首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Changes in the concentration of extracellular calcium affect the balance between proliferation and differentiation in epidermal keratinocytes. Undifferentiated keratinocytes respond to the acute increase in the concentration of extracellular calcium with an increase of intracellular calcium concentration and inositol trisphosphate production, and, subsequently, the expression of differentiation related genes. Our previous studies demonstrated the presence of a calcium-sensing receptor in human keratinocytes, which is identical to the parathyroid calcium-sensing receptor. In this study we showed that the calcimimetic compound NPS R-467, a selective calcium-sensing receptor activator, augmented the calcium-elicited inositol trisphosphate response of cloned human keratinocyte calcium-sensing receptor expressed in human embryonic kidney cells 293. In order to define the role of the calcium-sensing receptor in calcium induced epidermal differentiation, we investigated the ability of NPS R-467 to raise intracellular Ca2+ and stimulate differentiation in normal human foreskin keratinocytes. In the presence of 0.03 mM Ca2+, NPS R-467 increased the intracellular calcium concentration response in a concentration-dependent fashion. Undifferentiated normal human foreskin keratinocyte cells responded to increased extracellular calcium concentration with increased intracellular calcium concentration. NPS R-467 potentiated this response by increasing the maximal response. Its stereoisomer, NPS S-467, was not active in raising intracellular calcium concentration. Increasing extracellular calcium concentration from 0.03 to 1.2 mM stimulated the promoter activity of the differentiation marker gene, involucrin. NPS R-467 potentiated the calcium-stimulated increase in involucrin promoter activity unlike NPS S-467 or vehicle. Northern analysis of the normal human foreskin keratinocyte cells treated with NPS R-467 demonstrated potentiation of the calcium-stimulated increases in involucrin and transglutaminase mRNA levels. These results support the hypothesis that the calcium-sensing receptor expressed in keratinocytes mediates at least part of the intracellular calcium response to extracellular calcium and calcium-induced differentiation.  相似文献   

3.
4.
The induction of epidermal differentiation by extracellular Ca2+ involves activation of both tyrosine kinase and protein kinase C (PKC) signaling cascades. To determine if the differentiation-dependent activation of tyrosine kinase signaling can influence the PKC pathway, we examined the tyrosine phosphorylation status of PKC isoforms in primary mouse keratinocytes stimulated to terminally differentiate with Ca2+. Elevation of extracellular Ca2+ induced tyrosine phosphorylation of PKC-delta, but not the other keratinocyte PKC isoforms (alpha, epsilon, eta, zeta). We have previously demonstrated that activation of the epidermal growth factor receptor (EGFR) pathway induces PKC-delta tyrosine phosphorylation in basal keratinocytes (Denning M F, Dlugosz A A, Threadgill D W, Magnuson T, Yuspa S H (1996) J Biol Chem 271: 5325-5331). When basal keratinocytes were stimulated to differentiate by Ca2+, the level of cell-associated transforming growth factor-alpha (TGF-alpha) increased 30-fold, while no increase in secreted TGF-alpha was detected. Furthermore, Ca2+-induced tyrosine phosphorylation of PKC-delta and phosphotyrosine-association of the receptor adapter protein Shc was diminished in EGFR -/- keratinocytes, suggesting that EGFR activation may occur during keratinocyte differentiation. Tyrosine phosphorylated PKC-delta was also detected in mouse epidermis, suggesting that this differentiation-associated signaling pathway is physiological. These results establish a requirement for the EGFR in Ca2+-induced tyrosine phosphorylation of PKC-delta, and document the production of cell-associated TGF-alpha in differentiated keratinocytes which may function independent of its usual mitogenic effects.  相似文献   

5.
6.
To gain more insight in the role of the vitamin D system in epidermal differentiation, we studied the expression of the vitamin D receptor and its heterodimeric partner retinoid X receptor alpha in cultured normal human keratinocytes during squamous differentiation, as triggered by different approaches. Northern and western blot analysis allowed us to investigate mRNA and protein levels of these nuclear receptors and of markers for growth control (c-myc, cyclin D1, p21WAF1) and differentiation (keratinocyte transglutaminase, small proline rich proteins). Growing cells to postconfluence was a potent stimulus for growth arrest and differentiation with concomitant suppression of vitamin D receptor and induction of retinoid X receptor alpha, at both the mRNA and the protein level. These changes could be prevented by concomitant treatment with epidermal growth factor or keratinocyte growth factor. Subjecting the cells to a calcium switch leading to stratification and differentiation lowered vitamin D receptor protein levels without affecting vitamin D receptor mRNA and induced both retinoid X receptor alpha mRNA and protein. Interferon-gamma and the phorbolester 12-O-tetradecanoyl phorbol 13-acetate, two well-known inducers of keratinocyte differentiation, both inhibited vitamin D receptor expression but only interferon-gamma induced retinoid X receptor alpha. The decreased vitamin D receptor expression was accompanied by reduced vitamin D responsiveness (as assessed by 24-hydroxylase mRNA induction) in postconfluent, high calcium, and 12-O-tetradecanoyl phorbol 13-acetate treated keratinocytes but not with interferon-gamma treatment. Taken together, our results associate vitamin D receptor expression with undifferentiated, proliferating keratinocytes, whereas retinoid X receptor alpha expression appears to be related to the differentiated phenotype. Therefore, proliferating and differentiating keratinocytes may be differentially targeted by active vitamin D metabolites.  相似文献   

7.
The proopiomelanocortin (POMC) products alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropin (ACTH) bind to specific receptors known as the melanocortin (MC) receptors. There is increasing evidence that the MC receptor subtype 1 (MC-1R) is expressed in vitro by several other cutaneous cell types besides melanocytes and keratinocytes. Our knowledge on the MC-1R expression in skin, however, remains fragmentary. In order to examine the expression of MC-1R in human skin cells in vitro and In situ, we made use of a recently described antibody directed against the amino acids 2-18 of the human MC-1R. Flow cytometry analysis revealed the highest MC-1R antigenicity in normal melanocytes and keratinocytes, followed by dermal fibroblasts, microvascular endothelial cells and WM35 melanoma cells. Little or no expression was detected in KB carcinoma cells and Fs4 fibroblasts. In normal human skin, immunoreactivity for the anti-MC-1R antibody was detected in hair follicle epithelia, sebocytes, secretory and ductal epithelia of sweat glands, and periadnexal mesenchymal cells. Interfollicular epidermis was largely unreactive in adult skin as opposed to undifferentiated keratinocytes of fetal skin. Our findings form a framework within which MC-1 receptor expression can be studied in various skin diseases.  相似文献   

8.
9.
Previous studies have shown that expression of adenovirus type 2 (Ad2) is restricted in epidermal keratinocytes in what appears to be a differentiation specific manner. We have analyzed the relationship between keratinocyte differentiation and Ad2 early and late gene expression. Cultured epidermal keratinocytes infected with Ad2 were fractionated in density gradients of Ficoll 400 to enrich for populations of nondifferentiated cells and differentiated cells. Analysis of these populations revealed that both populations supported early Ad2 gene expression but restricted Ad2 late gene expression. The restriction to late gene expression differed in the two cell populations: Nondifferentiated keratinocytes did not support production of high levels of Ad2 capsid proteins, whereas differentiated keratinocytes supported synthesis of Ad2 capsid proteins but restricted Ad2 expression at a later step that normally leads to production of high titers of progeny virus. The changing restriction to Ad2 expression during keratinocyte differentiation may have resulted from changes in cellular components that play a role in cell differentiation.  相似文献   

10.
Human skin is able to mount a fast response against invading harmful bacteria through the rapid production of inducible peptide antibiotics such as the human beta-defensins (hBD). To gain more insight into the role and regulation of inducible beta-defensins in the innate immunity of human skin, we investigated whether gene induction of the human beta-defensins hBD-1, -2, -3, and -4 in keratinocytes is regulated in a similar manner. Therefore, we performed a comparative study of gene expression of these four hBD in primary cultured keratinocytes using real-time PCR. A basal mRNA expression was observed for all four hBD in primary keratinocytes, which strongly increased for hBD-2, -3, and -4 during Ca(2+)-induced differentiation of the keratinocytes. This effect was completely abolished when the keratinocytes were pre-treated with all-trans-retinoic acid (RA). Furthermore, the differential induction of hBD-2, -3, and -4 gene expression in keratinocytes by proinflammatory cytokines, phorbol-myristate-acetate (PMA), and bacteria was inhibited by more than 90% when the keratinocytes were pre-incubated with RA. Inhibition of IL-1beta-mediated hBD-2 induction through RA was further confirmed by gene reporter assays and western-blot analysis. We conclude that RA is a potent inhibitor of beta-defensin induction in keratinocytes and might downregulate the inducible innate chemical defense system of human skin.  相似文献   

11.
12.
Hailey-Hailey disease (HHD) (MIM 16960) is an autosomal-dominant blistering skin disease caused by a mutation in the Ca2+-ATPase ATP2C1 (protein SPCA1), responsible for controlling Ca2+ concentrations in the cytoplasm and Golgi in human keratinocytes. Cytosolic Ca2+ concentrations, in turn, play a major role in the regulation of keratinocyte differentiation. To study how ATP2C1 function impacts keratinocyte differentiation, we assessed involucrin expression in HHD keratinocytes. Involucrin is a protein that makes up the cornified envelope of keratinocytes and is expressed in response to increased intracellular Ca2+ concentrations. Even though HHD keratinocytes suffer from abnormally high cytosolic Ca2+, we found that these cells expressed lower involucrin protein levels at both low and high extracellular Ca2+ concentrations when compared with normal control keratinocytes. Decreased involucrin protein levels were caused by lower involucrin mRNA levels in HHD keratinocytes. Decreased involucrin mRNA, in turn, was caused by increased rates of involucrin mRNA degradation. Ca2+-sensitive involucrin AP-1 promotor activity was increased, both in HHD keratinocytes and in an small interfering RNA (siRNA) experimental model, suggesting compensatory promoter upregulation in the face of increased mRNA degradation. This report provides new insights into differentiation defects in HHD and its relationship to Ca2+ signaling.  相似文献   

13.
Skin keratinocytes constitute a protective mechanical barrier against invading microorganisms. Stimulated keratinocytes produce endogenous peptides such as the β-defensins that have direct antimicrobial activity against a broad spectrum of pathogens, including most bacteria, certain fungi and enveloped viruses. In particular, human β-defensin 2 (HBD-2) is virtually absent in normal skin and its expression in human keratinocytes requires stimulation by cytokines or bacteria. AV119, a patented avocado sugar, triggers the up-regulation of HBD-2, but the signalling mechanisms involved in this up-regulation in stimulated keratinocytes are not fully understood. In the present study, we examined the intracellular signalling pathways and nuclear responses in skin keratinocytes that contribute to HBD-2 gene expression upon stimulation with AV119. Our data provide information on signalling pathways in which the activation of protein tyrosine kinases (PTKs) and protein kinase C (PKC) takes place and leads to AP-1 and HBD-2 gene activation.  相似文献   

14.
Skin responds to environmental stressors via coordinated actions of the local neuroimmunoendocrine system. Although some of these responses involve opioid receptors, little is known about cutaneous proenkephalin expression, its environmental regulation, and alterations in pathology. The objective of this study was to assess regulated expression of proenkephalin in normal and pathological skin and in isolated melanocytes, keratinocytes, fibroblasts, and melanoma cells. The proenkephalin gene and protein were expressed in skin and cultured cells, with significant expression in fibroblasts and keratinocytes. Mass spectroscopy confirmed Leu- and Met-enkephalin in skin. UVR, Toll-like receptor (TLR)4, and TLR2 agonists stimulated proenkephalin gene expression in melanocytes and keratinocytes in a time- and dose-dependent manner. In situ Met/Leu-enkephalin peptides were expressed in differentiating keratinocytes of the epidermis in the outer root sheath of the hair follicle, in myoepithelial cells of the eccrine gland, and in the basement membrane/basal lamina separating epithelial and mesenchymal components. Met/Leu-enkephalin expression was altered in pathological skin, increasing in psoriasis and decreasing in melanocytic tumors. Not only does human skin express proenkephalin, but this expression is upregulated by stressful stimuli and can be altered by pathological conditions.  相似文献   

15.
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like (APOBEC) family consists of deaminases. Some isozymes of APOBEC3 are induced upon human papillomavirus infection or development of psoriasis skin lesions. However, the involvement of APOBEC3 in keratinocyte differentiation has not been addressed. We herein sought to evaluate the roles of APOBECs in mouse primary keratinocyte differentiation. We found that expression levels of APOBEC1 and APOBEC3 were increased during calcium‐induced keratinocyte differentiation. Unexpectedly, however, the expression levels of keratinocyte differentiation markers keratin 1/10, involucrin, loricrin and filaggrin were higher in keratinocytes treated with APOBEC3 siRNAs than in those treated with control RNAs. In addition, the treatment of keratinocytes with APOBEC3 siRNAs increased the gene expression levels of Notch3, a master regulator of keratinocyte differentiation. Moreover, calcium‐induced increase in Notch3 expression and keratinocyte differentiation were impaired by transfection with an APOBEC3 expression plasmid. Furthermore, co‐treatment with Notch3 siRNAs reduced the APOBEC3 siRNA‐mediated upregulation of Notch3 expression and in part attenuated the increased expression levels of keratinocyte differentiation markers. These results suggest that APOBEC3 is induced upon keratinocyte differentiation and negatively regulates the keratinocyte differentiation in part by its inhibitory role for Notch3 expression.  相似文献   

16.
Epidermal keratinocytes secrete cytokines, chemokines, and anti-microbial peptides in response to various microbial pathogens and their components including lipopolysaccharide (LPS). To identify the receptor(s) involved in the anti-microbial responses of epidermal keratinocytes, we analyzed expression of CD14, Toll-like receptor 2 (TLR2), and TLR4 on cultured normal human epidermal keratinocytes (NHEK). Although CD14 and TLR2 mRNA were expressed in cultured NHEK, only TLR2 was detected on the cell surface. Cultured NHEK did not express TLR4 mRNA or protein. Commercial LPS preparations could stimulate epidermal keratinocytes to produce β-defensin-2 and IL-8, and the LPS response was inhibited with mAb specific for TLR2, but not for CD14 or TLR4. Repurified LPS and lipid A did not stimulate epidermal keratinocytes, whereas peptidoglycan (PGN) from Gram-positive bacteria and yeast cell wall particle induced β-defensin-2 and IL-8 production. Thus, cultured NHEK express functional TLR2, but not CD14 or TLR4, and the “LPS” response of epidermal keratinocytes shown in the previous studies might be mediated by TLR2-dependent recognition of non-LPS bacterial components contaminating in commercial LPS preparations. In the normal human skin, however, epidermal keratinocytes expressed both TLR2 and TLR4. Because TLR4 was induced in epidermal keratinocytes by in vitro stimulation with PGN from Gram-positive bacteria, constitutive expression of TLR4 on epidermal keratinocytes in vivo might also be induced by continuous recognition of the resident skin flora containing Gram-positive bacteria through TLR2.  相似文献   

17.
18.
Transforming growth factor beta (TGF-beta) is a 25-kD protein which has regulatory activity over a variety of cell types. It is distinct from epidermal growth factor (EGF) and EGF analogs, and exerts its action via a distinct receptor. Its effect on proliferation or differentiation can be positive or negative depending on the cell type and the presence of other growth factors. It also modulates the expression of cellular products. TGF-beta causes fibroblasts to increase their production of the extracellular matrix components, fibronectin and collagen. Human keratinocytes (HK) are known to have TGF-beta receptors. We wished to study the effect of TGF-beta on the production of extracellular matrix proteins by human keratinocytes in culture. Human keratinocytes were grown in serum-free defined medium (MCDB-153) to about 70% confluence. Following a 16-h incubation in medium lacking EGF and TGF-beta, cells were incubated for 12 h in medium containing varying concentrations of EGF and TGF-beta. Cells were then labeled with 35S-methionine for 10 h in the same conditions. Labeled proteins from the medium were analyzed by SDS-PAGE and autoradiography. TGF-beta at 10 ng/ml induced a sixfold increase in the secretion of fibronectin, as well as an unidentified 50-kD protein. Thrombospondin production was also increased, but not over a generalized twofold increase in the production of all other proteins. EGF, at 10 ng/ml, caused a smaller additive effect. TGF-beta may be an important stimulator of extracellular matrix production by human keratinocytes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号