabilizes microtubules, protected cultured adult mouse cardiac myocytes from oxidative stress induced by H(2)O(2). We hypothesized that vincristine, which disrupts microtubules, should have the opposite effect. To our surprise, we found that pretreatment with concentrations of vincristine ranging from 30 to 120 micromol/L for 60 min preserved myocyte viability and morphology after incubation with 30 micromol/L of H(2)O(2) for 35 min as measured by trypan blue exclusion. The cardioprotective effects of vincristine were also observed during prolonged hypoxia. With continuous exposure to vincristine, survival lasted for as long as 24 h, but longer periods of exposure up to 42 h resulted in extensive cell death. Despite microtubule disruption evidenced on deconvolution microscopy, vincristine activated a prosurvival pathway resulting in increased phosphorylation of Akt, ERK and GSK-3beta and in reduced cytochrome C release into the cytosol. Pharmacological inhibitors of Akt and Erk attenuated the cardioprotective effect of vincristine. We conclude that short-term pretreatment with vincristine exerts dramatic protective effects in cultured adult mouse myocytes subjected to acute oxidative stress. Despite causing microtubule disruption, vincristine initiates a prosurvival signaling pathway. As vincristine and doxorubicin are often used in conjunction to treat patients, it is possible that vincristine could be used to modify the cardiotoxicity of doxorubicin.  相似文献   

3.
OBJECTIVES: Arachidonic acid is a second messenger which activates protein kinase C (PKC) and is released from the heart during ischaemic preconditioning. The purpose of this study was to examine the effect of arachidonic acid on activation of PKC in cardiac myocytes and the cellular consequences. METHODS: Neonatal rat cardiac myocytes were isolated and maintained in culture. Arachidonic acid-induced activation of PKC was examined by cell fractionation and western blot analysis. Contraction frequency was measured by visual inspection under a microscope. Ischaemia was simulated by subjecting cells to an atmosphere of lower than 0.5% oxygen in the absence of glucose and cell damage determined by release of cytosolic lactate dehydrogenase or direct cell viability assay. RESULTS: Arachidonic acid resulted in translocation of delta and epsilonPKC but not alpha, betaII, eta or zetaPKC isozymes, indicating activation of only delta and epsilonPKC. Arachidonic acid induced a dose-dependent decrease in spontaneous contraction rate of cardiac myocytes which was blocked by a selective peptide translocation inhibitor of epsilonPKC. Pretreatment with arachidonic acid partially protected cardiac myocytes against ischaemia. Down-regulation of PKC with 24 h 4beta-phorbol,12-myristate,13-acetate treatment, inhibition of PKC by chelerythrine and selective inhibition of epsilonPKC translocation all decreased the protective effect of arachidonic acid. Pretreatment with eicosapentaenoic acid or oleic acid also protected cardiac myocytes against ischaemia. CONCLUSIONS: These results demonstrate that arachidonic acid selectively activates delta and epsilonPKC in neonatal rat cardiac myocytes, leading to protection from ischaemia. We suggest this is a potential mechanism of PKC activation during PC. In addition, our results suggest that different classes of free fatty acid directly exert cardioprotection from ischaemic injury in cardiac myocytes.  相似文献   

4.
The effects of doxorubicin (DOX) on intracellular calcium transients and the cardioprotective effects of a calcium antagonist on DOX-induced impairment of calcium handling were examined in neonatal rat cultured cardiac myocytes. Cultured cardiac myocytes isolated from neonatal Wistar-Kyoto rats were treated with DOX for 24 h. Field-stimulated calcium transients in single myocytes were measured in the presence or absence of isoproterenol using fura-2/AM. Calcium transients were also measured after the addition of DOX to myocytes pretreated with a calcium antagonist, benidipine. DOX reduced the amplitude, maximum velocity of increase and decrease of calcium transients and prolonged the time course of calcium transients and impaired the beta-adrenoceptor responsiveness of calcium transients in a concentration-dependent manner. The DOX-induced impairment of calcium transients and beta-adrenoceptor responsiveness was improved by 10(-8) mol/L of benidipine. However, these improvements decreased with increasing concentrations of benidipine. DOX impaired both the mobilization and removal of intracellular calcium ions in contraction-relaxation cycles and the response of calcium transients to beta-adrenoceptor stimulation. Appropriate concentration of benidipine ameliorated DOX-induced impairment of calcium dynamics, suggesting that benidipine, a long-acting calcium antagonist, has potential clinical usefulness on DOX-induced abnormal calcium handling.  相似文献   

5.
In the present study, we evaluated the effect of melatonin, a well-known free radical scavenger and neuroprotector, against rotenone-induced oxidative stress in a hemiparkinsonian rat model. The effect of melatonin on glutathione (GSH) depletion caused by unilateral, intranigral infusion of rotenone was investigated employing a spectrofluorimetric procedure. We also studied the effect of melatonin on rotenone-induced changes in the antioxidant enzymes superoxide dismutase (SOD) and catalase in the cytosolic fractions of substantia nigra (SN), employing spectrophotometric procedures. Rotenone-induced hydroxyl radicals (*OH) in the isolated mitochondria, as measured employing a sensitive HPLC-electrochemical method, were significantly scavenged by melatonin. Melatonin treatment restored the rotenone-induced decrease in GSH level and changes in antioxidant enzyme (SOD and catalase) activities in the SN. Our results strongly indicate melatonin's beneficial use in Parkinson's disease therapy as an antioxidant.  相似文献   

6.
OBJECTIVES

This study was designed to test the hypothesis that cardiac myocytes have greater vulnerability to oxidative stress compared with cardiac fibroblasts.

BACKGROUND

The function of cardiac myocytes differs from that of fibroblasts in the heart, but differences in their response to oxidative stress have not been extensively studied.

METHODS

Cardiomyocytes and fibroblasts from F344 neonatal rat hearts were cultured and exposed to different concentrations of hydrogen peroxide (H2 2) and menadione (superoxide generator). The mitogen-activated protein kinase (MAPK) proteins were assayed after oxidative stress; cell death was determined by trypan blue staining and deoxyribonucleic acid (DNA) ladder electrophoresis.

RESULTS

The cardiac myocytes were significantly more vulnerable than the fibroblasts to oxidative damage, showing substantial DNA fragmentation and consistently poor cell survival after exposure to H2 2 (100 to 800 μM), while the cardiac fibroblasts demonstrated little or no DNA fragmentation, and superior cell survival rates both over time (from 1 to 72 h after 100 μM) and across increasing doses of H2 2 (100 to 800 μM). The p42/44 extracellular signal-regulated kinases were phosphorylated in both cell types after exposure to H2 2, but significantly more in cardiac fibroblasts. However, p38 MAPK and c-jun NH2-terminal kinase were phosphorylated more in the cardiac myocytes compared to cardiac fibroblasts. This was also the case after exposure to menadione.

CONCLUSION

Taken together, these results suggest that oxidative stress causes greater injury and cell death in cardiac myocytes compared with cardiac fibroblasts. It is possible that the signaling differences via the MAPK family may partly mediate the observed differences in vulnerability and functional outcomes of the respective cell types.  相似文献   


7.
Excess activation of glutamate receptors and production of free radicals including nitric oxide may result in severe and irreversible damage to the mammalian central nervous system (CNS), but endogenous defense systems that protect neurons from these insults are poorly understood. Here, we purified and isolated a neuroprotective substance, which has been named "serofendic acid," from a lipophilic fraction of FCS based on the ability to protect rat primary cortical neurons against nitric oxide cytotoxicity. Mass spectrometry and NMR spectroscopy revealed the chemical structure of serofendic acid (15-hydroxy-17-methylsulfinylatisan-19-oic acid) as a sulfur-containing atisane-type diterpenoid, which is unique among known endogenous substances. Synthetic serofendic acid exhibited potent protective actions on cortical neurons against cytotoxicity of a nitric oxide donor as well as of glutamate, although it did not show appreciable influences on glutamate receptor-mediated responses in these neurons. Electron spin resonance analysis demonstrated that serofendic acid had no direct scavenging activity on nitric oxide radicals but was capable of inhibiting the generation of hydroxyl radical, a presumed "executor" radical in the nitric oxide-mediated neurotoxic cascade. These findings suggest that serofendic acid is a low-molecular-weight bioactive factor that promotes survival of CNS neurons, probably through the attenuation of free radical-mediated insults.  相似文献   

8.
Isolated neonatal cardiac myocytes have been utilized as a model for the study of cardiac arrhythmogenic factors. The myocytes respond to the toxic effects of a potent cardiac glycoside, ouabain at 0.1 mM, by an increase in their spontaneous beating rate and a reduction in amplitude of contractions resulting within minutes in a lethal state of contracture. Incubating the isolated myocytes for 3-5 days in culture medium enriched with 5 microM arachidonic acid [20:4 (n-6)] had no effect on the development of lethal contracture after subsequent exposure to 0.1 mM ouabain. By contrast, incubating the myocytes for 3-5 days with 5 microM eicosapentaenoic acid [20:5 (n-3)] completely prevented the toxic effects of ouabain at 0.1 mM. There were no measurable differences in the degree to which ouabain inhibited Na,K-ATPase activity by comparing the control with the arachidonic acid- or the eicosapentaenoic acid-enriched myocytes. No differences in bumetanide-inhibitable 86Rb flux were observed between the three preparations. However, measurements with fura-2 of cytosolic free calcium levels indicated that control and arachidonic acid-enriched myocytes developed toxic cytosolic calcium concentrations of 845 +/- 29 and 757 +/- 64 nM, respectively, on exposure to 0.1 mM ouabain, whereas in eicosapentaenoic acid-enriched myocytes, physiologic calcium levels (214 +/- 29 nM) were preserved. Incubating the myocytes with eicosapentaenoic acid (5 microM) for 3-5 days resulted in a small reduction of arachidonic acid and a small but significant increase of eicosapentaenoic acid in membrane phospholipids of the myocytes.  相似文献   

9.
During ischemia and reperfusion, increased palmitate oxidation is associated with diminished function of the myocardium. Palmitate, but not oleate, has been implicated in the induction of apoptosis in isolated neonatal rat ventricular myocytes. We report that extended incubation (20 h) of cultured neonatal rat cardiomyocytes, in the presence of palmitate, causes a decrease in the ability of these cells to oxidize fatty acids, an increase in cellular malonyl-CoA and a decrease in the activity of 5' AMP-activated protein kinase (AMPK) compared to myocytes incubated in the presence of oleate. While palmitate decreases the oxidative metabolism of fatty acids, it increases the formation of intracellular triglyceride and ceramide. Increased ceramide formation is associated with an increase in apoptosis in many cell systems and we also observe an increase in caspase-3 like activity and DNA-laddering in these cells. At the onset of cardiac failure, a switch in myocardial substrate utilization from fatty acids to glucose occurs. Our data suggest that decreased palmitate oxidation in cardiac myocytes in culture may signal the initiation of programmed cell death and ceramide elevation previously documented in ischemic, reperfused hearts.  相似文献   

10.
We investigated the effects of melatonin on ischemia/reperfusion-induced oxidative damage to mitochondria in fetal rat brain. The utero-ovarian arteries were occluded bilaterally for 20 min in female Wistar rats on day 19 of pregnancy to induce fetal ischemia. Reperfusion was achieved by releasing the occlusion and restoring circulation for 30 min. A sham operation was performed in control rats. Melatonin (10 mg/kg) or vehicle was injected intraperitoneally 60 min prior to occlusion. We measured the respiratory control index (RCI) and the adenosine 5-diphosphate (ADP)/oxygen ratio as indicators of mitochondrial respiratory activity, as well as the concentration of thiobarbituric acid-reactive substances (TBARS) in the mitochondria of fetal brain. Ischemia/reperfusion significantly elevated the concentration of TBARS and significantly reduced the RCI as well as the ADP/oxygen ratio. Melatonin treatment reversed the ischemia/reperfusion-induced reductions in the RCI (2.29 +/- 0.06-2.64 +/- 0.09, P < 0.05) and in the ADP/oxygen ratio (1.48 +/- 0.03-1.57 +/- 0.02, P < 0.05), and also reduced the elevation in concentration of TBARS (11.00 +/- 0.34-7.57 +/- 0.74 nM/mg protein, P < 0.01), resulting in values similar to those in untreated, sham-ischemic animals. The results indicate that administration of melatonin to pregnant rats may prevent ischemia/reperfusion-induced oxidative mitochondrial damage in fetal rat brain.  相似文献   

11.
To investigate whether melatonin reduces the susceptibility of the fetal rat brain to oxidative damage of lipids and DNA, we created a model of fetal ischemia/reperfusion using rats at day 19 of pregnancy. Fetal ischemia was induced by bilateral occlusion of the utero-ovarian artery for 20 min. Reperfusion was achieved by releasing the occlusion and restoring the circulation for 30 min. A sham operation was performed in control rats. Melatonin (10 mg/kg) or vehicle was injected intraperitoneally 60 min prior to the occlusion. We measured the concentration of thiobarbituric acid reactive substances (TBARS) in fetal brain homogenates, as well as levels of deoxyguanosine (dG) and 8-hydroxydeoxyguanosine (8-OHdG) in DNA extracted from those homogenates. Ischemia for 20 min did not significantly alter the levels of dG, 8-OHdG, and TBARS. Subsequent reperfusion, however, led to a significant reduction in the dG level (P < 0.05) and to significant increases in the levels of 8-OHdG (P < 0.05) and TBARS (P < 0.05), and in the 8-OHdG/dG ratio (P < 0.005). Melatonin administration prior to ischemia significantly reduced the ischemia/reperfusion-induced increases in the levels of 8-OHdG (14.33 +/- 6.52-5.15 +/- 3.28 pmol/mg of DNA, P < 0.001) and TBARS (11.61 +/- 3.85-4.73 +/- 3.80 nmol/mg of protein, P < 0.001) as well as in the 8-OHdG/dG ratio (7.19 +/- 2.49-1.61 +/- 0.98, P < 0.001). Furthermore, melatonin significantly increased the dG level (210.19 +/- 49.02-299.33 +/- 65.08 nmol/mg of DNA, P < 0.05). Results indicate that melatonin administration to the pregnant rat may prevent the ischemia/reperfusion-induced oxidative lipid and DNA damage in fetal rat brain.  相似文献   

12.
Ursodeoxycholic acid (UDCA) improves clinical and biochemical indices in primary biliary cirrhosis and prolongs survival free of liver transplantation. Recently, it was suggested that the cytoprotective mechanisms of UDCA may be mediated by protection against oxidative stress, which is involved in the development of cirrhosis induced by chronic cholestasis. The aims of the current study were 1) to identify the mechanisms involved in glutathione depletion, oxidative stress, and mitochondrial impairment during biliary cirrhosis induced by chronic cholestasis in rats; and 2) to determine the mechanisms associated with the protective effects of UDCA against secondary biliary cirrhosis. The findings of the current study indicate that UDCA partially prevents hepatic and mitochondrial glutathione depletion and oxidation resulting from chronic cholestasis. Impairment of biliary excretion was accompanied by decreased steady-state hepatic levels of gamma-glutamyl cysteine synthetase and gamma-cystathionase messenger RNAs. UDCA treatment led to up-regulation of gamma-glutamyl cysteine synthetase in animals with secondary biliary cirrhosis and prevented the marked increases in mitochondrial peroxide production and hydroxynonenal-protein adduct production that are observed during chronic cholestasis. A population of damaged and primarily apoptotic hepatocytes characterized by dramatic decreases in mitochondrial cardiolipin levels and membrane potential as well as phosphatidylserine exposure evolves in secondary biliary cirrhosis. UDCA treatment prevents the growth of this population along with the decreases in mitochondrial cardiolipin levels and membrane potential that are induced by chronic cholestasis. In conclusion, UDCA treatment enhances the antioxidant defense mediated by glutathione; in doing so, this treatment prevents cardiolipin depletion and cell injury in animals with secondary biliary cirrhosis.  相似文献   

13.
We investigated the oxidative susceptibility of the brain and the effect of maternally administered melatonin on ischemia/reperfusion-induced cerebral damage in premature fetal rat. Fetal brain mitochondria was separated on the 16th and 19th days of pregnant rats and the respiratory control index (RCI) was measured as an indicator of mitochondrial respiratory activity in the presence or absence of xanthine and xanthine oxidase. The utero-ovarian arteries were occluded bilaterally for 20 min in female rats on day 16 of pregnancy to induce fetal ischemia. Reperfusion was achieved by releasing the occlusion and restoring circulation for 30 min. A sham operation was performed in control rats. Melatonin (10 mg/kg) or vehicle was injected intraperitoneally into the dams 60 min prior to occlusion. The RCI and concentration of thiobarbituric acid-reactive substances (TBARS) in fetal brain mitochondria were measured. The addition of xanthine and xanthine oxidase significantly decreased mitochondrial RCI at both the 16- and 19-day-old fetal brain. Xanthine and xanthine oxidase-induced reduction in RCI was significantly greater in the 16-day-old fetal brain than that in the fetal brain from the 19th day of pregnancy. Ischemia/reperfusion significantly reduced RCI and elevated TBARS concentrations in the 16-day-old fetal brain mitochondria. Melatonin treatment reversed ischemia/reperfusion-induced reduction in RCI (2.22 +/- 0.10 to 2.53 +/- 0.08, P < 0.01) and elevation in TBARS concentrations (13.50 +/- 1.82 nmol/mg protein to 8.80 +/- 0.78 nmol/mg protein, P < 0.01), resulting in values similar to those in untreated, sham-treated animals. Results indicate that brain mitochondria in the premature fetal rats appear to be more susceptible to oxidative damage. Melatonin administration to pregnant rats may prevent ischemia/reperfusion-induced oxidative mitochondrial damage in premature fetal brain.  相似文献   

14.
Damage to the DNA of germ cells can lead to mutation, which may result in birth defects, genetic diseases, and cancer. The very high endogenous rate of oxidative DNA damage and the importance of dietary ascorbic acid (AA) in preventing this damage has prompted an examination of these factors in human sperm DNA. The oxidized nucleoside 8-hydroxy-2'-deoxyguanosine (8-oxo-7,8-dihydro-2'-deoxyguanosine; oxo8dG), 1 of approximately 20 major products of oxidative damage to DNA, was measured in DNA isolated from human sperm provided by healthy subjects and compared to the seminal fluid AA levels. This relationship was studied in two groups. In a group of 24 free-living individuals 20-50 years old high levels of oxo8dG were correlated with low seminal plasma AA. The endogenous level of oxo8dG in this group was 13 fmol per microgram of DNA or approximately 25,000 adducts per sperm cell. The second group of individuals was maintained on a controlled diet that varied only in AA content. When dietary AA was decreased from 250 to 5 mg/day, the seminal fluid AA decreased by half and the level of oxo8dG in sperm DNA increased 91%. Repletion of dietary AA for 28 days (from 5 mg/day to 250 or 60 mg/day) caused a doubling in seminal fluid AA and reduced oxo8dG by 36%. These results indicate that dietary AA protects human sperm from endogenous oxidative DNA damage that could affect sperm quality and increase risk of genetic defects, particularly in populations with low AA such as smokers.  相似文献   

15.
Because previous studies showed that polyunsaturated fatty acids can reduce the contraction rate of spontaneously beating heart cells and have antiarrhythmic effects, we examined the effects of the fatty acids on the electrophysiology of the cardiac cycle in isolated neonatal rat cardiac myocytes. Exposure of cardiomyocytes to 10 microM eicosapentaenoic acid for 2-5 min markedly increased the strength of the depolarizing current required to elicit an action potential (from 18.0 +/- 2.4 pA to 26.8 +/- 2.7 pA, P < 0.01) and the cycle length of excitability (from 525 ms to 1225 ms, delta = 700 +/- 212, P < 0.05). These changes were due to an increase in the threshold for action potential (from -52 mV to -43 mV, delta = 9 +/- 3, P < 0.05) and a more negative resting membrane potential (from -52 mV to -57 mV, delta = 5 +/- 1, P < 0.05). There was a progressive prolongation of intervals between spontaneous action potentials and a slowed rate of phase 4 depolarization. Other polyunsaturated fatty acids--including docosahexaenoic acid, linolenic acid, linoleic acid, arachidonic acid, and its nonmetabolizable analog eicosatetraynoic acid, but neither the monounsaturated oleic acid nor the saturated stearic acid--had similar effects. The effects of the fatty acids could be reversed by washing with fatty acid-free bovine serum albumin. These results show that free polyunsaturated fatty acids can reduce membrane electrical excitability of heart cells and provide an electrophysiological basis for the antiarrhythmic effects of these fatty acids.  相似文献   

16.
Our recent results showed that extended p38 mitogen-activated protein kinase (p38) activation during ischemia leads to cell death, at least partly through apoptosis, in neonatal rat cardiomyocytes. However, other studies have shown that p38 activation during a short preconditioning treatment protects cardiomyocytes from ischemic cell death. This suggests that the duration of p38 activation determines its cellular function and therefore inactivation of p38 by phosphatases may play an important role. In neonatal rat cardiomyocytes, we used the tyrosine phosphatase inhibitor, vanadate, to prevent p38 inactivation, thus extending the strength and length of p38 activation during ischemia. This resulted in higher susceptibility to cell death from ischemia in a dose-dependent manner and over time; the additional damage induced by vanadate was inhibited by SB203580, a selective inhibitor of p38. We conclude that a tyrosine phosphatase is inactivated during ischemia, resulting in prolonged p38 activation which causes cell death.  相似文献   

17.
Doxorubicin (Dox), an anthracyclin antineoplastic agent, causes dilated cardiomyopathy. CARP has been identified as a nuclear protein whose mRNA levels are exquisitely sensitive to Dox. In this study we investigated the molecular mechanisms underlying the repression of CARP expression by Dox in cultured neonatal rat cardiac myocytes. Dox (1 micromol/l)-mediated decrease in CARP mRNA levels was strongly correlated with BNP but not with ANP mRNA levels. Hydrogen peroxide scavenger catalase (1 mg/ml) but not hydroxyl radical scavengers dimethylthiourea (10 mmol/l) or mannitol (10 mmol/l) blunted the Dox-mediated decrease in CARP and BNP expression. Superoxide dismutase inhibitor diethyldithiocarbamic acid (10 mmol/l), which inhibits the generation of hydrogen peroxide from superoxide metabolism, attenuated the repression. PD98059 (MEK1 inhibitor, 50 micromol/l), SB203580 (p38 MAP kinase inhibitor, 10 micromol/l), calphostin C (protein kinase C (PKC) inhibitor, 1 micromol/l), non-selective protein tyrosine kinase inhibitors genistein (50 micromol/l) or herbimycin A (1 micromol/l) failed to abrogate the downregulation of CARP and BNP expression by Dox. In contrast, H7 (30 micromol/l), a potent inhibitor of serine/threonine kinase, significantly blocked Dox-mediated downregulation of CARP and BNP expression. Transient transfection of a series of 5'-deletion and site-specific mutation constructs revealed that M-CAT element located at -37 of the human CARP promoter mediates Dox-induced repression of CARP promoter activity. These results suggest that a genetic response to Dox is mediated through the generation of hydrogen peroxide, which is selectively linked to the activation of H7-sensitive serine/threonine kinase distinct from PKC and well characterized mitogen-activated protein (MAP) kinases (ERK and p38MAP kinase). Furthermore, our data implicated M-CAT element as a Dox-response element within the CARP promoter in cardiac myocytes.  相似文献   

18.
The lysophospholipids sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) stimulate cellular proliferation and affect numerous cellular functions by signaling through G protein-coupled endothelial differentiation gene-encoded (Edg) receptors. S1P and LPA also act as survival factors in many cell types, but have not previously been studied in cardiac myocytes. We incubated neonatal rat cardiac myocytes either in room air/1% CO2 (normoxia) or in an atmosphere of 99% N2/1%CO2 (hypoxia) at 37 degrees C for 18-20 h in the absence of glucose. Cell viability was measured using a calcein ester green fluorescence assay. Under normoxic conditions 88.7+/-1.0% of the cells were viable after 18-20 h. Severe hypoxia reduced viability to 61.3+/-4.3% (n=6, P<0.05). In myocytes preincubated with either 10 microM S1P or 1 microM LPA for 2 h, the effects of severe hypoxia on cell viability were prevented resulting in survival equivalent to normoxia. Neither the protein kinase C inhibitor chelethyrine (1 microM) nor the mitochondrial K(ATP) channel antagonist 5-hydroxydecanoic acid, (5-HD, 100 microM) had any effect on myocyte survival during severe hypoxia, but both agents completely abolished the ability of S1P to rescue cardiac myocytes from hypoxic cell death. We also tested the effects of dimethylsphingosine (DMS), which inhibits sphingosine kinase synthesis of S1P. Incubation of neonatal rat cardiac myocytes with 10 microM DMS for 2 h in the presence of serum resulted in 25-30% cell death during 18-20 h of normoxia. DMS-induced cell death was prevented by concurrent preincubation with either S1P or GM-1, a ganglioside that activates sphingosine kinase to increase intracellular levels of S1P. We conclude that both S1P and LPA are cardioprotective for hypoxic neonatal rat ventricular myocytes. S1P acts through cellular membrane receptors by signaling mechanisms involving protein kinase C and mitochondrial K(ATP) channels. Both endogenous and exogenously applied S1P are effective in preventing cell death induced by inhibition of sphingosine kinase.  相似文献   

19.
20.
Cultured neonatal rat cardiac myocytes have been used extensively to study cellular and molecular mechanisms of cardiac hypertrophy. However, there are only a few studies in cultured mouse myocytes despite the increasing use of genetically engineered mouse models of cardiac hypertrophy. Therefore, we characterized hypertrophic responses in low-density, serum-free cultures of neonatal mouse cardiac myocytes and compared them with rat myocytes. In mouse myocyte cultures, triiodothyronine (T3), norepinephrine (NE) through a beta-adrenergic receptor, and leukemia inhibitory factor induced hypertrophy by a 20% to 30% increase in [(3)H]phenylalanine-labeled protein content. T3 and NE also increased alpha-myosin heavy chain (MyHC) mRNA and reduced beta-MyHC. In contrast, hypertrophic stimuli in rat myocytes, including alpha(1)-adrenergic agonists, endothelin-1, prostaglandin F(2alpha), interleukin 1beta, and phorbol 12-myristate 13-acetate (PMA), had no effect on mouse myocyte protein content. In further contrast with the rat, none of these agents increased atrial natriuretic factor or beta-MyHC mRNAs. Acute PMA signaling was intact by extracellular signal-regulated kinase (ERK1/2) and immediate-early gene (fos/jun) activation. Remarkably, mouse but not rat myocytes had hypertrophy in the absence of added growth factors, with increases in cell area, protein content, and the mRNAs for atrial natriuretic factor and beta-MyHC. We conclude that mouse myocytes have a unique autonomous hypertrophy. On this background, T3, NE, and leukemia inhibitory factor activate hypertrophy with different mRNA phenotypes, but certain Gq- and protein kinase C-coupled agonists do not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号