首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperactivity is thought to be associated with an alteration of dopamine (DA) neurochemistry in brain. This conventional view became solidified on the basis of observed hyperactivity in DA-lesioned animals and effectiveness of the dopaminomimetics such amphetamine (AMP) in abating hyperactivity in humans and in animal models of hyperactivity. However, because AMP releases serotonin (5-HT) as well as DA, we investigated the potential role of 5-HT in an animal model of hyperactivity. We found that a greater intensity of hyperactivity was produced in rats when both DA and 5-HT neurons were damaged at appropriate times in ontogeny. Therefore, previously we proposed this as an animal model of attention deficit hyperactivity disorder (ADHD) - induced by destruction of dopaminergic neurons with 6-hydroxydopamine (6-OHDA) (neonatally) and serotoninergic neurons with 5,7-dihydroxytryptamine (5,7-DHT) (in adulthood). In this model effects similar to that of AMP (attenuation of hyperlocomotion) were produced by m-chlorophenylpiperazine (m-CPP) but not by 1-phenylbiguanide (1-PG), respective 5-HT2 and 5-HT3 agonists. The effect of m-CPP was shown to be replicated by desipramine, and was largely attenuated by the 5-HT2 antagonist mianserin. These findings implicate 5-HT neurochemistry as potentially important therapeutic targets for treating human hyperactivity and possibly childhood ADHD.  相似文献   

2.

Serotoninergic nerves are known to modulate sensitization of dopamine receptors (DA-R) in a rodent model of Parkinson’s disease (PD). However, serotoninergic nerves are not known to have a prominent role on DA exocytosis in intact rats. The current study was undertaken to explore the possible influence of serotoninergic nerves on DA exocytosis in Parkinsonian rats. Rat pups were treated at 3 days after birth with the neurotoxin 6-hydroxydopamine (6-OHDA; 134 μg icv, half into each lateral ventricle; desipramine, 1 h pretreatment), in order to produce marked long-lasting destruction of neostriatal dopaminergic innervation, as evidenced by the 90–95% depletion of DA (p?<?0.001) [HPLC/ED] into adulthood. Controls received vehicle/desipramine in place of 6-OHDA. Other groups received the serotoninergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 25 μg base, icv, half in each lateral ventricle; desipramine, 1 h; 75 mg/kg pargyline HCl, 30 min) at 3 days post-birth; or both 6-OHDA+5,7-DHT treatments. In adulthood, an in vivo microdialysis study was undertaken to ascertain that p-chloroamphetamine (PCA, 1 mM in the microdialysate)-evoked DA release in the neostriatum was reduced approximately 50% in the 6-OHDA group, while PCA-evoked DA release in the 6-OHDA+5,7-DHT group was substantially increased, to a level equivalent to that of the vehicle control. The baseline neostriatal microdialysate level of 3,4-dihydroxyphenylacetic acid (DOPAC) was also higher in the 6-OHDA+5,7-DHT group vs 6-OHDA group; also, during the 2nd hour of PCA infusion. PCA-enhanced DA exocytosis occurred in the absence of changes in hydroxyl radical (HO·) in the microdialysate (i.e., assay of 2,3- and 2,5-dihydroxybenzoic acid, 2,3-DHBA; 2,5-DHBA). The overall findings demonstrate that an adulthood serotoninergic nerve lesion enhanced PCA-evoked DA exocytosis in a rodent model of severe PD, while susceptibility to oxidative stress was unchanged. The implication is that serotoninergic nerves may normally suppress the release of DA and/or act as an uptake site and storage sink for accumulated DA in parkinsonian-like neostriatum. Potentially, serotoninergic agonists or antagonists, targeting subtype-selective serotonin receptors, may be viable therapeutic adjuncts in PD.

  相似文献   

3.
In the neonatally 6-hydroxydopamine (6-OHDA)-lesioned rat hyperlocomotor activity, first described in the 1970s, was subsequently found to be increased by an additional lesion with 5,7-dihydroxytryptamine (5,7-DHT) (i.c.v.) in adulthood. The latter animal model (i.e., 134 microg 6-OHDA at 3 d postbirth plus 71 microg 5,7-DHT at 10 weeks; desipramine pretreatments) was used in this study, in an attempt to attribute hyperlocomotor attenuation by D,L-amphetamine sulfate (AMPH) and m-chlorophenylpiperazine di HCl (mCPP), to specific changes in extraneuronal (i.e., in vivo microdialysate) levels of dopamine (DA) and/or serotonin (5-HT). Despite the 98-99% reduction in striatal tissue content of DA, the baseline striatal microdialysate level of DA was reduced by 50% or less at 14 weeks, versus the intact control group. When challenged with AMPH (0.5 mg/kg), the microdialysate level of DA went either unchanged or was slightly reduced over the next 180 min (i.e., 20 min sampling), while in the vehicle group and 5,7-DHT (alone) lesioned group, the microdialysate level was maximally elevated by approximately 225% and approximately 450%, respectively--and over a span of nearly 2 h. Acute challenge with mCPP (1 mg/kg salt form) had little effect on microdialysate levels of DA, DOPAC and 5-HT. Moreover, there was no consistent change in the microdialysate levels of DA, DOPAC, and 5-HT between intact, 5-HT-lesioned rats, and DA-lesioned rats which might reasonably account for an attenuation of hyperlocomotor activity. These findings indicate that there are other important neurochemical changes produced by AMPH- and mCPP-attenuated hyperlocomotor activity, or perhaps a different brain region or multiple brain regional effects are involved in AMPH and mCPP behavioral actions.  相似文献   

4.
Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation.  相似文献   

5.
The aim of this study was to determine histamine content in the brain and the effect of histamine receptor antagonists on behavior of adult rats lesioned as neonates with the serotonin (5-HT) neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). At 3 days after birth Wistar rats were pretreated with desipramine (20 mg/kg ip) before bilateral icv administration of 5,7-DHT (37.5 μg base on each side) or saline—ascorbic (0.1%) vehicle (control). At 10 week levels of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) were determined in frontal cortex, striatum, and hippocampus by an HPLC/ED technique. In the hypothalamus, frontal cortex, hippocampus and medulla oblongata, the level of histamine was analyzed by an immunoenzymatic method. Behavioral observations (locomotion, exploratory-, oral-, and stereotyped activity) were performed, and effects of DA receptor agonists (SKF 38393, apomorphine) and histamine receptor antagonists S(+)chlorpheniramine (H1), cimetidine (H2), and thioperamide (H3) were determined. We confirmed that 5,7-DHT profoundly reduced contents of 5-HT and 5-HIAA in the brain in adulthood. Histamine content was also reduced in all examined brain regions. Moreover, in 5,7-DHT-lesioned rats the locomotor and oral activity responses to thioperamide were altered, and apomorphine-induced stereotype was intensified. From the above, we conclude that an intact central serotoninergic system modulates histamine H3 receptor antagonist effects on the dopaminergic neurons in rats.  相似文献   

6.
To further investigate monoaminergic mechanisms in cerebral cortex, responsiveness of cortical neurons to microiontophoretic applications of serotonin (5-HT), dopamine (DA) or noradrenaline (NA) was examined in the frontoparietal region of control, 5,7-dihydroxytryptamine (5,7-DHT)- and p-chlorophenylalanine (PCPA)-treated rats anesthetized with urethane. As a rule, 100 nA applications of either one of these biogenic amines induced marked slowings or total interruptions of ‘spontaneous’ firing overlasting the 30s periods of ejection. Given the large amounts of monoamines ejected, it could be inferred that such microiontophoretic applications produced a maximal activation of receptors. In control rats, the responses to 5-HT, DA and NA were of approximately equal duration ( 5 min). Two to 4 weeks after denervation with 5,7-DHT, most neurons (75%) exhibited greatly prolonged responses to 5-HT( 14 min), and marked depressions of firing could be induced by small ejection currents (2 nA) having little or no effect in the controls. In addition, 85% of the units supersensitive to 5-HT showed considerably shortened responses to DA and NA( 1 min). After 2–14 days of depletion with PCPA, there was no change in the responsiveness to 5-HT in spite of a 91% lowering of cortical 5-HT content equivalent to that measured after denervation. Nevertheless, responsiveness to DA and NA was again diminished in a majority (80%) of the units tested. In control or PCPA-treated rats, acute administration of the 5-HT re-uptake blocker fluoxetine increased the duration of depressions induced by 100 nA applications of 5-HT but did not enhance responsiveness to low ejection currents. This suggested that, after 5-HT denervation, the suppression of re-uptake was mainly responsible for the prolongation of 5-HT responses (‘presynaptic’ component of supersentivity), whereas a modification of 5-HT receptors accounted for the greater efficacy of small doses of 5-HT (‘postsynaptic’ component). Responsiveness to the microiontophoretic application of phenylephrine (PHE), a noradrenergic α-agonist, was comparable with that to NA in PCPA- and 5,7-DHT-treated as well as in control rats. Therefore, the hyposensitivity to DA and NA appeared indicative of a desensitization of catecholamine receptors caused by the absence of 5-HT. Such a desensitization may be viewed as an adaptive change resulting from an increased release of endogenous DA and NA. This interpretation would in turn imply that, normally, 5-HT regulates catecholamine release in the neocortex.  相似文献   

7.
The responsiveness of hippocampal CA3 pyramidal neurons to microiontophoretic applications of serotonin (5-HT), norepinephrine (NE), γ-aminobutyric acid (GABA) and isoproterenol (ISO) was assessed in rats following 5,7-dihydroxy-tryptamine (5,7-DHT) and 6-hydroxydopamine (6-OHDA) pretreatments and bilateral locus coeruleus lesions. The intraventricular administration of 200 μg (free base) of 5,7-DHT and of 6-OHDA produced 89% and 93% decreases of 5-HT and NE respectively. None of these pretreatments modified the initial responsiveness to, or recovery from iontophoretic application of 5-HT. In 6-OHDA pretreated and locus-lesioned rats, the initial effectiveness of NE was not altered but its effect was markedly prolonged. However, there was no such prolongation of the effect of ISO which is not a substrate for the high affinity NE reuptake. The effect of GABA was not affected by these pretreatments. Acute pharmacological blockade of the NE reuptake with desipramine (5 mg/kg, i.p.) similarly induced a prolongation of the effect of iontophoretically applied NE, while fluoxetine (10 mg/kg, i.p.) a 5-HT reuptake blocker, failed to alter the recovery of pyramidal cells from iontophoretic application of 5-HT.

It is concluded that 5-HT denervation induces neither pre- nor postsynaptic types of supersensitivity in hippocampal pyramidal cells, contrasting with the previously shown supersensitivity of ventral lateral geniculate and amygdaloid neurons following 5-HT denervation. NE denervation fails to induce a postsynaptic type of supersensitivity but leads to a marked prolongation of the response to NE indicative of a presynaptic mechanism. These results underscore the necessity for regional studies of neurotransmitters and drug action.  相似文献   


8.
The role of the hippocampal 5-hydroxytryptamine (5-HT) terminals in the control of locomotor activity was investigated by lesioning 5-HT axons in the fimbria with 5,7-dihydroxytryptamine (5,7-DHT). Rats pretreated with desimipramine (10 mg/kg, i.p.) received microinjections of 5,7-DHT (0, 1, 3, 5 or 10 μg in 0.4 μl ascorbic Ringer's solution) into the fornix-fimbria. On the fourteenth to twenty-first nights after operation, nocturnal locomotor activity was measured in photocell cages. Twenty-eight to thirty days after operation degeneration of 5-HT terminals was assessed by measuring in vitro [3H]5-HT re-uptake in slices of dorsal hippocampus, ventral hippocampus and the septum.Groups injected with 5,7-DHT showed hyperactivity in the night period and increased decrements of activity between tests, both of which were related to the dose of neurotoxin. A reduction of [3H]5-HT re-uptake was found in dorsal hippocampus which was related to the dose of 5,7-DHT, but ventral hippocampal and septal [3H]5-HT re-uptake were not systematically reduced. For each rat, levels of dorsal and ventral hippocampal [3H]5-HT re-uptake were negatively correlated with the mean nocturnal activity from the 7 nights of testing. Levels of dorsal, but not ventral hippocampal [3H]5-HT re-uptake were negatively correlated with the mean nightly decrement of activity. No correlations were found between septal [3H]5-HT and these activity measures. These results, indicate that the increase in nocturnal locomotor activity caused by generalized depletion of 5-HT in the brain may be due to disruption of hippocampal 5-HT terminals supplied by the fornix-fimbria.  相似文献   

9.
Rats were implanted with cannulae in the median raphe nucleus (MR). 5,7-Dihydroxytryptamine (5,7-DHT) or vehicle was infused either directly through the MR cannula, or bilaterally into the medial forebrain bundle (MFB). The MR 5,7-DHT lesions completely blocked the hyperactivity elicited by injections into the MR of the neurokinin (NK) 3 agonists, DiMe-C7 and senktide, and the NK-2 agonist, neurokinin A. In contrast, the MFB 5,7-DHT lesions did not affect the locomotor hyperactivity produced by intra-MR administration of DiMe-C7 and senktide, but appeared to attenuate the effects of NKA. The data indicate that intra-raphe neurokinin-induced hyperactivity is mediated by 5-HT neurons, and that 5-HT projections to the forebrain may be involved in the behavioral activation induced by intra-raphe neurokinin A administration, but not that induced by intra-MR NK-3 agonists.  相似文献   

10.
To further evaluate the serotonin (5-HT) neurotoxic potential of substituted amphetamines, we used tritiated proline to examine anterograde transport along ascending axonal projections originating in the rostral raphe nuclei of animals treated 3 weeks previously with (+/-)fenfluramine (FEN, 10 mg/kg, every 2 h x 4 injections; i.p.) or (+/-)3,4-methylenedioxymethamphetamine (MDMA, 20 mg/kg, twice daily for 4 days; s.c.). The documented 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT, 75 microg; ICV; 30 min after pretreatment with pargyline, 50 mg/kg; i.p., and desipramine 25 mg/kg; i.p.), served as a positive control. Along with anterograde axonal transport, we measured two 5-HT axonal markers, 5-HT and 5-hydroxyindoleacetic acid (5-HIAA). Prior treatment with FEN or MDMA led to marked reductions in anterograde transport of labeled material to various forebrain regions known to receive 5-HT innervation. These reductions were associated with lasting decrements in 5-HT axonal markers. In general, decreases in axonal transport were less pronounced than those in 5-HT and 5-HIAA. However, identical changes were observed after 5,7-DHT. These results further indicate that FEN and MDMA, like 5,7-DHT, are 5-HT neurotoxins.  相似文献   

11.
This experiment attempted to determine the mechanism by which amphetamine reduces locomotor hyperactivity in neonatal rats given brain dopamine (DA)-depleting 6-hydroxydopamine (6-OHDA) injections. Brain DA neurons were destroyed selectively in neonatal rats by intraventricular (i.v.t.) injections of 6-OHDA following desmethylimipramine (DMI) pretreatment. Control rats received DMI and i.v.t. injections of the 6-OHDA vehicle solution. Rats given the 6-OHDA treatment displayed 7-fold increases in locomotor activity compared to controls during days 16–55 of life. Throughout this period, amphetamine (1 mg/kg) reduced locomotor hyperactivity in 6-OHDA-treated rats but increased locomotor activity in control rats. The reduction of hyperactivity caused by amphetamine (0.5–4 mg/kg) was dose-related and was not accompanied by stereotyped behavior. Like amphetamine, methylphenidate (4 mg/kg) reduced locomotor hyperactivity in rats given 6-OHDA. The DA antagonist, spiroperidol (50–200 μg/kg) failed to attenuate the hyperactivity-reducing effect of amphetamine in 6-OHDA-treated rats at doses which abolished the stimulant effect of amphetamine in control rats. However, the serotonin antagonist methysergide (0.5–4 mg/kg) produced dose-dependent antagonism of the effect of amphetamine in 6-OHDA-treated rats. Pretreatment with propranolol (5 mg/kg), phentolamine (5 mg/kg), atropine (0.5 mg/kg) or naloxone (10 mg/kg) failed to alter the reduction in locomotor hyperactivity caused by amphetamine. The serotonin releasing agent, fenfluramine (3 mg/kg), and the serotonin agonist, quipazine (0.5–4 mg/kg), both reduced locomotor hyperactivity in 6-OHDA-treated rats while not altering locomotion in control rats. These results confirm previous observations that amphetamine reduces locomotor hyperactivity caused by neonatal 6-OHDA administration and suggest that this effect is mediated by increased serotonergic neurotransmission.  相似文献   

12.
To assess the influence of monoaminergic neurones in the nucleus accumbens septi (NAS) on muricidal and apomorphine-induced aggression, bilateral intraaccumbens injections of relevant neurotoxins were performed. Neurochemical effects in the mesolimbic area (NAS and tuberculi olfactorii) and striatal tissue were investigated using high performance liquid chromatography. 6-Hydroxydopamine (6-OHDA) with desipramine pretreatment significantly decreased mesolimbic dopamine (DA) metabolism, 5,7-dihydroxytryptamine (5,7-DHT) plus desipramine diminished serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA), while DSP-4 depleted noradrenaline (NA), 5-HT, 5-HIAA and tryptophan in the mesolimbic area. No significant biochemical changes were observed in the striatum. Behaviourally, 6-OHDA-treated rats were markedly more aggressive in the apomorphine-induced fighting test. Similarly, DSP-4 injections into the NAS (10 micrograms/1 microliter) enhanced this type of aggression. The 5,7-DHT lesion did not alter apomorphine-induced fighting. None of the neurotoxins induced muricidal behaviour. It is concluded that dopaminergic postsynaptic receptors in the NAS may be involved in the pro-aggressive effect of apomorphine. The results support the hypothesis that NA-containing neurones play an inhibitory role in apomorphine-induced aggression and suggest that such a DA-NA interaction might occur in the NAS.  相似文献   

13.
Rats were prepared with a chronic intracerebroventricular cannula, and treated with intracisternal 5,7-dihydroxytryptamine (DHT) after i.p. desmethylimipramine or control vehicle. After recovery, they were tested behaviorally by direct observation and electronic monitoring of motor activity. Intraventricular infusion of a placebo or 5-hydroxyindoleacetic acid (5-HIAA) had little effect, but serotonin (5-HT) decreased, and norepinephrine increased locomotor activity in intact rats. Following pretreatment with 5,7-DHT, a small increase in locomotor activity was noted which was not altered by intracranial infusion of vehicle. In contrast, infusions of 5-HT produced a striking dose-dependent (ED50 = 5 μg/min) pattern of hyperactivity, ‘myoclonic’ jerking movements, postural changes, and autonomic responses. Norepinephrine increased locomotor activity in the DHT-lesioned rats (but not significantly more than in controls), but failed to produce the myoclonic syndrome. The deaminated indoles, indoleacetaldehyde and 5-HIAA were more potent than 5-HT in producing the myoclonic response; tryptamine when infused at an equimolar dose had no effect. The putative serotonin antagonists, cyproheptadine and methiothepin (i.p.), were more effective in blocking responses to infused 5-HT than to equipotent doses of deaminated indoles. These behavioral responses may represent exaggerated excitatory effects mediated by serotonin in the brain stem and spinal cord, possibly modified by altered forebrain mechanisms. A neurophysiologic or neuropharmacologic role for deaminated indoles should be reconsidered as they may not merely be inactive metabolites.  相似文献   

14.
This experiment examined the relationship between the extent of brain dopamine (DA) neuron destruction in the neonatal rat and locomotor hyperactivity during subsequent development. Brain DA neurons were destroyed selectively in neonatal rats by intraventricular injections of 6-hydroxydopamine (6-OHDA) following desmethylimipramine (DMI) pretreatment of both days 3 and 6 of life. Groups of rats received total doses of 50, 70, 100 or 200 microgram of 6HDA or the vehicle solution. Each group of rats given 6-OHDA displayed 3- to 5-fold increases in locomotor activity relative to vehicle control rats on days 16 and 18 of life. Rats given 50 or 70 microgram of 6-OHDA displayed hyperactivity that diminished during days 18-32 of life, approaching the level of activity seen in vehicle-treated rats. It contrast, rats given 100 or 200 microgram of 6-OHDA displayed consistently high levels of locomotion during days 18-32 of life. When tested as adults (days 55-66 of life) only those rats given 200 micrograms of 6-OHDA as neonates continued to display locomotor hyperactivity. The extent of 6-OHDA-induced depletion of DA was proportional to the magnitude of locomotor hyperactivity seen during neonatal life. Brain DA was depleted to the greatest extent in rats which displayed permanent hyperactivity. Regardless of the extent of depletion of brain DA, adult rats given intraventricular injections of 125, 200 or 275 micrograms of 6-OHDA at 48 days of age (following pargyline and DMI pretreatment) displayed no significant change in locomotor activity. These results indicate that the magnitude and duration of locomotor hyperactivity seen following neonatal 6-OHDA injections are correlated with the extent of loss of central DA neurons and suggest that brain DA projections exert important influences on the ontogeny of normal locomotion.  相似文献   

15.
The effects of neonatal intracisternal 6-hydroxydopamine (6-OHDA; 50 micrograms) treatment on striatal serotonin (5-HT) nerve terminals in rat have been characterized using histo- and neurochemical methods. The 6-OHDA lesion caused a 60% reduction of striatal dopamine (DA) concentration when analyzed in the adult stage, while 5-HT levels were increased by about 40% and 3H-5-HT uptake in vitro was increased by about 60%. Using computerized image analysis, a marked increase in 5-HT-like immunoreactive terminal density was found in both rostral (+200%) and caudal (+50%) striatum. Pretreatment with the DA uptake blocker amfolenic acid completely counteracted the 6-OHDA-induced alterations in both DA and 5-HT neurons in the striatum, while pretreatment with the noradrenaline uptake blocker desipramine had no significant effects. Regional analysis of 5-HT levels in the CNS after neonatal 6-OHDA treatment or the combined desipramine + 6-OHDA treatment showed no significant effect in any of the brain areas analyzed, apart from the observed 5-HT increase in striatum. It was furthermore observed that the striatal 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio was decreased, while the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio was increased following the 6-OHDA lesion, indicating compensatory mechanisms in turnover of transmitters. These alterations were completely reversed after pretreatment with amfolenic acid. The present results support the view that the 5-HT hyperinnervation following neonatal 6-OHDA treatment is a collateral sprouting response induced by lesioning of the striatal DA neurons.  相似文献   

16.
Bilateral high frequency lesions of the ventral tegmental area (VTA) in the rat induce a behavioral syndrome characterized by a permanent locomotor hyperactivity and a reduction of attention capacities. The VTA contains the cell bodies of the mesocortical and mesolimbic dopaminergic (DA) systems but is also rich in serotoninergic (5-HT) fibers which originate from the raphe nuclei and innervate the forebrain. In order to establish possible correlation(s) between the destruction of specific aminergic system(s) and some of the behavioral effects of VTA lesions, rat locomotor activities were recorded and DA, 5-HT and norepinephrine (NE) were estimated in discrete areas of the forebrain using specific and sensitive radioenzymatic methods.VTA lesions greatly affected DA and 5-HT levels in the forebrain but only induced minor effects on cortical NE.No significant correlations were found between the changes in locomotor activity and the reduction of 5-HT levels in the parietal and rhinal cortices, the striatum and the hippocampus.On the other hand, a very good correlation was observed between the increase in locomotor activity and the decrease in DA content in the frontal cortex (r= −0.82,n= 20, P < 0.01). Although not as striking, a correlation was also found between the changes in locomotor activity and those of DA levels in the nucleus accumbens, a structure innervated by the mesolimbic DA system (r= −0.47,n= 24, P < 0.05).A comparison between changes in DA levels in the frontal cortex and the nucleus accumbens after VTA lesions suggested that cell bodies of the mesocortical and mesolimbic DA systems, although very close, are not the same.It cannot be excluded that the mesolimbic DA system plays a role in the ‘VTA syndrome’. However, it is clear that the disappearance of DA in the frontal cortex is critical for the development of the non-vicarious locomotor hyperactivity. This suggests that the dopaminergic neurons which innervate the frontal cortex exert an inhibitory role on locomotor behavior.  相似文献   

17.
Striatal dopamine (DA) and serotonin (5-HT) functions are altered following DA denervation. Previous research indicates that intrastriatal coadministration of D1 and 5-HT2 receptor agonists synergistically increase locomotor behavior in DA-depleted rats. In the present study, we examined whether striatal 5-HT2 mechanisms also account for supersensitive D1-mediated locomotor behavior following DA denervation. Adult male Sprague-Dawley rats were subjected to bilateral striatal cannulation and then received either intracerebroventricular (i.c.v.) or intrastriatal 6-hydroxydopamine (6-OHDA; 200 microg or 20 microg/side, respectively). After at least 3 weeks, i.c.v.-lesioned rats received intrastriatal infusions of the 5-HT2 receptor antagonist ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by systemic SKF 82958, a D1 agonist (1.0 mg/kg, i.p.) and locomotor activity was monitored. In another experiment, intrastriatal sham and 6-OHDA-lesioned rats received bilateral intrastriatal infusions of ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by intrastriatal infusions of SKF 82958 (5.0 microg/side) or vehicle (0.9% saline). Rats with DA loss demonstrated supersensitive locomotor responses to both systemic and intrastriatal SKF 82958. Ritanserin pretreatment blunted systemic SKF 82958-induced hyperlocomotion and returned intrastriatal D1-mediated hyperactivity to sham lesion levels. The results of this study suggest that striatal 5-HT2 receptors contribute to D1-mediated hyperkinesias resulting from DA loss and suggest a pharmacological target for the alleviation of dyskinesia that can develop with continued DA replacement therapy.  相似文献   

18.
The present study was aimed at comparing the effects of serotonin (5-HT) synthesis blockade using chronic administration of p-chlorophenylalanine (PCPA) and 5,7-dihydroxytryptamine injections of variable volume (3 vs. 6 μl) on the density of NPY immunoreactive (Ir) neurons and binding of [3H]8-OH-DPAT, S-CM-G[125I]TNH2 and [125I]DOI to 5-HT1A, 5-HT1B/1D, and 5-HT2A/2C receptors in rat cortical regions. Three weeks after large but partial (89% depletion in 5-HT tissue concentration) lesions of 5-HT neurons no changes in neither NPY immunoreactivity nor 5-HT receptor binding were detected. The complete 5,7-DHT lesions produced increases in the number of NPY-Ir neurons in the upper regions of the cingular (134%), frontal (140%) and parietal cortex (48%) and corresponding decreases in 5-HT2A/2C binding (16–26%). No changes in 5-HT1A and 5-HT1B/1D binding were observed after lesions of this kind. After PCPA treatment, decreases in NPY-Ir neurons density (22–40%) and increases in 5-HT1A and 5-HT1B/1D receptor binding sites (20–50%) were distributed in both upper and deeper cortical regions. The lack of effect of the partial lesion suggests that spared 5-HT neurons may exert compensatory mechanisms up to a large extent. The changes in NPY immunoreactivity and 5-HT2A/2C binding detected in the upper regions of the cortex after complete 5-HT lesions probably result from local cellular rearrangements, whereas blocking 5-HT synthesis has more widespread influence on NPY neurons and on 5-HT1A and 5-HT1B/1D receptor subtypes. Moreover, decreases in DOPAC concentrations detected only after complete lesions suggest that the involvement of catecholaminergic transmission may also differentiate 5,7-DHT and PCPA treatments. Altogether, these data suggest that different receptor subtypes might be involved in 5-HT–NPY relationships.  相似文献   

19.
While there is abundant evidence for a role of 5-HT and the amygdala in anxiety and depression, the role of 5-HT in this brain region in schizophrenia is less well understood. We therefore examined the effects of local 5-HT depletion in the amygdala on psychotomimetic drug-induced locomotor hyperactivity and prepulse inhibition, two animal model of aspects of schizophrenia. Pentobarbital-anaesthetized (60 mg/kg, i.p.) male Sprague-Dawley rats were stereotaxically micro-injected with 0.5 microl of a 5 microg/mul solution of the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into either the basolateral (BLA) or central nucleus of amygdala (CeN). Two weeks after the surgery, rats with BLA lesions did not show changes in either psychotomimetic drug-induced locomotor hyperactivity or prepulse inhibition. In contrast, rats with CeN lesions showed significant disruption of prepulse inhibition, but no changes in psychotomimetic drug-induced locomotor hyperactivity. Neurochemical analysis and autoradiographic labelling of 5-HT transporter sites showed that a good degree of anatomical selectivity was obtained. Following administration of 5,7-DHT into the amygdala, the concentration of 5-HT was significantly reduced. Similarly, 5-HT transporter autoradiographs showed differential and selective lesions of 5-HT innervation in targeted subregions of the amygdala. These results provide evidence for differential involvement of 5-HT projections within the amygdala in prepulse inhibition but not locomotor hyperactivity. Thus, the present study supports the view that 5-HT in the amygdala may be involved in aspects of schizophrenia and a target for antipsychotic drug action.  相似文献   

20.
Serotonergic (5-hydroxytryptamine; 5-HT) neuro-transmission has been implicated in the regulation of cognitive function and this neurotransmitter system may underlie selective neuronal degeneration found in the aging hippocampus. Age-dependent changes in 5-HT function of hippocampal CA3 subfield pyramidal neurons were evaluated in female Fischer 344 rats (2 and 17 months) following denervation of the serotonergic afferents to the dorsal hippocampus using the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). Vehicle (ascorbic saline) or 5,7-DHT was administered bilaterally in the fimbria-fornix/cingulum bundle and dorsal pyramidal cell responses to microiontophoretic application of 5-HT, the 5-HT1A agonist (±)-8-hydroxy-2-(di-N-propylamino) tetralin, the 5-HT1A antagonist WAY 100,135 and N-methyl-D-aspartate were recorded at 3 weeks post-lesion. Independent of changes in sensitivity to the inhibitory effects of 5-HT with aging, the time to recovery of cell firing following application of 5-HT was significantly increased in the 18 month 5,7-DHT group compared to the 18 month Vehicle and 3 month 5,7-DHT groups (3.3- and 2.6-fold, respectively). These results demonstrate that serotonergic neurotransmission is altered with aging following a selective neurotoxic insult to the hippocampus. J. Neurosci. Res. 47:58–67, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号