首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(2-dimethyl amino ethyl) methacrylate (pDMAEMA) cationic polymers have been shown to be efficient vectors for gene delivery in vitro. This contribution deals with the in vivo properties of polyplexes based on this polymer. In mice, pDMAEMA/[32P]-pLuc complexes distributed primarily to the lungs. The gene expression profile matched the biodistribution profile. In vitro turbidity experiments in serum showed severe aggregation upon addition of cationic polyplexes, pointing out the involvement of aggregates in the dominant lung uptake of the positively charged polyplexes. Incubations of polyplexes with albumin yielded a decline of the zeta potential of the complexes to negative values, making an electrostatic mechanism in the dominant lung uptake less likely. Hemagglutination experiments showed that the polyplexes induce the formation of extremely large structures when incubated with washed erythrocytes. Altogether, the present data indicate that aggregate formation and trapping of the formed aggregates in the lung capillary bed is probably responsible for the dominant lung uptake and transfection. Poly(ethylene)glycol (PEG) of the polymeric structures prevented the increase in the observed turbidity in serum seen with polyplexes and was also able to reduce interactions with erythrocytes. Currently, the in vivo fate of the PEGylated polyplexes is under investigation.  相似文献   

2.
PURPOSE: Experiments were conducted to evaluate the utility of a peptide receptor ligand to improve transfection efficiency as part of a polyethylenimine-polyethylene glycol (PEI-PEG) polyplex. The 7-mer peptide (MQLPLAT), targeted toward the fibroblast growth factor 2 (FGF2) receptor, was recently identified using a phage-display library method as possessing a high degree of specificity for the FGF2 receptor without the mutagenicity associated with FGF itself. Two approaches (pre-modification or post-modification) to incorporate the peptide into the PEGylated polyplex were compared in terms of their effect on particle size, surface charge, DNA condensation ability, toxicity, cellular uptake and transfection efficiency. METHODS: The peptide was conjugated to branched PEI (25 kDa) via a PEG spacer either before (pre-modified) or after (post-modified) complexation of PEI with DNA. Polyethyleneimine was conjugated to the PEG spacer (N-hydroxy succinimide (NHS) -PEG-maleimide (Mal)) through the NHS group. The FGF2 peptide was synthesized to contain a cysteine at the carboxyl end (MQLPLATC) and conjugated to the PEG spacer via the Maleimide group. Conjugates were evaluated using (1)H NMR, amino acid analysis, and picrylsulfonic acid assay. DNA condensation was evaluated using agarose gel electrophoresis and cellular toxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cellular uptake was measured using flow cytometry and transfection efficiency was determined using a luciferase reporter gene assay. RESULTS: Both pre- and post-modification approaches led to a decrease in the zeta potential of the resulting polyplexes but did not alter their size. The pre-modification of PEI did not affect its ability to condense DNA. However, polyplexes formed with the pre-conjugated PEI did not improve cell uptake or transfection efficiency. In contrast, polyplexes that were post-modified with the FGF2 peptide resulted in a 3-fold increase in cell uptake and a 6-fold increase in transfection efficiency. Both pre- and post-modified polyplexes resulted in lower toxicity compared with unmodified PEI. CONCLUSIONS: The results indicate that the FGF2 peptide improves transfection efficiency when used as part of post-modified PEI/PEG polyplex. When used with pre-modified PEI/PEG, the beneficial effect of the peptide on transfection is not evident, probably because, in this case, the peptide ligand is not readily accessible to the FGF receptor.  相似文献   

3.
Purpose: Experiments were conducted to evaluate the utility of a peptide receptor ligand to improve transfection efficiency as part of a polyethylenimine-polyethylene glycol (PEI-PEG) polyplex. The 7-mer peptide (MQLPLAT), targeted toward the fibroblast growth factor 2 (FGF2) receptor, was recently identified using a phage-display library method as possessing a high degree of specificity for the FGF2 receptor without the mutagenicity associated with FGF itself. Two approaches (pre-modification or post-modification) to incorporate the peptide into the PEGylated polyplex were compared in terms of their effect on particle size, surface charge, DNA condensation ability, toxicity, cellular uptake and transfection efficiency.

Methods: The peptide was conjugated to branched PEI (25 kDa) via a PEG spacer either before (pre-modified) or after (post-modified) complexation of PEI with DNA. Polyethyleneimine was conjugated to the PEG spacer (N-hydroxy succinimide (NHS) -PEG-maleimide (Mal)) through the NHS group. The FGF2 peptide was synthesized to contain a cysteine at the carboxyl end (MQLPLATC) and conjugated to the PEG spacer via the Maleimide group. Conjugates were evaluated using 1H NMR, amino acid analysis, and picrylsulfonic acid assay. DNA condensation was evaluated using agarose gel electrophoresis and cellular toxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cellular uptake was measured using flow cytometry and transfection efficiency was determined using a luciferase reporter gene assay.

Results: Both pre- and post-modification approaches led to a decrease in the zeta potential of the resulting polyplexes but did not alter their size. The pre-modification of PEI did not affect its ability to condense DNA. However, polyplexes formed with the pre-conjugated PEI did not improve cell uptake or transfection efficiency. In contrast, polyplexes that were post-modified with the FGF2 peptide resulted in a 3-fold increase in cell uptake and a 6-fold increase in transfection efficiency. Both pre- and post-modified polyplexes resulted in lower toxicity compared with unmodified PEI.

Conclusions: The results indicate that the FGF2 peptide improves transfection efficiency when used as part of post-modified PEI/PEG polyplex. When used with pre-modified PEI/PEG, the beneficial effect of the peptide on transfection is not evident, probably because, in this case, the peptide ligand is not readily accessible to the FGF receptor.  相似文献   

4.
PEGylated quaternized copolymer/DNA complexes for gene delivery   总被引:1,自引:0,他引:1  
The aim of this study was to improve the colloidal stability, decrease unspecific interactions with cells and blood components of a novel gene delivery system composed of epsilon-caprolactone and quaternized epsilon-caprolactone. For this purpose, diblock 50/50 copolymer was used to generate complexes with DNA by either the solvent evaporation technique and by dialysis. The size, surface charge and degree of interaction of the plasmid-loaded formulations were measured. Then, polyplexes were combined with a poly(CL)-b-PEG copolymer to create a hydrophilic corona on the surface of the complexes. The cytotoxicity, transfection efficiency and cellular uptake of polyplexes and their association with PEG were evaluated on HeLa cells. The dialysis method did not allow to reduce the size of complexes as compared to the solvent evaporation method. The zeta potential of polyplexes became positive from a charge ratio of 4. The degree of interaction of copolymer with plasmid DNA was very high. Cytotoxicity and transfection efficiency were found to be comparable to polyethylenimine 50 kDa. Association of polyplexes with poly(CL)-b-PEG copolymer led to a small increase in particle size and a sharp decrease of charge surface. Cytotoxicity, transfection efficiency and cellular uptake were significantly reduced relative to unshielded copolymer/DNA complexes. The PEGylated formulations may be an attractive approach for an in vivo application.  相似文献   

5.
Recently, cryoconservable polyethylene glycol (PEG)-shielded and epidermal growth factor receptor (EGFR)-targeted polyplexes (EGF+ polyplexes) were engineered in our laboratory for tumor-directed transfer and expression of DNA. Here, we further analyzed specificity and kinetics of EGFR-mediated cellular uptake of these polyplexes. Similar to our previous results, EGF+ polyplexes significantly enhanced the transfection efficiency as compared to polyplexes without EGF (EGF- polyplexes) in HUH-7 hepatoma cells and Renca-EGFR renal carcinoma cells. EGF+ polyplexes rapidly associated with the cells within 30 min of exposure, and binding of EGF+ polyplexes to the cells after 4 h was significantly higher than that of EGF- polyplexes. In the presence of free EGF, both cell association and transfection efficiency of EGF+ polyplexes were markedly reduced indicating that these effects were primarily mediated via ligand receptor interaction. Fluorescence microscopy revealed that the cell-associated EGF+ polyplexes aggregated to micrometer sized clusters, resembling typical clustering of receptors upon ligand binding. In conclusion, EGFR-targeting enhances transfection efficiency due to accelerated and increased cell association followed by aggregation of the bound EGF+ polyplexes.  相似文献   

6.
A novel synthetic gene transfer vector was evaluated for tumor cell-specific targeted gene delivery. The folate receptor is a tumor marker overexpressed in more than 90% of ovarian carcinomas and large percentages of other human tumors. Folic acid is a high affinity ligand for the folate receptor that retains its binding affinity upon derivatization via its gamma carboxyl. Folate conjugation, therefore, presents a potential strategy for tumor-selective targeted gene delivery. In the current study, we investigated a series of folate conjugates of the cationic polymer polyethylenimine (PEI) for potential use in gene delivery. A plasmid containing a luciferase reporter gene (pCMV-Luc) and the folate receptor expressing human oral cancer KB cells were used to monitor gene transfer efficiency in vitro. Transfection activity of polyplexes containing unmodified polyethylenimine was highly dependent on the positive to negative charge (or the N/P) ratio. Folate directly attached to PEI did not significantly alter the transfection activity of its DNA complexes compared to unmodified PEI. Modification of PEI by polyethyleneglycol (PEG) led to a partial inhibition of gene delivery compared to unmodified PEI. Attaching folates to the distal termini of PEG-modified PEI greatly enhanced the transfection activity of the corresponding DNA complexes over the polyplexes containing PEG-modified PEI. The enhancements were observed at all N/P ratios tested and could be blocked partially by co-incubation with 200 μM free folic acid, which suggested the involvement of folate receptor in gene transfer. Targeted vectors based on the folate-PEG-PEI conjugate are potentially useful as simple tumor-specific vehicles of therapeutic genes.  相似文献   

7.
Chitosan (CS)-based polyplexes are produced by spontaneous electrostatic association with nucleic acids using CS in excess. Interactions of positively charged polyplexes, and the unbound CS, with negatively charged blood components limit the applicable dosage of such polymeric nanoparticles (NPs) and development of formulations with improved hemocompatibility and transfection efficiency is needed. Here, we introduce a strategy based on Tangential Flow Filtration (TFF) to remove unbound CS, concentrate polyplexes and subsequently coat with hyaluronic acid (HA) to improve hemocompatibility and bioactivity. Optimal TFF conditions were established. A library of HA with different molecular weights and degrees of sulfation was used at different carboxyl + sulfate to phosphate ratios for polyplex coating, bioactivity and hemocompatibility assessment. A systematic optimization of TFF conditions allowed for purification of polylpexes from excess unbound CS and subsequent coating with HA. Except for high molecular weight HA, for which macroscopic aggregation was observed, both sulfated and non-sulfated HAs resulted in small sized and homogenous coated complexes. However, sulfated HAs displayed higher stability during the second filtration process indicating their stronger binding affinity to polyplexes. Finally, we found that low molecular weight HA-coated polyplexes have equivalent silencing efficiency in vitro and improved hemocompatibility compared to uncoated polyplexes.  相似文献   

8.
In a previous study we have shown that the oligosaccharide inulin can prevent aggregation of poly(ethylene glycol) (PEG) coated plasmid DNA/cationic liposome complexes ("PEGylated lipoplexes") during freeze thawing and freeze drying [Hinrichs et al., 2005. J. Control. Release 103, 465]. By contrast, dextran clearly failed as stabilizer. These results were ascribed to the fact that inulin and PEG are compatible while dextran and PEG are not. In this study the stabilizing capacities of inulin and dextran (of various molecular weights) during freeze thawing and freeze drying of four different types of nanoparticles, each type with different amounts of PEG at their surface, were investigated. Freeze drying and freeze thawing of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/dioleoyl-phosphatidyl-ethanolamine (DOPE) liposomes and egg phosphatidyl choline (EPC)/cholesterol (CHOL) liposomes showed that inulins are excellent stabilizers even for highly PEGylated liposomes while (especially higher molecular weight) dextrans dramatically lost their stabilizing capacity when increasing the degree of PEGylation of the liposomes. The same results were obtained for plasmid DNA/DOTAP/DOPE complexes. Finally, both inulin and dextran could prevent full aggregation of plasmid DNA/polyethylenimine (PEI) complexes independent whether PEI was PEGylated or not. It is concluded that inulins are preferred as stabilizers over dextrans for various types of PEGylated nanoparticles due to their compatibility with PEG.  相似文献   

9.
Despite their great potential, gene delivery polyplexes have a number of limitations, including their tendency for aggregation in vivo or upon storage. In previous studies, we could show that hydroxyethyl starch (HES)-decoration of polyplexes reduces aggregation in vitro and in vivo. The current study investigates the ability of HES-decoration to improve the stability of polyplexes upon storage as frozen-liquid or lyophilizate, and uses naked polyplexes or PEGylated ones as controls. For this purpose, freeze-thaw (FT) experiments of the polyplexes were conducted in the presence of standard excipients (glucose, sucrose or trehalose). Dynamic light scattering (DLS) measurements showed that HES-decoration imparted better stability when glucose was used, while both HES and PEG were effective in inhibiting aggregation in the presence of trehalose or sucrose. In contrast, the lyophilized HES-coated polyplexes were more stable than the PEGylated ones as shown by DLS, even after storage for 10 weeks at an elevated temperature. Evaluation of the gene transfer efficiency of the stored samples showed no negative effect of storage, except for the lyophilized naked polyplexes. In general, this study shows that, while both HES- or PEG-coats could prevent aggregation under frozen-liquid storage, the HES-coat resulted in superior protective effect upon lyophilization, with possible advantages for in vivo application. In summary, our developed HES-coats provided effective cryo- and lyoprotection to the DNA polyplexes.  相似文献   

10.
Guo Y  Sun Y  Li G  Xu Y 《Molecular pharmaceutics》2004,1(6):477-482
Polycations can complex with DNA and form compact nanoparticles (polyplexes) to facilitate gene transfection. Recently, poly(ethylene glycol) (PEG) was incorporated in the polyplexes to improve their in vivo stability and defer body clearance. This work provided a direct look using atomic force microscopy at the molecular conformation of PEG molecules on the polyplex surfaces. Individual PEG strands were seen to extend from the compact cores and intertwined with each other to form the protective surface layer.  相似文献   

11.
Purpose Previously, we have shown that complexes of plasmid DNA with the biodegradable polymer poly(2-dimethylamino ethylamino)phosphazene (p(DMAEA)-ppz) mediated tumor selective gene expression after intravenous administration in mice. In this study, we investigated the effect of p(DMAEA)-ppz molecular weight on both in vitro and in vivo tumor transfection, as well as on complex induced toxicity. Materials and Methods p(DMAEA)-ppz with a broad molar mass distribution was fractionated by preparative size exclusion chromatography. Polyplexes consisting of plasmid DNA and the collected polymer fractions were tested for biophysical properties, (cyto)toxicity and transfection activity. Results Four p(DMAEA)-ppz fractions were collected with weight average molecular weights ranging from 130 to 950 kDa, and with narrow molecular mass distributions (Mw/Mn from 1.1 to 1.3). At polymer-to-DNA (N/P) ratios above 6, polyplexes based on these polymers were all positively charged (zeta potential 25–29 mV), and had a size of 80–90 nm. The in vitro cytotoxicity of the polyplexes positively correlated with polymer molecular weight. The in vitro transfection activity of the different polyplexes depended on their N/P ratio, and was affected by the degree of cytotoxicity, as well as the colloidal stability of the different polyplexes. Intravenous administration of polyplexes based on the high molecular weight polymers led to apparent toxicity, as a result of polyplex-induced erythrocyte aggregation. On the other hand, administration of polyplexes based on low molecular weight p(DMAEA)-ppz’s (Mw 130 kDa) did not show signs of toxicity and resulted in tumor selective gene expression. Conclusion Polymer molecular weight fractionation enabled us to optimize the transfection efficiency/toxicity ratio of p(DMAEA)-ppz polyplexes for in vitro and in vivo tumor transfection.  相似文献   

12.
The objective of this study was to assess the in vivo fate of poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA)-based polyplexes after intravenous administration into mice. Circulation kinetics and tissue distribution in terms of plasmid localization and transfection efficiency were assessed. To gain more insight into the observed biodistribution and gene expression profile, the interaction of pDMAEMA-based polyplexes with blood components (erythrocytes and albumin) was investigated in vitro. In the case of i.v. injection of positively charged polyplexes at a dose of 30 microg DNA most of the radioactivity was found in the lungs and the liver 60 min after injection. In the case of pDMAEMA/DNA polyplexes with a negative charge, uptake occurred mainly by the liver. Administration of positively charged complexes at a 30 microg DNA dose resulted in reporter gene expression primarily in the lungs. Injection of negatively charged complexes and naked plasmid did not result in luciferase expression in any of the organs examined. In vitro turbidity experiments showed the induction of a charge dependent aggregation process upon addition of albumin to the polyplexes pointing out to the involvement of aggregate formation in the dominant lung uptake of the positively charged polyplexes. Also, incubations of polyplexes after pre-incubation with a physiological concentration of albumin with washed erythrocytes confirmed that polyplexes induce the formation of extremely large structures. This paper underlines the need for the design of systems with reduced interaction with blood components to promote the delivery of DNA to target tissues outside the lungs.  相似文献   

13.
We report on the synthesis of a novel gene carrier that has low interaction with serum components, as well as low cytotoxicity. Cationic copolymers composing branched poly(ethylenimine) (PEI) grafted with hydrophilic poly(ethylene glycol) (PEG) and poly(l-lactic acid) (PLLA) or small-molecule oleoyl were synthesized and evaluated as novel gene carriers in this study. The copolymers were complexed with plasmid DNA and the resulting polyplexes were approximately 140 nm in diameter and had a positive surface potential (ζ = +13.8 mV) at the N/P ratio of 10/1. The experiments showed that copolymers with the oleoyl moiety were superior to the other two copolymers (with PLLA), in terms of in vitro gene transfection efficiency. Safety studies using MTT assay indicated much lower cytotoxicity of the oleoyl polyplexes than the pDNA/PEI complexes. The intracellular behavior of the polyplexes was monitored by confocal laser scanning microscopy, and it was found that the polyplexes were internalized into HeLa cells very effectively. At the same time, the plasmid DNA carried by the oleoyl-containing copolymers was found to localize in the nucleus of the recipient cells. One experiment comparing serum-free and serum-containing media indicated that the oleoyl polyplexes may be able to evade the reticulo-endothelial system (RES) better than the PEI–pDNA complex.  相似文献   

14.
Epidermal growth factor receptor (EGFR) targeted DNA polyplexes, containing polyethylenimine (PEI) conjugated with EGF protein as cell-binding ligand for endocytosis and polyethylene glycol (PEG) for masking the polyplex surface charge, mediated a 3- to 30-fold higher luciferase gene expression in HUH7, HepG2 and A431 cell transfections than analogous untargeted PEG–PEI polyplexes. Transfection levels can be further enhanced by treatment of cells with amphiphilic photosensitizers followed by illumination. In this process photosensitizers localized in membranes of endocytic vesicles are activated by light, resulting in the destruction of endocytic membrane structures and releasing co-endocytosed polyplexes into the cell cytosol. Photochemical enhanced gene expression was observed in all cell lines, with the magnitude of enhancement depending on the particular PEI polyplex formulation and cell line, ranging between 2- and 600-fold. Importantly, improved gene transfer retained EGF receptor specificity, as demonstrated by comparison with ligand-free polyplexes and by receptor antibody or ligand competition experiments. These results suggest that this combined procedure enables a dual mode of targeting polyplexes: biological targeting via EGFR interaction, combined with physical targeting with light to direct a photochemical delivery of therapeutic genes to a desired location.  相似文献   

15.
The modification of surface properties of biodegradable poly(lactide-co-glycolide) (PLGA) and model polystyrene nanospheres by poly(lactide)-poly(ethlene glycol) (PLA:PEG) copolymers has been assessed using a range of in vitro characterization methods followed by in vivo studies of the nanospheres biodistribution after intravenous injection into rats. Coating polymers with PLA:PEG ratio of 2:5 and 3:4 (PEG chains of 5000 and 2000 Da, respectively) were studied. The results reveal the formation of a PLA: PEG coating layer on the particle surface resulting in an increase in the surface hydrophilicity and decrease in the surface charge of the nanospheres. The effects of addition of electrolyte and changes in pH on stability of the nanosphere dispersions confirm that uncoated particles are electrostatically stabilized, while in the presence of the copolymers, steric repulsions are responsible for the stability. The PLA:PEG coating also prevented albumin adsorption onto the colloid surface. The evidence that this effect was observed for the PLA:PEG 3:4 coated nanospheres may indicate that a poly(ethylene glycol) chain of 2000 Da can provide an effective repulsive barrier to albumin adsorption. The in vivo results reveal that coating of PLGA nanospheres with PLA:PEG copolymers can alter the biodistribution in comparison to uncoated PLGA nanospheres. Coating of the model polystyrene nanospheres with PLA:PEG copolymers resulted in an initial high circulation level, but after 3 hours the organ deposition data showed values similar to uncoated polystyrene spheres. The difference in the biological behaviour of coated PLGA and polystyrene nanospheres may suggest a different stability of the adsorbed layers on these two systems. A similar biodistribution pattern of PLA:PEG 3:4 to PEG 2:5 coated particles may indicate that poly(ethylene glycol) chains in the range of 2000 to 5000 can produce a comparable effect on in vivo behaviour.  相似文献   

16.
Folic acid, conjugated to poly(ethylene glycol)-distearoylphosphatidylethanolamine (folate-PEG-DSPE), was used to target emulsions of all-trans retinoic acid (ATRA) to folate receptor-overexpressing tumor cells. Two kinds of ATRA-incorporated folate-tethered emulsions (ATRA-FTE 2000/3400) were prepared using soybean oil, egg phosphatidylcholine and folate-PEG-DSPE with different PEG length. As a control, ATRA-incorporated non-tethered emulsion (ATRA-NTE) was prepared by using PEG2000-DSPE without folate instead of using folate-PEG-DSPE. The mean particle diameters of ATRA-FTE 2000/3400 were about 100-130 nm. The cellular uptake in KB cells of fluorescence-labeled ATRA-FTE 3400 was determined with HPLC (for ATRA) and confocal microscopy (for lipid emulsion). The growth inhibitory activity of ATRA was evaluated by MTT assay. The folate ligands in emulsion increased the cellular uptake of ATRA about 3-fold and 1.6-fold in ATRA-FTE 3400 and ATRA-FTE 2000, respectively. Growth inhibitory activity of ATRA-FTE 3400 in KB cells was higher than that of ATRA-NTE at the same dose. Whereas the growth inhibitory effect in MCF-7 cells of ATRA was similar between ATRA-NTE and ATRA-FTE 3400. The addition of free folate significantly reduced the uptake of ATRA regardless of the length of PEG attached to folate. Folate-tethered lipid emulsion showed effective and selective delivery to the folate receptor-abundant carcinomas, suggesting a potential for targeted delivery of anticancer agents.  相似文献   

17.
Poly(ethylene glycol)-grafted-polyethylenimine (PEG-PEI) are promising non-viral gene delivery systems. Herein, we aimed to synthesize a biodegradable disulfide containing PEGylated PEI to attempt to reduce its cytotoxicity and enhance the gene transfer activity. Using click chemistry, low Mw PEI (br. 2 kDa) and short chain length PEG (tetraethylene glycol, TEG) were cross-linked to a high Mw PEG-PEI copolymer (~ 22 kDa). The chemical structure of the copolymer was characterized using (1)H NMR and GPC. The degradation behavior was investigated under in vitro conditions in the presence of 1,4-dithiothreitol (DTT). The gel retardation assay, dynamic light scattering and atomic force microscopy showed good DNA condensation ability by forming polyplexes with small particle size and positive zeta potential. In particular, MTT assay indicated that this PEG-PEI polymer is about 22-fold less toxic than PEI 25k and only 2-fold more toxic than PEI 2k in L929 cell line. After coupling of small PEG chains and cross-linking by disulfide bridges, the transfection efficiency is increased approximately 6-fold in comparison to PEI 2k and still reaches approximately 17% of PEI 25k. Hence, this click cluster cross-linked disulfide containing PEG-PEI copolymer could be an attractive cationic polymer for non-viral gene delivery.  相似文献   

18.
Phospholipids have been extensively evaluated as an anchor for both PEGylation and receptor-targeting in liposomal formulations. However, cholesterol, another important component in biomembranes, has not been fully investigated as an alternative anchor. In this study, the potential role of cholesterol for anchoring PEG and folate was investigated. Cholesterol derivatives were synthesized for PEGylation (mPEG-cholesterol) and folate receptor (FR) targeting (folate-PEG-cholesterol) and incorporated into the bilayer of FR-targeted liposomal doxorubicin. The colloidal stability of these cholesterol derivative-containing liposomes was superior to non-PEGylated liposomes, indicating that steric barrier provided by mPEG-cholesterol can efficiently inhibit aggregation of liposomes. FR-targeting activity of these liposomes was demonstrated by in vitro cell-binding studies on FR-overexpressing KB cells. In addition, in vivo circulation of cholesterol-anchored liposomes was prolonged compared to non-PEGylated liposomes. These studies suggest that cholesterol is a viable bilayer anchor for synthesis of PEGylated and FR-targeted liposomes.  相似文献   

19.
The identification of PEGylation sites is essential in the characterization of PEGylated therapeutic proteins. This report describes a simple and novel method of finding poly(ethylene glycol) (PEG) conjugation sites in PEGylated proteins by using a hetero-functional biotin-PEG-N-hydroxyl succinimide derivative. PEGylated lysozyme species having a biotin moiety at each PEG chain end were separated and digested by trypsin. Among the digested lysozyme fragments, biotin-terminated PEGylated peptide fragments were purified by a monomeric avidin immobilized column. Their mass was analyzed by matrix-assisted laser desorption ionization time of flight mass spectrometry, directly indicating that PEG was conjugated to lysine 33, 97, 116 residues. Reversed-phase high-pressure liquid chromatography results for the PEGylated peptide fragments exhibited that PEGylation occurred preferentially at lysine 33> lysine 97> lysine 116.  相似文献   

20.
Physicochemical properties of polyplexes formed between pRSVlacZ and poly(amino acid)s were investigated as a paradigm of more complex, synthetic virus-like, DNA delivery systems, that are of interest to many gene delivery laboratories. We observed the interaction between polymer and DNA using ethidium exclusion, and determined the size distributions and the zeta potentials of polyplexes. We correlated these properties with their fundamental interactions with cultured B16 murine melanoma cells, and the resulting efficiency of transfection. A variety of poly(amino acid)s each condensed DNA to produce particles with mean hydrodynamic diameters of approximately 100 nm (a typical span of a population was 80-120nm). Poly(amino acid) polyplexes were unstable in electrolyte solutions such as cell culture media. The apparent particle size increased in electrolyte, depending on the charge ratio, to diameters up to 700 nm. This was thought to be due to aggregation, since neutral particles were most sensitive. When the charge ratio (+/-) exceeded unity polyplexes had positive zeta potentials (which peaked at approximately +30 mV), bound non-specifically to cells, were internalised and in the presence of an endosomolytic agent were able to transfect cells. Though all cationic poly(amino acid)s investigated formed polyplexes with similar physical properties, their biological properties were significantly different. Polyplexes prepared with poly-L-ornithine were the most effective transfection agents, but poly(lys-co-ala, 1: 1) systems appeared to be inactive. This may reflect the differences in uncoupling of DNA and polymer, which is expected to be necessary for passage through the nuclear pore. Uncoupling of polycation and DNA was investigated by exposing the complexes to dextran sulphate. Release of DNA was detected by increased fluorescence at 600 nm in the presence of ethidium. Release of DNA was incomplete from polyplexes formed with high molecular weight polylysine. This may explain the lower levels of transfection observed with high molecular weight polylysine. The significance of these observations for design of advanced non-viral gene delivery systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号