首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The medial parieto-occipital cortex is a central node in the dorsomedial visual stream. Recent physiological studies in the macaque monkey have demonstrated that the medial parieto-occipital cortex contains two areas, the visual area V6 and the visuomotor area V6A. Area V6 is a retinotopically organized visual area that receives form and motion information directly from V1 and is heavily connected with the other areas of the dorsal visual stream, including V6A. Area V6A is a bimodal visual/somatosensory area that elaborates visual information such as form, motion and space suitable for the control of both reaching and grasping movements. Somatosensory and skeletomotor activities in V6A affect the upper limbs and involve both the transport phase of reaching and grasping movements. Finally, V6A is strongly and reciprocally connected with the dorsal premotor cortex controlling arm movements. The picture emerging from these data is that the medial parieto-occipital cortex is well equipped to control both proximal and distal movements in the online visuomotor guidance of prehension. In agreement with this view, selective V6A lesions in monkey produce misreaching and misgrasping with the arm contralateral to the lesion in visually guided movements. These deficits are similar to those observed in optic ataxia patients and suggest that human and monkey superior parietal lobules are homologous structures, and that optic ataxia syndrome is the result of the lesion of a 'human' area V6A.  相似文献   

2.
We traced the cortical connections of the 4 cytoarchitectonic fields--Opt, PG, PFG, PF--forming the cortical convexity of the macaque inferior parietal lobule (IPL). Each of these fields displayed markedly distinct sets of connections. Although Opt and PG are both targets of dorsal visual stream and temporal visual areas, PG is also target of somatosensory and auditory areas. Primary parietal and frontal connections of Opt include area PGm and eye-related areas. In contrast, major parietal and frontal connections of PG include IPL, caudal superior parietal lobule (SPL), and agranular frontal arm-related areas. PFG is target of somatosensory areas and also of the medial superior temporal area (MST) and temporal visual areas and is connected with IPL, rostral SPL, and ventral premotor arm- and face-related areas. Finally, PF is primarily connected with somatosensory areas and with parietal and frontal face- and arm-related areas. The present data challenge the bipartite subdivision of the IPL convexity into a caudal and a rostral area (7a and 7b, respectively) and provide a new anatomical frame of reference of the macaque IPL convexity that advances our present knowledge on the functional organization of this cortical sector, giving new insight into its possible role in space perception and motor control.  相似文献   

3.
The contribution of the posterior parietal cortex (PPC) to visually guided movements has been originally inferred from observations made in patients suffering from optic ataxia. Subsequent electrophysiological studies in monkeys and functional imaging data in humans have corroborated the key role played by the PPC in sensorimotor transformations underlying goal-directed movements, although the exact contribution of this structure remains debated. Here, we used transcranial magnetic stimulation (TMS) to interfere transiently with the function of the left or right medial part of the intraparietal sulcus (mIPS) in healthy volunteers performing visually guided movements with the right hand. We found that a "virtual lesion" of either mIPS increased the scattering in initial movement direction (DIR), leading to longer trajectory and prolonged movement time, but only when TMS was delivered 100-160 ms before movement onset and for movements directed toward contralateral targets. Control experiments showed that deficits in DIR consequent to mIPS virtual lesions resulted from an inappropriate implementation of the motor command underlying the forthcoming movement and not from an inaccurate computation of the target localization. The present study indicates that mIPS plays a causal role in implementing specifically the direction vector of visually guided movements toward objects situated in the contralateral hemifield.  相似文献   

4.
We used the (14)C-deoxyglucose method to map the functional activity in the cortex of the lateral and medial parietal convexity, the intraparietal and the parietoccipital sulci of monkeys which either reached and grasped a 3D-object or observed the same reaching-to-grasp movements executed by a human. Execution of reaching-to-grasp induced activations in the superior parietal areas SI-forelimb/convexity, PE, PE caudal (PEc); in the intraparietal areas PE intraparietal (PEip), medial intraparietal (MIP), 5 intraparietal posterior, ventral intraparietal (VIP), anterior intraparietal (AIP), lateral intraparietal dorsal; in the inferior parietal areas PF, PFG, PG; in the parietoccipital areas V6, V6A-dorsal; in the medial cortical areas PGm/7m and retrosplenial cortex. Observation of reaching-to-grasp activated areas SI-forelimb/convexity, PE lateral, PEc, PEip, MIP, VIP, AIP, PF, V6, PGm/7m, 31, and retrosplenial cortex. The common activations were stronger for execution than for observation and the interhemispheric differences were smaller for observation than for execution, contributing to the attribution of action to the correct agent. The extensive overlap of parietal networks activated for action execution and observation supports the "mental simulation theory" which assigns the role of understanding others' actions to the entire distributed neural network responsible for the execution of actions, and not the concept of "mirroring" which reflects the function of a certain class of cells in a couple of cortical areas.  相似文献   

5.
OBJECTIVE: Three-dimensional anisotropy contrast (3-DAC) magnetic resonance imaging and magnetoencephalography (MEG) of visually evoked magnetic fields (VEFs) were used to accurately localize the optic radiation and primary visual cortex before surgery for an occipital tumor. PATIENT AND METHODS: A 26-year-old male presented with an occipital lobe tumor located intrinsically underneath the right calcarine fissure. 3-DAC imaging showed that the right optic radiation was located along the superior and lateral surfaces of the lesion. Mapping of the VEFs demonstrated that the primary visual cortex was located superior and lateral to the lesion. The lesion was totally resected via an infero-medial cortical incision using a frameless stereotactic system. Histopathology indicated a pilocytic astrocytoma. No visual deficit was found before or after surgery. CONCLUSION: Combined 3-DAC imaging and MEG can provide essential information about the optic radiation and primary visual cortex for planning the surgical treatment of occipital lobe tumors.  相似文献   

6.
To define the cortical areas that subserve spatial working memory in a nonhuman primate, we measured regional cerebral blood flow (rCBF) with [(15)O]H(2)O and positron emission tomography while monkeys performed a visually guided saccade (VGS) task and an oculomotor delayed-response (ODR) task. Both Statistical Parametric Mapping and regions of interest-based analyses revealed an increase of rCBF in the area surrounding the principal sulcus (PS), the superior convexity, the anterior bank of the arcuate sulcus (AS), the lateral orbitofrontal cortex (lOFC), the frontal pole (FP), the anterior cingulate cortex (ACC), the lateral bank of the intraparietal sulcus (lIPS) and the prestriate cortex. In the prefrontal cortex (PS, superior convexity, AS, lOFC and FP), rCBF values correlated positively with ODR task performance scores. From the hippocampus, rCBF values correlated negatively with ODR task performance. From the AS, superior convexity, lOFC, FP, ACC and lIPS, rCBF values of the PS correlated positively with rCBF values and negatively with hippocampus rCBF values. These results suggest that neural circuitry in the prefrontal cortex directly contributes the spatial working memory processes and that, in spatial working memory processes, the posterior parietal cortex and hippocampus have a different role to the prefrontal cortex.  相似文献   

7.
We have studied the morphology of the central sulcus and the cytoarchitecture of the primary sensorimotor cortex in 20 human brains obtained at autopsy. Although the surface appearance of the central sulcus varies greatly from brain to brain (and between hemispheres of individual brains), its deep structure is remarkably consistent. The fundus of the central sulcus is divided into medial and lateral limbs by a complex junction midway between the sagittal and Sylvian fissures. Based on functional imaging studies, this junction appears to be a structural hallmark of the sensorimotor representation of the distal upper extremity. We also identified and measured area 4 (primary motor cortex) and area 3 (primary somatic sensory cortex) in Nissl-stained sections cut orthogonal to the course of the central sulcus. Although the positions of the cytoarchitectonic boundaries in the paracentral lobule showed considerable interindividual variation, the locations of the borders of areas 4 and 3 along the course of the sulcus were similar among the 40 hemispheres examined. In addition to describing more thoroughly this portion of the human cerebral cortex, these observations provide a basis for evaluating lateral symmetry of the human primary sensorimotor cortex.   相似文献   

8.
Microsurgical anatomy of the superficial veins of the cerebrum   总被引:10,自引:0,他引:10  
The microsurgical anatomy of the superficial cortical veins was examined in 20 cerebral hemispheres. The superficial cortical veins are divided into three groups based on whether they drain the lateral, medial, or inferior surface of the hemisphere. The veins on the three surfaces are further subdivided on the basis of the lobe and cortical area that they drain. The superficial cerebral veins collect into four groups of bridging veins: a superior sagittal group, which drains into the superior sagittal sinus; a sphenoidal group, which drains into the sphenoparietal and cavernous sinuses on the inner surface of the sphenoid bone; a tentorial group, which converges on the sinuses in the tentorium; and a falcine group, which empties into the inferior sagittal or straight sinus or their tributaries. The superior sagittal group drains the superior part of the medial and lateral surfaces of the frontal, parietal, and occipital lobes and the anterior part of the basal surface of the frontal lobe. The sphenoidal group drains the parts of the frontal, temporal, and parietal lobes adjoining the sylvian fissure. The tentorial group drains the lateral surface of the temporal lobe and the basal surface of the temporal and occipital lobes. The falcine group drains an area that includes the cingulate and parahippocampal gyri and approximates the cortical parts of the limbic lobe of the brain. The relationship of these veins to the venous lacunae was also examined.  相似文献   

9.
Controversy surrounds the role of the temporoparietal junction (TPJ) area of the human brain. Although TPJ has been implicated both in reorienting of attention and social cognition, it is still unclear whether these functions have the same neural basis. Indeed, whether TPJ is a precisely identifiable cortical region or a cluster of subregions with separate functions is still a matter of debate. Here, we examined the structural and functional connectivity of TPJ, testing whether TPJ is a unitary area with a heterogeneous functional connectivity profile or a conglomerate of regions with distinctive connectivity. Diffusion-weighted imaging tractrography-based parcellation identified 3 separate regions in TPJ. Resting-state functional connectivity was then used to establish which cortical networks each of these subregions participates in. A dorsal cluster in the middle part of the inferior parietal lobule showed resting-state functional connectivity with, among other areas, lateral anterior prefrontal cortex. Ventrally, an anterior TPJ cluster interacted with ventral prefrontal cortex and anterior insula, while a posterior TPJ cluster interacted with posterior cingulate, temporal pole, and anterior medial prefrontal cortex. These results indicate that TPJ can be subdivided into subregions on the basis of its structural and functional connectivity.  相似文献   

10.
Three regions of the macaque inferior parietal lobule and adjacent lateral intraparietal sulcus (IPS) are distinguished by the relative strengths of their connections with the superior colliculus, parahippocampal gyrus, and ventral premotor cortex. It was hypothesized that connectivity information could therefore be used to identify similar areas in the human parietal cortex using diffusion-weighted imaging and probabilistic tractography. Unusually, the subcortical routes of the 3 projections have been reported in the macaque, so it was possible to compare not only the terminations of connections but also their course. The medial IPS had the highest probability of connection with the superior colliculus. The projection pathway resembled that connecting parietal cortex and superior colliculus in the macaque. The posterior angular gyrus and the adjacent superior occipital gyrus had a high probability of connection with the parahippocampal gyrus. The projection pathway resembled the macaque inferior longitudinal fascicle, which connects these areas. The ventral premotor cortex had a high probability of connection with the supramarginal gyrus and anterior IPS. The connection was mediated by the third branch of the superior longitudinal fascicle, which interconnects similar regions in the macaque. Human parietal areas have anatomical connections resembling those of functionally related macaque parietal areas.  相似文献   

11.
To examine the distribution of visual and oculomotor activity across the macaque brain, we performed functional magnetic resonance imaging (fMRI) on awake, behaving monkeys trained to perform visually guided saccades. Two subjects alternated between periods of making saccades and central fixations while blood oxygen level dependent (BOLD) images were collected [3 T, (1.5 mm)3 spatial resolution]. BOLD activations from each of four cerebral hemispheres were projected onto the subjects' cortical surfaces and aligned to a surface-based atlas for comparison across hemispheres and subjects. This surface-based analysis revealed patterns of visuo-oculomotor activity across much of the cerebral cortex, including activations in the posterior parietal cortex, superior temporal cortex and frontal lobe. For each cortical domain, we show the anatomical position and extent of visuo-oculomotor activity, including evidence that the dorsolateral frontal activation, which includes the frontal eye field (on the anterior bank of the arcuate sulcus), extends anteriorly into posterior principal sulcus (area 46) and posteriorly into part of dorsal premotor cortex (area 6). Our results also suggest that subcortical BOLD activity in the pulvinar thalamus may be lateralized during voluntary eye movements. These findings provide new neuroanatomical information as to the complex neural substrates that underlie even simple goal-directed behaviors.  相似文献   

12.
The purpose of this study was to identify the functional corticalfields involved in reaching for targets in extrapersonal space,and to identify the specific fields representing visual targetinformation in long-term memory. Ten healthy subjects were askedto learn the positions of seven circular targets that were repeatedlyprojected on a screen. The regional cerebral blood flow wasmeasured with positron emission tomography during a rest state,at an early learning stage, at a later learning stage, and finallyat 30 min after the course of learning had been completed. MeanrCBF change images for each task minus rest were calculatedand fields of significant rCBF changes were identified. In all three task states, cortical fields were consistentlyactivated in the left motor and premotor areas, the posteriorpart of the superior parietal lobule, and the right angulargyrus. When learning of the target positions had been achieved,additional fields appeared bilaterally in the posterior partof the superior parietal lobule, the right superior occipitalgyrus, the left motor and premotor areas, the medial aspectof the superior frontal gyrus, the postcentral gyrus, the superiorpart of the cuneus, the inferior part of the angular gyrus,and the anterior part of the insula. The results indicate thatthere are at least two different types of functional fieldsin the posterior part of the superior parietal lobule; one isactive during reaching for the targets when guided by internalrepresentations of target positions; the other likely representsthe storage sites of visual target information that is addressedin long-term memory.  相似文献   

13.
In this study we examined the thalamic connectivity developed by grafts of embryonic (E16) parietal or occipital cortex placed homo- or heterotopically into the neocortex of newborn rats. We also examined the cytoarchitectonic organization developed by the grafts. Our findings indicate that E16 parietal cortex grafted into the parietal cortex of newborn recipients develops reciprocal connections with the host thalamic ventrobasal complex (VB) but does not establish connections with the host dorsal lateral geniculate nucleus (DLG). When implanted into the occipital cortex, these grafts are still able to establish connections with the VB. In contrast, E16 occipital cortex grafted into the parietal cortex establishes only a few connections with the VB. These grafts are, however, able to develop a substantial system of connections with the host DLG. At 16 days of embryonic age, graft cells are committed to establish thalamic connections appropriate to their tangential locus of origin. In addition, our results show that E16 parietal or occipital cortical cells do not possess the capacity to differentiate and maintain barrel organization even though they are grafted into the terminal field of developing VB axons.  相似文献   

14.
A sensory-sensory learning paradigm was used to measure neural changes in humans during acquisition of an association between an auditory and visual stimulus. Three multivariate partial least-squares (PLS) analyses of positron emission tomography data identified distributed neural systems related to (i) processing the significance of the auditory stimulus, (ii) mediating the acquisition of the behavioral response, and (iii) the spatial overlap between these two systems. The system that processed the significance of the tone engaged primarily right hemisphere regions and included dorsolateral prefrontal cortex, putamen, and inferior parietal and temporal cortices. Activity changes in left occipital cortex were also identified, most likely reflecting the learned expectancy of the upcoming visual event. The system related to behavior was similar to that which coded the significance of the tone, including dorsal occipital cortex. The PLS analysis of the concordance between these two systems showed substantial regional overlap, and included occipital, dorsolateral prefrontal, and limbic cortices. However, activity in dorsomedial prefrontal cortex was strictly related to processing the auditory stimulus and not to behavior. Taken together, the PLS analyses identified a system that contained a sensory-motor component (comprised of occipital, temporal association and sensorimotor cortices) and a medial prefrontallimbic component, that as a group simultaneously embodied the learning-related response to the stimuli and the subsequent change in behavior.   相似文献   

15.
The functional and structural properties of the dorsolateralfrontal lobe and posterior parietal proximal arm representationswere studied in macaque monkeys. Physiological mapping of primarymotor (MI), dorsal premotor (PMd), and posterior parietal (area5) cortices was performed in behaving monkeys trained in aninstructed-delay reaching task. The parietofrontal corticocorticatconnectivities of these same areas were subsequently examinedanatomically by means of retrograde tracing techniques. Signal-, set-, movement-, and position-related directional neuronalactivities were distributed nonuniformly within the task-relatedareas in both frontal and parietal cortices. Within the frontallobe, moving caudally from PMd to the MI, the activity thatsignals for the visuospatial events leading to target localizationdecreased, while the activity more directly linked to movementgeneration increased. Physiological recordings in the superior parietal lobule revealeda gradient-like distribution of functional properties similarto that observed in the frontal lobe. Signal- and set-relatedactivities were encountered more frequently in the intermediateand ventral part of the medial bank of the intraparietal sulcus(IPS), in area MIP. Movement- and position-related activitieswere distributed more uniformly within the superior parietallobule (SPL), in both dorsal area 5 and in MIP. Frontal and parietal regions sharing similar functional propertieswere preferentially connected through their association pathways.As a result of this study, area MIP, and possibly areas MDPand 7m as well, emerge as the parietal nodes by which visualinformation may be relayed to the frontal lobe arm region. Theseparietal and frontal areas, along with their association connections,represent a potential cortical network for visual reaching.The architecture of this network is ideal for coding reachingas the result of a combination between visual and somatic information.  相似文献   

16.
OBJECT: The lateral occipital cortex in humans is known as the "extrastriate visual cortex." It is, however, an unexplored field of research, and the anatomical nomenclature for its surface has still not been standardized. This study was designed to investigate whether the lateral occipital cortex in humans has retinotopic representation. METHODS: Four right-handed patients with a diagnosis of intractable epilepsy from space-occupying lesions in the occipital lobe or epilepsy originating in the occipital lobe received permanently implanted subdural electrodes. Electrical cortical stimulation was applied directly applied to the brain through metal electrodes by using a biphasic stimulator. The location of each electrode was measured on a lateral skull x-ray study. Each patient considered a whiteboard with vertical and horizontal median lines. The patient was asked to look at the midpoint on the whiteboard. If a visual hallucination or illusion occurred, the patient recorded its outline, shape, color, location, and motion on white paper one tenth the size of, and with vertical and horizontal median lines similar to those on, the whiteboard. Polar angles and eccentricities of the midpoints of the phosphenes from the coordinate origin were measured on the paper. On stimulation of the lateral occipital lobe, 44 phosphenes occurred. All phosphenes were circular or dotted, with a diameter of approximately 1 cm, except one that was like a curtain in the peripheral end of the upper and lower visual fields on stimulation of the parietooccipital region. All phosphenes appeared in the visual field contralateral to the cerebral hemisphere stimulated. On stimulation of the lateral occipital lobe, 22 phosphenes moved centrifugally or toward a horizontal line. From three-dimensional scatterplots and contour maps of the polar angles and eccentricities in relation to the x-ray coordinates of the electrodes, one can infer that the lateral occipital cortex in humans has retinotopic representation. CONCLUSIONS: The authors found that phosphenes induced by electrical cortical stimulation of the lateral occipital cortex represent retinotopy. From these results one can assert that visual field representation with retinotopic relation exists in the extrastriate visual cortex.  相似文献   

17.
OBJECT: Knowledge of normal variations in ventricular morphological features is important in endoscopic neurosurgery. Classically, two elevations are described on the medial wall of the occipital horn of the lateral ventricle: an upper bulb and a lower calcar avis. Nevertheless, a third, as yet unreported elevation may be present at the junction of the medial wall and the floor of the occipital horn. The authors report the frequency with which this third elevation was found in a series of cadaveric brains. METHODS: The medial wall of the occipital horn of the lateral ventricle was studied in the three orthogonal planes in 45 formalin-fixed cadaveric hemispheres. The underlying structures responsible for the observed intraventricular prominences were exposed by microdissection. A third elevation was present, lying ventrorostral to the calcar avis, in seven (47%) of the 15 single hemispheres, and bilaterally in six (40%) of the 15 whole brains. After microdissection, a fiber bundle from the splenium of the corpus callosum was seen emerging in the occipital horn at the angle between the tail of the hippocampus and the bulb of the occipital horn. The most rostral fibers fanned out inferolaterally along the floor of the collateral trigone. The larger, posterior part protruded into the medial wall along the ventral border of the calcar avis as far as the tip of the occipital horn. CONCLUSIONS: Besides its importance as a variation of normal ventricular morphological features, the close relationship of this accessory intraventricular prominence to the tail of the hippocampus should be kept in mind when intervening neurosurgically so that damage to the underlying commissural fibers can be avoided.  相似文献   

18.
The parietal cortex has traditionally been implicated in spatial attention and eye-movement processes. Recent functional neuroimaging studies have found that activation in the parietal cortex is related to successful recognition memory. The activated regions consistently include the intraparietal sulcus in the lateral parietal cortex and the precuneus in the medial parietal cortex. However, little is known about the functional differences between lateral and medial parietal cortices in the memory retrieval process. In this study, we examined whether the human lateral and medial parietal lobes have differential anatomical and functional connectivity with the temporal lobe. To this end, we used functional magnetic resonance imaging to constrain the analysis of anatomical connectivity obtained by diffusion tensor imaging (DTI). Both DTI tractography and functional connectivity analysis showed that the lateral parietal region has anatomical and functional connections with the lateral temporal lobe, and the medial parietal region has connections with the medial temporal lobe. These results suggest the existence of segregated lateral and medial parieto-temporal pathways in successful memory retrieval.  相似文献   

19.
Using magnetic resonance imaging and computational cortical pattern matching methods, we analyzed hemispheric differences in regional gray matter thickness across the lateral and medial cortices in young, healthy adults (n = 60). In addition, we investigated the influence of gender on the degree of thickness asymmetry. Results revealed global and regionally specific differences between the two hemispheres, with generally thicker cortex in the left hemisphere. Regions with significant leftward asymmetry were identified in the precentral gyrus, middle frontal, anterior temporal and superior parietal lobes, while rightward asymmetry was prominent in the inferior posterior temporal lobe and inferior frontal lobe. On the medial surface, significant rightward asymmetries were observed in posterior regions, while significant leftward asymmetries were evident from the vicinity of the paracentral gyrus extending anteriorly. Asymmetry profiles were similar in both sexes, but hemispheric differences appeared slightly pronounced in males compared with females, albeit a few regions also indicated greater asymmetry in females compared with males. Hemispheric differences in the thickness of the cortex might be related to hemisphere-specific functional specializations that are possibly related to behavioral asymmetries.  相似文献   

20.
The objective of this study was to investigate brain areas involved in distinguishing sensory events caused by self-generated movements from similar sensory events caused by externally generated movements using functional magnetic resonance imaging. Subjects performed 4 types of movements: 1) self-generated voluntary movement with visual feedback, 2) externally generated movement with visual feedback, 3) self-generated voluntary movement without visual feedback, and 4) externally generated movement without visual feedback, this design. This factorial design makes it possible to study which brain areas are activated during self-generated ankle movements guided by visual feedback as compared with externally generated movements under similar visual and proprioceptive conditions. We found a distinct network, comprising the posterior parietal cortex and lateral cerebellar hemispheres, which showed increased activation during visually guided self-generated ankle movements. Furthermore, we found differential activation in the cerebellum depending on the different main effects, that is, whether movements were self- or externally generated regardless of visual feedback, presence or absence of visual feedback, and activation related to proprioceptive input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号