首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A primosome assembly site for F plasmid DNA replication has been identified. This site, which we term rriA (F), is localized to one strand of a 385-base-pair Sau3A restriction fragment very close to ori 2 and within the 2.25-kilobase DNA sequence required for replication and incompatibility of the entire F plasmid. rriA (F) was isolated by cloning into the deletion phage vector M13 delta Elac. This phage forms very faint plaques due to a deletion of the M13 complementary strand origin but forms large wild-type plaques when DNA single-strand initiation determinants are inserted. The single-stranded viral DNA of the Sau3A F-M13 delta Elac recombinant provides an effector site of dATP hydrolysis by the primosomal protein n'. It also provides an assembly site for the Escherichia coli primosome protein complex that directs the in vitro conversion of the single-stranded DNA to a double-stranded form by the same mechanism as that used by phi X174. Homologies of the nucleotide sequence between this F DNA sequence and the previously identified primosome assembly sites in phi X174 phage DNA and in ColE1 plasmid DNA (rriA and rriB) have been found. The sequences 5' G-T-G-A-G-C-G 3' and 5' G-N-G-G-A-A-G-C 3' or variations of these sequences occur from two to five times within each assembly locus. In addition, two distinct 15-base-pair sequences in rriA (F) are perfectly homologous to corresponding sequences in rriA (ColE1).  相似文献   

2.
An in vitro system capable of synthesizing infectious phi X174 phage particles was reconstituted from purified components. The synthesis required phi X174 supercoiled replicative form DNA, phi X174-encoded proteins A, C, J, and prohead, Escherichia coli DNA polymerase III holoenzyme, rep protein, and deoxyuridinetriphosphatase (dUTPase, dUTP nucleotidohydrolase, EC 3.6.1.23) as well as MgCl2, four deoxyribonucleoside triphosphates, and ATP. Phage production was coupled to the synthesis of viral single-stranded DNA. More than 70% of the synthesized particles sedimented at the position of mature phage in a sucrose gradient and associated with the infectivity. The simple requirement of the host proteins suggests that the mechanism of viral strand synthesis in the phage-synthesizing reaction resembles that of viral strand synthesis during the replication of replicative form DNA.  相似文献   

3.
Replication of the covalently closed duplex replicative form (RF) of phage phi X174 DNA has been achieved by coupling two known enzyme systems: (i) synthesis of viral strand circles (SS) from RF, and (ii) conversion of SS to nearly complete RF (RF II). In this coupled system, activated RF (gene A . RF II complex) was a more efficient template and generated as many as 10 RF II molecules per RF input, at a rate commensurate with SS synthesis. The 11 proteins required for the two component systems were all needed in the coupled RF duplication system; no new factors were required. Single-stranded DNA binding protein was needed for RF duplication at only 4% the level needed in its stoichiometric participation in SS synthesis. In addition to RF II, more complex replicative forms appeared late in the reaction, and their possible origin is discussed.  相似文献   

4.
An in vitro system that synthesizes infectious phage phi X174 was developed. The synthesis depended on phi X174 supercoiled replicative form DNA, purified phi X174 gene A protein, gene C protein, gene J protein, prohead (phage head precursor composed of gene F, G, H, B, and D proteins), and uninfected host crude extract. The infectious phage synthesis was coupled with DNA synthesis. De novo initiation, elongation, and termination of phi X174 single-stranded DNA was observed. The phage synthesized in vitro cosedimented with in vivo phage in sucrose gradients and had the same buoyant density as in vivo phage in a CsCl gradient. Our results indicate that the in vitro system mimics the in vivo phi X174 assembly process.  相似文献   

5.
A cell-free extract prepared from phi X174-infected Escherichia coli cells sustained in vitro synthesis of viral DNA (stage III reaction) when supplemented with fraction II from uninfected cells. The reaction was dependent upon deoxyribonucleoside triphosphate, ATP, added phi X174 replicative form I DNA template, and the fraction II from uninfected cells. This reaction differed from the stage II reaction (semiconservative replication of duplex replicative form DNA) by the production of stable viral protein-DNA complexes sensitive to anti-phi X174 antiserum. Three types of protein-DNA complexes were identified, 50S, 92S, and a 114S complex that cobanded in CsCl and cosedimented in neutral sucrose gradients with a phi X174 phage marker. The sensitivity of these complexes to anti-phi X174 antiserum and Staphylococcus aureus provided a relatively rapid biochemical assay for direct measurement of the amount of DNA synthesized by the stage III reaction. With this assay, an E. coli factor (SIII) required specifically for the synthesis of viral protein-DNA complexes was identified and purified 200-fold from uninfected E. coli cells. The partially purified SIII factor was required for the synthesis of DNA and viral protein-DNA complexes in the phi X174-infected cell extracts and could not be replaced by rep protein, single-strand binding protein, or DNA polymerase III holoenzyme.  相似文献   

6.
In order to investigate initiation of H-strand (lagging strand) replication of the plasmid ColE1, the origin region fragment (Hae II-E) of ColE1 was inserted into the intergenic region of filamentous DNA phage M13 and cloned. A site capable of promoting DNA strand initiation on a single-stranded DNA template has been detected on the L-strand (leading strand) of the cloned fragment. The site, named rri-1 rifampicin-resistant initiation), directs conversion of chimeric phage single-stranded DNA to parental replicative form in the presence of rifampicin, which blocks the function of the complementary strand origin of M13. The function of rri-1 is dependent on both the dnaG and dnaB gene products. It is postulated that rri-1 might be an initiation site for synthesis of the lagging DNA strand during unidirectional replication of ColE1 DNA.  相似文献   

7.
Conversion of phi X174 single-stranded DNA to the duplex replicative form (RF) in vitro requires at least 10 purified proteins. Three stages - strand initiation, elongation, and termination - comprise this conversion. We now identify a separate stage in strand initiation which precedes dnaG RNA polymerase participation. Incubation of five proteins - protein i, protein n, DNA unwinding protein, dnaB protein, and dnaC protein - with ATP and phi X174 DNA forms an intermediate which enables subsequent stages measured by DNA synthesis to proceed 20 times faster. The intermediate can be isolated in quantitative yield by gel filtration or by ultracentrifugation. Protein i and protein n are required in less than stoichiometric amounts and appear to be absent from the isolated intermediate. Whereas formation of the intermediate is sensitive to antibody to protein i and to N-ethylmaleimide (an inhibitor of protein n and dnaC protein), the intermediate itself is resistant to these reagents. DNA unwinding protein complexes the DNA in a ratio of 60 molecules per circle. Synthesis of the intermediate appears to require stoichiometric quantities of dnaB protein and dnaC PROTEin but their presence in the intermediate has not been established as yet.  相似文献   

8.
A general and efficient method has been developed to generate large numbers of single-base substitution mutations simply and rapidly. A unique f1 phage recombinant DNA cloning vector is described, which contains the phi X174 origin of viral strand DNA synthesis and allows one to direct mutagenesis to any specific segment of DNA. Gapped circular DNA is constructed by annealing viral single-stranded circular DNA [ss(c) DNA] with a mixture of linear duplex DNAs that have had their 3'-OH termini processively digested with Escherichia coli exonuclease III under conditions in which the resulting, newly generated 3'-OH termini present in the various hybrid molecules span the region of interest. Base changes are induced by misincorporation of an alpha-thiodeoxynucleoside triphosphate analog onto this primer-template, followed by DNA repair synthesis. The asymmetric segregation of mutants from wild-type sequences is accomplished by double-stranded replicative form DNA----ss(c) DNA synthesis in vitro, initiated from the phi X174 viral strand origin sequence present on the vector DNA. Mutated ss(c) DNA is screened by the dideoxy chain termination method. In one mutagenesis experiment, 21 independent single-base substitutions were isolated in a 72-nucleotide-long target region. DNA sequence analysis showed that all possible base transversions and transitions were represented.  相似文献   

9.
The origin of phage phi X174 progeny replicative form (RF) DNA synthesis has been inserted into the plasmid vector pBR322 and cloned. In direct contrast to pBR322, the recombinant superhelical plasmids can substitute for phi X174 RFI DNA as template in phi X174-specific reactions in vitro. We have shown that the recombinant plasmids: (i) are cleaved by the phi X174 A protein; (ii) support net synthesis of unit-length single-stranded circular DNA in the presence of the phi X174 A protein and Escherichia coli rep protein, DNA-binding protein, and DNA polymerase III elongation system; (iii) support replication of duplexes catalyzed by the phi X174 A protein and extracts of E. coli.  相似文献   

10.
The priA gene of Escherichia coli encodes the protein that initiates assembly of the promosome, the entity essential for the replication of phage phi X174 and ColE1-like plasmids in vitro. We have prepared a null priA mutant to assess its role in vivo in replication of phages, plasmids, and the host chromosome. Extracts of this mutant are inert in the initial conversion of the phi X174 viral strand to the duplex form, confirming the absence of the PriA activity. In vivo, the priA mutant fails to produce phi X174 phage and, remarkably, is unable to maintain plasmids that depend on the E. coli chromosome origin as well as those of ColE1. Deficiencies in cell growth and cell division are also manifest.  相似文献   

11.
Protein n', a prepriming DNA replication enzyme of Escherichia coli, is a phi X174 DNA-dependent ATPase. Restriction of phi X174 DNA have led to the identification of a 55-nucleotide fragment that carries the protein n' recognition sequence. Molecular hybridization and sequence analysis have located this sequence within the untranslated region between genes F and G, a map location analogous to that of the unique complementary strand origin of phage G4 DNA. Within the 55-nucleotide fragment is a sequence of 44 nucleotides that forms a stable hairpin structure. This duplex may be the signal for protein n' to initiate the prepriming events that led to the start of phi X174 complementary DNA strand replication.  相似文献   

12.
The enzyme system for duplicating the duplex, circular DNA of phage phi X174 (replicative form) in stage II of the replicative life cycle was shown to proceed in two steps: synthesis of the viral (+) strand ]stage II(+)], followed by synthesis of the complementary (-) strand ]stage II(-)] [Eisenberg et al. (1976) Proc. Natl. Acad. Sci. USA 73, 3151-3155]. Novel features of the mechanism of the stage II(+) reaction have now been observed. The product, synthesized in extensive net quantities, is a covalently closed, circular, single-stranded DNA. The supercoiled replicative form I template and three of the four required proteins--the phage-induced cistron A protein (cis A), the host rep protein (rep), and the DNA polymerase III holoenzyme (holoenzyme)--act catalytically; the Escherichia coli DNA unwinding (or binding) protein binds the product stoichiometrically. In a reaction uncoupled from replication, cis A, rep, DNA binding protein, ATP, and Mg2+ separate the supercoiled replicative form I into its component single strands coated with DNA binding protein. In the presence of Mg2+, cis A, nicks the replicative form I; rep, ATP, and Mg2+ achieve strand separation with a concurrent cleavage of ATP and binding of DNA binding protein to the single strands. rep exhibits a single-stranded DNA-dependent ATPase activity. These observations suggest that the rep enzymatically melts the duplex at the replicating fork, using energy provided by ATP; this mechanism may apply to the replication of the E. coli chromosome as well.  相似文献   

13.
Synthesis of a complementary strand to match the single-stranded, circular, viral (+) DNA strand of phage phi X174 creates a parental duplex circle (replicative form, RF). This synthesis is initiated by the assembly and action of a priming system, called the primosome [Arai, K. & Kornberg, A (1981) Proc. Natl. Acad. Sci. USA 78, 69-73; Arai, K., Low, R. L. & Kornberg, A. (1981) Proc. Natl. Acad. Sci. USA 78, 707-711]. Of the seven proteins that participate in the assembly and function of the primosome, most all of the components remain even after the DNA duplex is completed and covalently sealed. Remarkably, the primosome in the isolated RF obviates the need for supercoiling of RF by DNA gyrase, an action previously considered essential for the site-specific cleavage by gene A protein that starts viral strand synthesis in the second stage of phi X174 DNA replication. Finally, priming of the synthesis of complementary strands on the nascent viral strands to produce many copies of progeny RF utilizes the same primosome, requiring the addition only of prepriming protein i. thus a single primosome, which becomes associated with the incoming viral DNA in the initial stage of replication, may function repeatedly in the initiation of complementary strands at the subsequent stage of RF multiplication. These patterns of phi X174 DNA replication suggest that a conserved primosome also functions in the progress of the replicating fork of the Escherichia coli chromosome, particularly in initiating the synthesis of nascent (Okazaki) fragments.  相似文献   

14.
A specific fragment of the phi X174 viral circle sustains the primed start of complementary DNA strand synthesis in vitro, even though the intact circle permits primed starts at many sites. The 300-nucleotide fragment from restriction nuclease digestion contains the recognition site for protein n', a DNA-dependent ATPase essential for priming phi X174 DNA replication. This n' recognition site contains within it a 44-nucleotide sequence with a potential hairpin structure and may be regarded as the starting signal for replication [Shlomai, J. & Kornberg, A. (1980) Proc. Natl. Acad. Sci. USA 77, 799-803]. After initiation on the 3' side of this sequence, the priming system (primosome) repeatedly generates primers by moving processively on the DNA template in a direction opposite to chain elongation. This primosome mobility is an attractive model for the discontinuous phase of Escherichia coli chromosome replication, in which processive primosome movement with the replicating fork is proposed for repeated initiations of nascent replication fragments.  相似文献   

15.
The role of Escherichia coli DNA gyrase subunit A and subunit B during phi X174 viral DNA synthesis was investigated. Addition of nalidixic acid (an inhibitor of gyrase subunit A) and novobiocin (an inhibitor of gyrase subunit B) to an in vitro system capable of synthesizing phi X174 viral DNA inhibited DNA synthesis. The inhibition caused by novobiocin, however, was not due specifically to an inhibition of gyrase subunit B because DNA synthesis in an in vitro system composed of an extract containing novobiocin-resistant gyrase subunit B was also inhibited by novobiocin. The requirement for gyrase subunit A and the dispensability of gyrase subunit B during viral strand synthesis was confirmed in vivo by examining phi X174 viral DNA synthesis in host bacteria containing temperature-sensitive gyrase subunits.  相似文献   

16.
The Escherichia coli gene encoding protein n' has been isolated and named priA for primosomal protein A. Protein n' is absolutely required for the conversion of single-stranded phi X174 DNA to the duplex replicative form in an in vitro-reconstituted system. The gene maps to 88.7 minutes on the chromosome adjacent to the cytR locus. Soluble protein extracts from cells harboring the priA gene on a multicopy plasmid contained 45-fold more n' replication activity than wild-type extracts. Enhanced overproduction of greater than 1000-fold was achieved by replacing the natural Shine-Dalgarno sequence with that of the phage T7 phi 10 gene and placing this priA under the control of the T7 phage promoter and RNA polymerase. The priA sequence reveals a 732-amino acid open reading frame and a nucleotide-binding consensus site consistent with the size and ATPase activity of the purified protein. The gene for protein n has been named priB and the putative gene for protein n", priC.  相似文献   

17.
Clonal inheritance of the pattern of DNA methylation in mouse cells.   总被引:18,自引:12,他引:18       下载免费PDF全文
DNA-mediated gene transfer was used to investigate the mode of inheritance of 5-methylcytosine in mouse L cells. Unmethylated phi X174 replicative form DNA remains unmethylated after its introduction and integration into these cells. On the other hand, phi X174 replicative form DNA that was methylated in vitro at its C-C-G-G residues retains these methylations as shown by restriction enzyme analysis with Hpa II and Msp I to detect methylation at this specific site. Although these unselected methylated vectors are prone to lose 30-40% of their methyl moieties upon transfection, this demethylation appears to be random. Once established, the resulting methylation pattern is stable for at least 100 cell generations. In order to examine the specificity of methylation inheritance, fully hemimethylated duplex phi X174 DNA was synthesized in vitro from primed single-strand phi X174 DNA by using 5-methyl deoxycytidine 5'-triphosphate. This molecule was inserted into mouse L cells by cotransformation and subsequently was analyzed by a series of restriction enzymes. Only methylations located at C-G residues were conserved after many generations of cell growth. The results suggest that the inheritance of the cellular DNA methylation pattern is based on a C-G-specific methylase that operates on newly replicated hemimethylated DNA.  相似文献   

18.
Soluble enzyme fractions from uninfected Escherichia coli convert M13 and varphiX174 viral single strands to their double-stranded replicative forms. Rifampicin, an inhibitor of RNA polymerase, blocks conversion of M13 single strands to the replicative forms in vivo and in vitro. However, rifampicin does not block synthesis of the replicative forms of varphiX174 either in vivo or in soluble extracts. The replicative form of M13 synthesized in vitro consists of a full-length, linear, complementary strand annealed to a viral strand. The conversion of single strands of M13 to the replicative form proceeds in two separate stages. The first stage requires enzymes, ribonucleoside triphosphates, and single-stranded DNA; the reaction is inhibited by rifampicin. The macromolecular product separated at this stage supports DNA synthesis with deoxyribonucleoside triphosphates and a fresh addition of enzymes; ribonucleoside triphosphates are not required in this second stage nor does rifampicin inhibit the reaction. We presume that in the first stage there is synthesis of a short RNA chain, which then primes the synthesis of a replicative form by a DNA polymerase.  相似文献   

19.
Escherichia coli replication factor Y (protein n') functions in the assembly of a mobile multiprotein replication-priming complex called the primosome. Although the role of factor Y in primosome assembly during replication in vitro of bacteriophage phi X174 and plasmid pBR322 DNA is clear, its role in E. coli chromosomal replication is not. To address this issue, the gene for factor Y has been cloned molecularly and its DNA sequence has been determined. The cloned fragment of DNA contained an open reading frame capable of encoding a polypeptide of 81.7 kDa. This open reading frame contains amino acid sequences identical to 13 N-terminal amino acids of purified factor Y, as well as to a 10-amino acid internal sequence (from a cyanogen bromide fragment) as determined by gas-phase microsequencing. Expression of the polypeptide encoded by this open reading frame using a bacteriophage T7 transient expression system resulted in the accumulation of a polypeptide with an apparent molecular mass of 78 kDa that comigrated with bona fide factor Y during SDS/polyacrylamide gel electrophoresis. Soluble extracts made from cells overexpressing the product of the putative factor Y open reading frame showed a 2000-fold increase in factor Y activity during bacteriophage phi X174 complementary-strand DNA synthesis in vitro when compared to control extracts. The gene encoding factor Y, which maps to 88.5 min on the E. coli chromosome, has been designated primosome A (priA).  相似文献   

20.
Multiplication of the duplex, circular, phage phiX174DNA (replicative form, RF) in stage II of the replicative life cycle has been observed with a crude enzyme preparation [Eisenberg et al. (1976) Proc, Natl. Acad, Sci. USA 73, 1594-1597]. This stage has now been partially reconstituted with purified proteins and subdivided into two stages: II(+) and II(-). In stage II(+), viral (+) strand synthesis is carried out by four proteins: the phage-induced, cistron A-dependent protein, rep-dependent protein, DNA unwinding protein, and DNA polymerase III holenzyme. In stage II(-), complementary (-) strand synthesis utilizes the product of stage II(+) as template and the multiprotein system previously identified in the stage I synthesis of a complementary strand on the viral DNA template to produce RF. The multiprotein system includes DNA unwinding protein, proteins i and n, dnaB protein, dnaC protein, dnaG protein, and DNA polymerase III holoenzyme. A discussion of these two separate mechanism for synthesis of (+) and (-) strands suggests that they may account for essentially all the replicative stages in the life cycle of phiX174.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号