首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) or menhaden oil may reduce inflammatory eicosanoids (prostaglandin E2, thromboxane B2, leukotriene B4, and 11-dehydro thromboxane B2), matrix metalloproteinases (MMPs), and blood lactate in dogs with nasal carcinomas receiving radiation therapy. We hypothesized that menhaden oil would reduce inflammation from radiation damage and lower blood lactate levels in dogs with nasal carcinoma. In a randomized, double-blind, placebo-controlled clinical study, 12 dogs with malignant carcinomas of the nasal cavity were given dietary menhaden oil (DHA and EPA) or soybean oil (control) and then received radiation therapy. Megavoltage radiation was delivered in 18 fractions to a total dose of 56 Gy. Blood levels of DHA, EPA, insulin, glucose, lactic acid, and MMPs 2 and 9; resting energy expenditure; and inflammatory eicosanoids from nasal biopsies were measured throughout radiation therapy. Samples were obtained from each patient 1 week before the start of radiation therapy, at start of radiation, and 7, 18 (end of radiation therapy), and 42 days after radiation was initiated. Dogs that are fed with menhaden oil had significantly (P < .05) higher plasma concentration of DHA by 500% and EPA by 200% and had significantly lower tissue inflammatory eicosanoids and decreased resting energy expenditure by 20% when compared with controls. Increased plasma DHA was significantly associated (P < .05) with decreased plasma lactic acid and MMPs. These data may suggest that dietary fish oil could reduce some detrimental inflammatory eicosanoids and metabolic consequences of radiation therapy.  相似文献   

2.
Different vitamin B12 and folic acid concentrations could exacerbate the immune response. The aim was to evaluate different dietary folic acid and vitamin B12 levels on the immune response in aged rats. Male Sprague Dawley aged rats were assigned to three folic acid groups (deficient, control, supplemented) each in absence of vitamin B12 for 30 days. Several parameters of innate and acquired immune responses were measured. Serum and hepatic folate levels increased according to folic acid dietary level, while vitamin B12 levels decreased. There was a significant decrease in natural killer cell-mediated cytotoxicity in the spleen for the vitamin B12 deficient diet and folic acid control diet groups. Significant changes in CD45 lymphocyte subsets were also observed according to dietary imbalance. Lymphoproliferative response to concanavalin A and phytohemagglutinin did not differ significantly between groups. The spleen response to lipopolysaccharide increased significantly, but was unmodified for the other organs. An imbalance between dietary vitamin B12 and folic acid concentrations alters some immunological parameters in aged rats. Therefore, the ratio between folate and vitamin B12 could be as important as their absolute dietary concentrations.  相似文献   

3.
Abstract

Previous studies found that juvenile offspring of rats fed high docosahexaenoic acid (DHA; 22:6n-3) diets through gestation and lactation had longer auditory brainstem-evoked response (ABR) accompanied by higher 22:6n-3 and lower arachidonic acid (ARA; 20:4n-6) in brain. In the present study, ABR was assessed in juvenile rats fed high-DHA diets only postnatally.

Methods: Rat pups were fed rat milk formulas with varying amounts of DHA and ARA to 19 days of age followed by diets with the corresponding fatty acids. The high-DHA group was fed 2.3% of fatty acids as DHA, the DHA+ARA group was fed DHA and ARA at 0.6 and 0.4% of fatty acids, levels similar to those in some infant formulas, and the unsupplemented group was fed no DHA or ARA. ABR and fatty acid and monoamine levels in brain were measured on postnatal days 26-28. Statistical analyses were measured by ANOVA.

Results: ARA and DHA levels in brain increased with supplementation. ABR was shorter in the high-DHA group than the DHA+ARA group and not different from the unsupplemented or dam-reared suckling group. Norepinephrine levels in the inferior colliculus were lower in the high-DHA group than the DHA+ARA group and higher in all formula groups compared to the dam-reared group.

Conclusion: In contrast to the longer ABR in juvenile offspring of rats fed high-DHA through gestation and lactation, ABR was shorter in juvenile rats fed high-DHA diets only after birth than rats fed ARA+DHA. Further studies are needed to understand the relationship between dietary DHA, norepinephrine, and auditory system development over a range of DHA intakes and discrete periods of development.  相似文献   

4.
Prostaglandins (PGs) play a key role in the regulation of ovulation. Typically, ingestion of the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) has been found to decrease, whereas arachidonic acid (ARA) increases PG biosynthesis in most systems. We hypothesized that DHA and EPA would decrease ovarian PGE2, enhancing ovulation, with combined EPA and DHA having the greatest effect, whereas ARA would increase PGE2, suppressing ovulation. Our objective was to determine how 0.3-g/100-g diet DHA and EPA alone or combined, or ARA would affect tissue composition, ovulation, and PG synthesis in rats. After 27 days on diet and ovulation induction, ovaries were isolated and analyzed from 22 pups per diet. Eicosapentaenoic acid alone reduced ovarian n-6 PUFA attributable to reduced ARA incorporation. Arachidonic acid ingestion reduced and EPA enhanced ovarian n-3 PUFA to levels above what was seen with DHA or DHA/EPA combinations. Docosahexaenoic acid alone increased total PGE 1.5-fold over control, whereas neither differed from the remaining treatments. Increased total PGE with DHA was attributable to elevated PGE3 with PGE2 unchanged by diet, and PGE3 only increased with DHA ingestion alone. Total PGF differed from control with the highest DHA intake, alone or combined with EPA, or with ARA ingestion (P < .05). Increased PGF with DHA was attributable to increased PGF. Experimental diets did not alter ovulation from control. Results indicate that DHA and EPA consumption at human achievable doses differently alters ovarian phospholipids and PGs associated with ovulation with potential for significant 3-series PG without significantly perturbing ovulation.  相似文献   

5.

BACKGROUND/OBJECTIVES

The aim of this research was to study the different long term effects of consumption of dietary oil sources with varying omega-6/omega-3 (ω-6/ω-3) polyunsaturated fatty acids (PUFAs) ratios on bone marrow fatty acid level, ex vivo prostaglandin E2 (PGE2) release, and mineral content of bone in rabbits.

MATERIALS/METHODS

For this purpose, weaning and female New Zealand white rabbits were purchased and randomly divided into five groups and offered ad libitum diets containing 70 g/kg of added oil for 100 days. The dietary lipid treatments were formulated to provide the following ratios of ω-6/ω-3 fatty acids: 8.68 soy bean oil (SBO control), 21.75 sesame oil (SO), 0.39 fish oil (FO), 0.63 algae oil (DHA), and 0.68 algae oils (DHA/ARA). DHA and ARA are two types of marine microalgae of the genus Crypthecodinium cohnii.

RESULTS

The dietary treatments had significant effects on the bone marrow fatty acids of rabbits. Rabbits fed the FO diet, containing the highest ω-3 PUFA concentration, and those fed the SBO diet showed the highest ω-6 PUFA. On the other hand, a positive correlation was observed between Ex vivo PGE2 level and the ω-6/ω-3 dietary ratio. Significant effects of dietary treatment on femur Ca, P, Mg, and Zn contents were observed in both genders.

CONCLUSIONS

Findings of the current study clearly demonstrated that dietary PUFA, particularly ω-6/ω-3 and ARA/EPA ratios are important factors in determining bone marrow fatty acid profile, and this in turn determines the capacity of bone for synthesis of PGE2, thereby reducing bone resorption and improving bone mass during growth.  相似文献   

6.
Background: Differences in interlaboratory research protocols contribute to the conflicting data in the literature regarding engineered nanomaterial (ENM) bioactivity.Objectives: Grantees of a National Institute of Health Sciences (NIEHS)-funded consortium program performed two phases of in vitro testing with selected ENMs in an effort to identify and minimize sources of variability.Methods: Consortium program participants (CPPs) conducted ENM bioactivity evaluations on zinc oxide (ZnO), three forms of titanium dioxide (TiO2), and three forms of multiwalled carbon nanotubes (MWCNTs). In addition, CPPs performed bioassays using three mammalian cell lines (BEAS-2B, RLE-6TN, and THP-1) selected in order to cover two different species (rat and human), two different lung epithelial cells (alveolar type II and bronchial epithelial cells), and two different cell types (epithelial cells and macrophages). CPPs also measured cytotoxicity in all cell types while measuring inflammasome activation [interleukin-1β (IL-1β) release] using only THP-1 cells.Results: The overall in vitro toxicity profiles of ENM were as follows: ZnO was cytotoxic to all cell types at ≥ 50 μg/mL, but did not induce IL-1β. TiO2 was not cytotoxic except for the nanobelt form, which was cytotoxic and induced significant IL-1β production in THP-1 cells. MWCNTs did not produce cytotoxicity, but stimulated lower levels of IL-1β production in THP-1 cells, with the original MWCNT producing the most IL-1β.Conclusions: The results provide justification for the inclusion of mechanism-linked bioactivity assays along with traditional cytotoxicity assays for in vitro screening. In addition, the results suggest that conducting studies with multiple relevant cell types to avoid false-negative outcomes is critical for accurate evaluation of ENM bioactivity.  相似文献   

7.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of the joints and bones. The n-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) is the precursor of inflammatory eicosanoids which are involved in RA. Some therapies used in RA target ARA metabolism. Marine n-3 PUFAs (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) found in oily fish and fish oils decrease the ARA content of cells involved in immune responses and decrease the production of inflammatory eicosanoids from ARA. EPA gives rise to eicosanoid mediators that are less inflammatory than those produced from ARA and both EPA and DHA give rise to resolvins that are anti-inflammatory and inflammation resolving, although little is known about these latter mediators in RA. Marine n-3 PUFAs can affect other aspects of immunity and inflammation relevant to RA, including dendritic cell and T cell function and production of inflammatory cytokines and reactive oxygen species, although findings for these outcomes are not consistent. Fish oil has been shown to slow the development of arthritis in animal models and to reduce disease severity. A number of randomised controlled trials of marine n-3 PUFAs have been performed in patients with RA. A systematic review included 23 studies. Evidence is seen for a fairly consistent, but modest, benefit of marine n-3 PUFAs on joint swelling and pain, duration of morning stiffness, global assessments of pain and disease activity, and use of non-steroidal anti-inflammatory drugs.  相似文献   

8.
Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are commonly added to infant formula worldwide; however, dietary concentrations needed to obtain optimal tissue levels have not been established. Hence, we studied tissue responses in piglets fed various doses of DHA and ARA. Doses were 0, 1, 2, and 5 times those used in U.S. infant formulas and DHA/ARA in Diet 0, Diet 1, Diet 2, and Diet 5 were 0, 4.1/8.1, 8.1/16.2, and 20.3/40.6 mg/100 kJ formula, respectively. Supplementation of dietary DHA and ARA increased DHA in brain, retina, liver, adipose tissue, plasma, and erythrocyte by 1.1- to 25.8-fold of Diet 0 (P-trend < 0.01). Tissue ARA (1.1- to 6.0-fold of Diet 0) responded to dietary ARA in liver, adipose tissue, plasma, and erythrocytes (P-trend < 0.05); brain and retina ARA was, however, unresponsive to dietary DHA and ARA. Plasma and erythrocyte DHA were positively associated with DHA in neural (brain and retina) and visceral (liver and adipose) tissues (r(2) = 0.11-0.56; P < 0.001-P = 0.042). Plasma and erythrocyte ARA did not correlate with neural ARA. Only plasma ARA was associated with liver ARA (r(2) = 0.222; P = 0.02) and adipose ARA (r(2) = 0.867; P < 0.001) and erythrocyte ARA correlated with adipose ARA (r(2) = 0.470; P < 0.001). We conclude that dietary DHA supplementation affords an effective strategy for enhancing tissue DHA, ARA in visceral but not neural tissues is sensitive to dietary ARA, and erythrocyte and plasma DHA can be used as proxies for tissue DHA, although blood-borne ARA is not an indicator of neural ARA.  相似文献   

9.
PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum) and long pepper (Piper longum), was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX)-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA) metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2), COX-1, COX-2, and thromboxane A2 (TXA2) synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PG)E2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms.  相似文献   

10.
Arachidonic acid (ARA; 20:4n6) and docosahexaenoic acid (DHA; 22:6n3) are polyunsaturated fatty acids (FA) naturally present in breast milk and added to most North American infant formulas (IF). We investigated the safety and efficacy of novel sodium and potassium salts of arachidonic acid as bioequivalent to support tissue levels of ARA comparable to the parent oil; M. alpina oil (Na-ARA and K-ARA) and including a Na-DHA group. Pigs of both sexes were randomized to one of five dietary treatments (n = 16 per treatment; 8 male and 8 female) from postnatal day 2 to 23. ARA and DHA were included as either triglyceride (TG) or salt. Target dietary ARA/DHA concentrations as percent of total FA by weight were as follows: TT (0.47 TG/0.32 TG), NaT (0.47 Na-salt/0.32 TG), KT (0.47 K-salt/0.32 TG), and Na0 (0.47 Na-salt/0.00), NaNa (0.47 Na-salt/0.32 Na-salt). The primary outcome in this study was bioequivalence of ARA brain accretion. Growth performance; blood and tissue fatty acid levels; liver histology; complete blood cell counts; and serum chemistries were all evaluated. Overall, diets containing test sources of ARA and DHA did not affect growth performance; liver histology; or substantially influence hematological outcomes as compared with TT. The results confirm that the use of Na and K salt forms of ARA yield bioequivalent ARA accretion in the cerebral cortex and retinal tissue compared to TG-ARA. These findings confirm that use of Na-ARA and K-ARA salts in the young pig was safe and nutritionally bioequivalent to TG-ARA for critical neural tissues.  相似文献   

11.
Oral administration of bovine colostrum affects intestinal immunity, including an increased percentage of natural killer (NK) cells. However, effects on NK cell cytotoxic activity and resistance to infection as well as a potential mechanism remain unclear. Therefore, we investigated the effects of bovine colostrum (La Belle, Inc, Bellingham, WA) on the NK cytotoxic response to influenza infection and on toll-like receptor (TLR) activity in a primary intestinal epithelial cell culture. We hypothesized that colostrum would increase NK cell activity and that TLR-2 and TLR-4 blocking would reduce interleukin 6 production by epithelial cells in response to contact stimulation with colostrum. Four-month-old female C57BL/6 mice were supplemented with 1 g of colostrum per kilogram of body weight before and after infection with influenza A virus (H1N1). Animals were assessed for weight loss, splenic NK cell activity, and lung virus titers. Colostrum-supplemented mice demonstrated less reduction in body weight after influenza infection, indicating a less severe infection, increased NK cell cytotoxicity, and less virus burden in the lungs compared with controls. Colostrum supplementation enhanced NK cell cytotoxicity and improved the immune response to primary influenza virus infection in mice. To investigate a potential mechanism, a primary culture of small intestine epithelial cells was then stimulated with colostrum. Direct activation of epithelial cells resulted in increased interleukin 6 production, which was inhibited with TLR-2 and TLR-4 blocking antibodies. The interaction between colostrum and immunity may be dependent, in part, on the interaction of colostrum components with innate receptors at the intestinal epithelium, including TLR-2 and TLR-4.  相似文献   

12.
Calder PC 《Nutrients》2010,2(3):355-374
Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content) results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.). Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.  相似文献   

13.
Prostaglandins (PG) have a regulatory influence on ovulation. α-Linolenic acid (ALA) vs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differently influence PG biosynthesis. Whereas high EPA/DHA reduces PGE2, enhancing ovulation, we hypothesized that ALA would not affect ovulation. Our objective was to determine the effect of low and high ALA intake vs EPA/DHA on ovarian phospholipids, ovulation, and PG synthesis in rats. Following 27 days on diet and ovulation induction, ovaries were isolated and analyzed in 22 pups per diet. Ovarian phospholipid (n-3) polyunsaturated fatty acid (PUFA) incorporation increased with EPA/DHA ingestion. With significant ovarian (n-3) PUFA or EPA (P < .05) enrichment in the high–n-3 PUFA diets, ova release increased. Although high ALA did not enrich total (n-3), it increased ova release and tissue EPA over low ALA or control. Dietary EPA/DHA more effectively reduced ovarian arachidonic acid levels than dietary ALA. Dietary ALA increased PGF and very high intake reduced PGE, whereas EPA/DHA did not alter PGE or PGF. Enhanced ova release with high (n-3) PUFA intake may be induced via multiple mechanisms including reduced ovarian arachidonic acid. Significant ovarian retention of EPA and DHA enhanced ovulation with unchanged total PGE and PGF. Lack of change in PGE may have resulted from reduced PGE2 combined with increased PGE3. When EPA alone was elevated, PGE was reduced, whereas PGF was increased. Results indicate that very high ALA intake enhances ovulation similar to very high EPA/DHA ingestion, an effect potentially mediated via similar patterns of PGF2α and PGE2 synthesis.  相似文献   

14.
Animal and human studies have shown that greatly increasing the amounts of flax seed oil [rich in the (n-3) polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALNA)] or fish oil [FO; rich in the long chain (n-3) PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in the diet can decrease mitogen-stimulated lymphocyte proliferation. The objective of this study was to determine the effect of dietary supplementation with moderate levels of ALNA, gamma-linolenic acid (GLA), arachidonic acid (ARA), DHA or FO on the proliferation of mitogen-stimulated human peripheral blood mononuclear cells (PBMC) and on the production of cytokines by those cells. The study was randomized, placebo-controlled, double-blinded and parallel. Healthy subjects ages 55-75 y consumed nine capsules/d for 12 wk; the capsules contained placebo oil (an 80:20 mix of palm and sunflower seed oils) or blends of placebo oil with oils rich in ALNA, GLA, ARA or DHA or FO. Subjects in these groups consumed 2 g of ALNA or 770 mg of GLA or 680 mg of ARA or 720 mg of DHA or 1 g of EPA plus DHA (720 mg of EPA + 280 mg of DHA) daily from the capsules. Total fat intake from the capsules was 4 g/d. The fatty acid composition of PBMC phospholipids was significantly changed in the GLA, ARA, DHA and FO groups. Lymphocyte proliferation was not significantly affected by the placebo, ALNA, ARA or DHA treatments. GLA and FO caused a significant decrease (up to 65%) in lymphocyte proliferation. This decrease was partly reversed by 4 wk after stopping the supplementation. None of the treatments affected the production of interleukin-2 or interferon-gamma by PBMC and none of the treatments affected the number or proportion of T or B lymphocytes, helper or cytotoxic T lymphocytes or memory helper T lymphocytes in the circulation. We conclude that a moderate level GLA or EPA but not of other (n-6) or (n-3) PUFA can decrease lymphocyte proliferation but not production of interleukin-2 or interferon-gamma.  相似文献   

15.
Compared with diets high in fat, low-fat diets are associated with reduced risk of cardiovascular disease. We hypothesized that a low-fat (LF) (20% fat) and an LF high–omega-3 (n-3) fatty acid diet (LFn3) (23% fat with 3% as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid [DHA]) would enhance n-3 composition of plasma phospholipid fatty acid and reduce urinary prostaglandin E2 (PGE2) relative to a high-fat diet (HF) (40% fat) and that these changes would be associated with alterations in δ5 desaturase (D5D) and δ6 desaturase (D6D) activity. Phospholipid fatty acids and urinary PGE2 were measured, and D5D and D6D activity indices calculated in a crossover trial in 17 postmenopausal women fed each of 3 test diets (HF, LF, and LFn3) for 8-week feeding periods. Desaturase activity indices were calculated as D5D, 20:4n-6/20:3n-6, and D6D, 20:3n-6/18:2n-6. Plasma phospholipid fatty acid, α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid (DPA), DHA, and total n-3 fatty acids increased, whereas linoleic acid and arachidonic acid decreased with consumption of LFn3. The LF resulted in enhanced arachidonic acid and DHA. High fat reduced D6D, whereas both HF and LF increased D5D. Urinary PGE2 was reduced in response to both the LF and LFn3 diets. Low-fat diets, with or without long-chain n-3 fatty acids, promote positive health effects due in part to favorable alteration of plasma phospholipid fatty acid profiles and modification in desaturase activity indices, suggesting that the type and amount of fat consumed are modifiable risk factors for the prevention of cardiovascular disease.  相似文献   

16.
(6S)-5-Methyltetrahydrofolic acid ((6S)-5-Methyl-THF) salts and folic acid may differ in their abilities to raise plasma (6S)-5-Methyl-THF levels. We compared the area under the curve (AUC), Cmax, and Tmax of plasma (6S)-5-Methyl-THF after intakes of (6S)-5-Methyl-THF-Na salt (Arcofolin®) and folic acid. Moreover, we compared the AUCs after intakes of (6S)-5-Methyl-THF-Na and the calcium salt, (6S)-5-Methyl-THF-Ca, that were tested against folic acid in two independent studies. The study was randomized, double blind, and cross over. Twenty-four adults (12 men and 12 women) received a single oral dose of 436 µg (6S)-5-Methyl-THF-Na and an equimolar dose of folic acid (400 µg) on two kinetic days with two weeks washout period in between. The plasma concentrations of (6S)-5-Methyl-THF were measured at 9 time points between 0 and 8 h. We found that the AUC0–8 h of plasma (6S)-5-Methyl-THF (mean (SD) = 126.0 (33.6) vs. 56.0 (25.3) nmol/L*h) and Cmax (36.8 (10.8) vs. 11.1 (4.1) nmol/L) were higher after administration of (6S)-5-Methyl-THF-Na than after the administration of folic acid (p < 0.001 for both). These differences were present in men and women. Only administration of folic acid resulted in a transient increase in plasma unmetabolized folic acid (2.5 (2.0) nmol/L after 0.5 h and 4.7 (2.9) nmol/L after 1 h). Intake of (6S)-5-Methyl-THF-Na was safe. The ratios of the AUC0–8 h for (6S)-5-Methyl-THF-Na and (6S)-5-Methyl-THF-Ca to the corresponding folic acid reference group and the delta of these AUC0–8 h did not differ between the studies. In conclusion, a single oral dose of (6S)-5-Methyl-THF-Na caused higher AUC0–8 h and Cmax of plasma (6S)-5-Methyl-THF compared to folic acid. The Na- and Ca- salts of (6S)-5-Methyl-THF are not likely to differ in their pharmacokinetics. Further studies may investigate whether supplementation of the compounds for a longer time will lead to differences in circulating or intracellular/tissue folate concentrations.  相似文献   

17.
We have previously shown that interleukin-21, a pleiotropic C γ-chain signaling cytokine, induces the expression of the cytotoxic molecules granzyme B (GrB) and perforin in vitro in CD8 T cells and NK cells of chronically HIV infected individuals. In this pilot study, four chronically SIV infected rhesus macaques (RM) in late-stage disease were given two doses of recombinant MamuIL-21, 50 μg/kg, intravenously 7 days apart, followed by one subcutaneous dose, 100 μg/kg, 23 days after the second dose. Three animals served as controls. After each dose of IL-21, increases were noted in frequency and mean fluorescence intensity of GrB and perforin expression in memory and effector subsets of CD8 T cells in peripheral blood (PB), in peripheral and mesenteric lymph node (LN) cells, in PB memory and effector CD4 T cells and in NK cells. Frequencies of SIV-gag specific CD107a+IFN-γ+ CD8 T cells increased 3.8-fold in PB and 1.8-fold in LN. In addition, PB CD27+ memory B cells were 2-fold higher and serum SIV antibodies increased significantly after IL-21 administration. No changes were observed in markers of T cell activation, T cell proliferation or plasma virus load. Thus, administration of IL-21 to chronically SIV infected viremic animals was safe, well tolerated and could augment the cytotoxic potential of T cells and NK cells, promote B cell differentiation with increases in SIV antibody titers without discernable increase in cellular activation. Further studies are warranted to elucidate the effects and potential benefit of IL-21 administration in the context of SIV/HIV infection and in SIV/HIV vaccine design.  相似文献   

18.
Tetrahydrobiopterin (BH4) is an essential co-factor of nitric oxide synthases and is easily oxidized to dihydrobiopterin (BH2) which promotes endothelial nitric oxide synthase uncoupling and deleterious superoxide production. Vitamin C has been shown to improve endothelial function by different mechanisms, some involving BH4. The hypothesis of the present study was that vitamin C status, in particular low levels, influences biopterin redox status in vivo. Like humans, the guinea pig lacks the ability to synthesize vitamin C and was therefore used as model. Seven day old animals (n = 10/group) were given a diet containing 100, 250, 500, 750, 1000, or 1500 ppm vitamin C until euthanasia at age 60–64 days. Blood samples were drawn from the heart and analyzed for ascorbate, dehydroascorbic acid (DHA), BH4 and BH2 by high-performance liquid chromatography. Plasma BH4 levels were found to be significantly lower in animals fed 100 ppm vitamin C compared to all other groups (P < .05 or less). BH2 levels were not significantly different between groups but the BH2-to-BH4 ratio was higher in the group fed 100 ppm vitamin C (P < .001 all cases). Significant positive correlations between BH4 and ascorbate and between BH2-to-BH4 ratio and DHA were observed (P < .0001 both cases). Likewise, BH2-to-BH4 ratio was negatively correlated with ascorbate (P < .0001) as was BH4 and DHA (P < .005). In conclusion, the redox status of plasma biopterins, essentially involved in vasodilation, depends on the vitamin C status in vivo. Thus, ingestion of insufficient quantities of vitamin C not only leads to vitamin C deficiency but also to increased BH4 oxidation which may promote endothelial dysfunction.  相似文献   

19.
The present study investigates the bone maturity of suckling rats whose mothers were treated with gibberellic acid (GA3). Female Wistar rats were divided into two groups: group I that served as controls and group II that received orally GA3 (200 ppm) from the 14th day of pregnancy until day 14 after delivery. In the GA3 group, an increase in body and femur weights as well as in femur length of pups was noted when compared to controls. Lipid peroxidation was demonstrated by high femur malondialdehyde levels, while superoxide dismutase, catalase, glutathione peroxidase activities, glutathione and vitamin C levels in femur decreased. GA3 caused a decrease in calcium and phosphorus levels in bone. The calcium concentration in plasma increased and the phosphorus concentration decreased, while urinary levels of calcium decreased and those of phosphate increased. Moreover, plasma total tartrate-resistant acid phosphatase and total alkaline phosphatase increased. Bone disorders were confirmed by femur histological changes.  相似文献   

20.
Long chain polyunsaturated fatty acids (LCPUFA) namely arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3) are highly concentrated in the phospholipid bilayer of biologically active brain and retinal neural membranes and are important in phototransduction and neuronal function. The rationale for adding these LCPUFA to infant formula (IF) was primarily because of their presence in large quantities in the retina and brain and in human milk. In addition, infants fed IF containing LCPUFA and breastfed infants have comparable ARA and DHA levels in red cell and plasma, in contrast to the lower ARA and DHA levels in those fed IF containing only the essential fatty acids: linoleic (LA, 18:2n-6) and linolenic (LNA, 18:3n-3), the precursors to ARA and DHA, respectively. However, functional benefits in particular visual or neural development from IF containing LCPUFA remains controversial. Potential for excessive and/or imbalanced intake of n-6 and n-3 fatty acids exists with increasing fortification of LCPUFA to infant foods other than IF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号