首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study used functional magnetic resonance imaging to investigate brain activation during preparatory and regulatory control while participants (N = 24) were instructed either to simply view or decrease their emotional response to, pleasant, neutral or unpleasant pictures. A main effect of emotional valence on brain activity was found in the right precentral gyrus, with greater activation during positive than negative emotion regulation. A main effect of regulation phase was evident in the bilateral anterior prefrontal cortex (PFC), precuneus, posterior cingulate cortex, right putamen and temporal and occipital lobes, with greater activity in these regions during preparatory than regulatory control. A valence X regulation interaction was evident in regions of ventromedial PFC and anterior cingulate cortex, reflecting greater activation while regulating negative than positive emotion, but only during active emotion regulation (not preparation). Conjunction analyses revealed common brain regions involved in differing types of emotion regulation including selected areas of left lateral PFC, inferior parietal lobe, temporal lobe, right cerebellum and bilateral dorsomedial PFC. The right lateral PFC was additionally activated during the modulation of both positive and negative valence. Findings demonstrate significant modulation of brain activity during both preparation for, and active regulation of positive and negative emotional states.  相似文献   

2.
The recognition of facial expressions of emotion is impaired in semantic dementia (SD) and is associated with right-sided brain atrophy in areas known to be involved in emotion processing, notably the amygdala. Whether patients with SD also experience difficulty recognizing emotions conveyed by other media, such as music, is unclear. Prior studies have used excerpts of known music from classical or film repertoire but not unfamiliar melodies designed to convey distinct emotions. Patients with SD (n = 11), Alzheimer's disease (n = 12) and healthy control participants (n = 20) underwent tests of emotion recognition in two modalities: unfamiliar musical tunes and unknown faces as well as volumetric MRI. Patients with SD were most impaired with the recognition of facial and musical emotions, particularly for negative emotions. Voxel-based morphometry showed that the labelling of emotions, regardless of modality, correlated with the degree of atrophy in the right temporal pole, amygdala and insula. The recognition of musical (but not facial) emotions was also associated with atrophy of the left anterior and inferior temporal lobe, which overlapped with regions correlating with standardized measures of verbal semantic memory. These findings highlight the common neural substrates supporting the processing of emotions by facial and musical stimuli but also indicate that the recognition of emotions from music draws upon brain regions that are associated with semantics in language.  相似文献   

3.

ABSTRACT

BACKGROUNDS AND PURPOSE

The aim of this study is to develop a near‐infrared spectroscopy (NIRS)‐based system that recognizes pleasant and unpleasant human emotions based on cerebral blood flow (CBF) in order to understand the minds of patients whose brain function is severely impaired. The forehead region is easily accessible to NIRS measurements, whereas the role of the anterior prefrontal cortex (PFC) in the processing of emotion remains to be elucidated.

METHODS

Initially, using event‐related NIRS we examined changes in oxygenated hemoglobin (oxy‐Hb) as an indicator of regional CBF changes, which reflect brain activity directly related to emotions, but not to cognitive operations in the anterior frontal regions, during viewing affective pictures. The event‐related potentials (ERPs), systemic blood pressure, and pulse rate were also measured simultaneously.

RESULTS

The event‐related analysis of changes in oxy‐Hb for a 6 s‐picture presentation period showed that very unpleasant emotion was accompanied by an increase in oxy‐Hb in the bilateral ventrolateral PFCs, while very pleasant emotion was accompanied by a decrease in oxy‐Hb in the left dorsolateral PFC. There were no significant differences in either ERPs or autonomic nervous system activities between the two emotional states.

CONCLUSION

These findings suggest the possibility of recognizing patients’ emotions from CBF changes.
  相似文献   

4.
Tagging cortical networks in emotion: A topographical analysis   总被引:1,自引:0,他引:1  
Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re‐entrant connectivity originating in higher‐order cortical and/or limbic structures. The present study used dense‐array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady‐state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower‐tier visual cortex, a network of occipito‐temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Recent studies have suggested that the frontal and temporal variants of frontotemporal dementia (fvFTD and tvFTD) are both associated with impairments in emotional processing. However, the degree and type of emotional processing deficits in the two syndromes have not been previously compared. We used the Florida Affect Battery to examine recognition of facial expressions of emotion in fvFTD and tvFTD patients who have no evidence of visual perceptual difficulties for faces. In general, both groups were impaired at recognizing emotions compared with age-matched controls. In tvFTD, this deficit was limited to emotions with a negative valence (sadness, anger, fear), while fvFTD patients showed impairment for positive valence (happiness) as well. These results suggest that damage to frontal lobe regions in FTD may lead to more profound impairment in recognition of emotion than when damage is more limited to the temporal lobe.  相似文献   

6.
Emotion plays a significant role in goal‐directed behavior, yet its neural basis is yet poorly understood. In several psychological models the cardinal dimensions that characterize the emotion space are considered to be valence and arousal. Here 3T functional magnetic resonance imaging (fMRI) was used to reveal brain areas that show valence‐ and arousal‐dependent blood oxygen level dependent (BOLD) signal responses. Seventeen healthy adults viewed pictures from the International Affective Picture System (IAPS) for brief 100 ms periods in a block design paradigm. In many brain regions BOLD signals correlated significantly positively with valence ratings of unpleasant pictures. Interestingly, partly in the same regions but also in several other regions BOLD signals correlated negatively with valence ratings of pleasant pictures. Therefore, there were several areas where the correlation across all pictures was of inverted U‐shape. Such correlations were found bilaterally in the dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC) extending to anterior cingulate cortex (ACC), and insula. Self‐rated arousal of those pictures which were evaluated to be unpleasant correlated with BOLD signal in the ACC, whereas for pleasant pictures arousal correlated positively with the BOLD signal strength in the right substantia innominata. We interpret our results to suggest a major division of brain mechanisms underlying affective behavior to those evaluating stimuli to be pleasant or unpleasant. This is consistent with the basic division of behavior to approach and withdrawal, where differentiation of hostile and hospitable stimuli is crucial. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Our comprehension of the neural mechanisms underlying emotional information processing has largely benefited from noninvasive electrophysiological and functional neuroimaging techniques in recent years. However, the spatiotemporal dynamics of the neural events occurring during emotional processing remain imprecise due to the limited combination of spatial and temporal resolution provided by these techniques. This study examines the modulations of high‐frequency activity of intracranial electroencephalography recordings associated with affective picture valence, in epileptic patients awaiting neurosurgery. Recordings were obtained from subdural grids and depth electrodes in eight patients while they viewed a series of unpleasant, pleasant and neutral pictures from the International Affective Picture System. Broadband high‐gamma (70–150 Hz) power was computed for separate 100‐ms time windows and compared according to ratings of emotional valence. Compared to emotionally neutral or pleasant pictures, unpleasant stimuli were associated with an early and long‐lasting (≈200–1,000 ms) bilateral increase in high‐gamma activity in visual areas of the occipital and temporal lobes, together with a late and transient (≈500–800 ms) decrease found bilaterally in the lateral prefrontal cortex (PFC). Pleasant pictures were associated with increased gamma activity in the occipital cortex, compared to the emotionally neutral stimuli. Consistent with previous studies, our results provide direct evidence of emotion‐related modulations in the visual ventral pathway during picture processing. Results in the lateral PFC also shed light on the neural mechanisms underlying its role in negative emotions processing. This study demonstrates the utility of intracranial high‐gamma modulations to study emotional process with a high spatiotemporal precision. Hum Brain Mapp, 36:16–28, 2015.. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Although evidence from primates suggests an important role for the anterior temporal cortex in social behaviour, human research has to date concentrated almost solely on the orbitofrontal cortex and amygdala. By describing four cases of the temporal variant of frontotemporal dementia we show how this degenerative condition provides an excellent model for investigating the role of the anterior temporal lobe, especially the right, in emotions, empathy and social behaviour. Assessments of semantic memory, processing of emotional facial expression and emotional prosody were made, empathy was measured, and facial expressions of emotion were coded. Of the two right handers described, one subject with predominantly left temporal lobe atrophy had severe semantic impairment but normal performance on all emotional tasks. In contrast, the subject with right temporal lobe atrophy showed severely impaired recognition of emotion from faces and voices that was not due to semantic or perceptual difficulties. Empathy was lost, interpersonal skills were severely affected and facial expression of emotion was characterized by a fixed expression that was unresponsive to situations. Additionally, two left handers with right temporal lobe atrophy are described. One demonstrated the same pattern of hemispheric lateralization as the right handers and had emotional impairment. The other left hander showed the opposite pattern of deficits, suggesting a novel presentation of anomalous dominance with reversed hemispheric specialization of semantic memory and emotional processing.  相似文献   

9.
Studies on emotion processing in patients with temporal lobe epilepsy have dealt mainly with the processing of negative emotions. To further understand the neural basis of emotional disorders in temporal lobe epilepsy, we studied patterns of brain activation induced by implicit processing of negative and positive emotions perceived through facial expressions and emotionally salient stimuli in candidates for surgical treatment of intractable epilepsy. Using functional MRI, we compared, in patients with mesial temporal lobe epilepsy and healthy subjects, the patterns of brain activation elicited by the implicit processing of fearful, sad, and happy faces and pleasant and unpleasant scenes. The results revealed different patterns of activation in patients with left and right mesial temporal lobe epilepsy, compared with healthy subjects, suggesting that the left and right mesial temporal regions are involved differently in emotion processing, which could be related to different contributions in emotional arousal.  相似文献   

10.
We determined the brain regions that were differentially sensitive to two, randomly inter-mixed tasks: Deep Encoding, in which subjects processed items according to their meaning (is the word pleasant or unpleasant?) and Shallow Encoding, in which items were processed according to two underlined letters in the word (are the letters in alphabetical order?). The former task was associated with activations in a set of brain regions including left lateral prefrontal cortex (PFC) and left medial temporal cortex. The latter showed relatively greater activation in right PFC. Both findings are consistent with predictions made on the basis of previous functional neuroimaging work. Following scanning, each subject underwent a recognition memory task. The results of these provided the basis for a further sub-division of encoding events, according to whether they were predictive of subsequent recognition success or not. Unsurprisingly, recognition performance was greater for words that had been deeply encoded. For both encoding conditions, words that were subsequently recognised were associated with greater activation in a sub-set of regions identified by the deep versus shallow contrast. These included left PFC and medial temporal regions. In left PFC this performance-predicting activation was significantly greater for the deep encoding condition. Our results support previous studies suggesting a role for left PFC and medial temporal cortex in episodic memory encoding. They provide more evidence, too, for a less consistent finding: the interaction between the encoding task and the success of subsequent recognition.  相似文献   

11.
The amygdala has been implicated in the recognition of facial emotions, especially fearful expressions, in adults with early-onset right temporal lobe epilepsy (TLE). The present study investigates the recognition of facial emotions in children and adolescents, 8–16 years old, with epilepsy. Twenty-nine subjects had TLE (13 right, 16 left) and eight had fronto-central epilepsy (FCE). Each was matched on age and gender with a control subject. Subjects were asked to label the emotions expressed in pictures of children's faces miming five basic emotions (happiness, sadness, fear, disgust and anger) or neutrality (no emotion). All groups of children with epilepsy performed less well than controls. Patterns of impairment differed according to the topography of the epilepsy: the left-TLE (LTLE) group was impaired in recognizing fear and neutrality, the right-TLE (RTLE) group was impaired in recognizing disgust and, the FCE group was impaired in recognizing happiness. We clearly demonstrated that early seizure onset is associated with poor recognition of facial expression of emotion in TLE group, particularly for fear. Although right-TLE and left-TLE subjects were both impaired in the recognition of facial emotion, their psychosocial adjustment, as measured by the CBCL questionnaire [Achenbach, T. M. (1991). Manual for the Child Behavior Checklist and Youth Self-report. Burlington, VT: University of Vermont Department of Psychiatry], showed that poor recognition of fearful expressions was related to behavioral disorders only in children with right-TLE. Our study demonstrates for the first time that early-onset TLE can compromise the development of recognizing facial expressions of emotion in children and adolescents and suggests a link between impaired fear recognition and behavioral disorders.  相似文献   

12.
OBJECTIVE: To test the hypothesis that fear recognition deficits in neurologic patients reflect damage to an emotion-specific neural network. BACKGROUND: Previous studies have suggested that the perception of fear in facial expressions is mediated by a specialized neural system that includes the amygdala and certain posterior right-hemisphere cortical regions. However, the neuropsychological findings in patients with amygdala damage are inconclusive, and the contribution of distinct cortical regions to fear perception has only been examined in one study. Methods: We studied the recognition of six basic facial expressions by asking subjects to match these emotions with the appropriate verbal labels. RESULTS: Both normal control subjects (n = 80) and patients with focal brain damage (n = 63) performed significantly worse in recognizing fear than in recognizing any other facial emotion, with errors consisting primarily of mistaking fear for surprise. Although patients were impaired relative to control subjects in recognizing fear, we could not obtain convincing evidence that left, right, or bilateral lesions were associated with disproportionate impairments of fear perception once we adjusted for differences in overall recognition performance for the other five facial emotion categories. The proposed special role of the amygdala and posterior right-hemisphere cortical regions in fear perception was also not supported. CONCLUSIONS: Fear recognition deficits in neurologic patients may be attributable to task difficulty factors rather than damage to putative neural systems dedicated to fear perception.  相似文献   

13.
Purpose:   To evaluate facial emotion recognition (FER) in a cohort of 176 patients with chronic temporal lobe epilepsy (TLE).
Methods:   FER was tested by matching facial expressions with the verbal labels for the following basic emotions: happiness, sadness, fear, disgust, and anger. Emotion recognition performances were analyzed in medial (n = 140) and lateral (n = 36) TLE groups. Fifty healthy subjects served as controls. The clinical and neuroradiologic variables potentially affecting the ability to recognize facial expressions were taken into account.
Results:   The medial TLE (MTLE) group showed impaired FER (86% correct recognition) compared to both the lateral TLE patients (FER = 93.5%) and the controls (FER = 96.4%), with 42% of MTLE patients recording rates of FER that were lower [by at least 2 standard deviations (SDs)] than the control mean. The MTLE group was impaired compared to the healthy controls in the recognition of all basic facial expressions except happiness. The patients with bilateral MTLE were the most severely impaired, followed by the right and then the left MTLE patients. FER was not affected by type of lesion, number of antiepileptic drugs (AEDs), aura semiology, or gender. Conversely, the early onset of seizures/epilepsy was related to FER deficits. These deficits were already established in young adulthood, with no evidence of progression in older MTLE patients.
Conclusion:   These results on a large cohort of TLE patients demonstrate that emotion recognition deficits are common in MTLE patients and widespread across negative emotions. We confirm that early onset seizures with right or bilateral medial temporal dysfunction lead to severe deficits in recognizing facial expressions of emotions.  相似文献   

14.
We describe the epilepsy features and emotion recognition abilities (recognition of basic facial emotions and recognition of emotional prosody) in a patient with Urbach‐Wiethe disease with bilateral amygdala calcifications. Our data, supported by ictal video‐EEG recording, indicated that our patient suffered from mesial temporal lobe epilepsy. Emotion recognition abilities were compared to those of healthy controls and those of patients with bilateral mesial temporal lobe epilepsy. Our patient showed a selective impairment of the recognition of facial expression of fear, whereas recognition of emotional prosody was preserved, in contrast to bilateral mesial temporal lobe epilepsy patients that presented with deficits in both domains. We also reviewed the literature on epilepsy in Urbach‐Wiethe disease (41 patients). Our findings suggest that in Urbach‐Wiethe disease, the circumscribed damage of both amygdalae results in a selective dysfunction of fearful face processing, in contrast to bilateral mesial temporal lobe epilepsy patients who present with a widespread and multimodal impairment in the judgement of emotional stimuli.  相似文献   

15.
OBJECTIVE: To assist in the development of a model for the psychopathology of emotions, the present study sought to identify the neural circuits associated with the evaluation of visual stimuli for emotional valence. METHOD: Seventeen healthy individuals were shown three sets of emotionally laden pictures carrying pleasant, unpleasant, and neutral content. While subjects evaluated the picture set for emotional valence, regional cerebral blood flow was measured with the use of [15O] water positron emission tomography. Subjective ratings of the emotional valence of the picture sets were recorded. Data were analyzed by comparing the images acquired during the neutral condition with the unpleasant and pleasant image sets and the unpleasant and pleasant conditions with each other. RESULTS: Processing of pleasant stimuli was associated with increased blood flow in the dorsal-lateral, orbital, and medial frontal cortex relative to the unpleasant condition and in the cingulate, precuneus, and visual cortex relative to the neutral condition. Evaluation of unpleasant stimuli activated the amygdala, visual cortex, and cerebellum relative to the pleasant condition and the nucleus accumbens, precuneus, and visual cortex relative to the neutral condition. CONCLUSIONS: Observing and assigning emotional value to unpleasant stimuli produced activations in subcortical limbic regions, whereas evaluation of pleasant stimuli produced activations in cortical limbic areas. These findings are consistent with the notion of a subcortical and archaic danger recognition system and a system detecting pleasantness in events and situations that is phylogenetically younger, involving primarily the prefrontal cortex.  相似文献   

16.
Findings from several case studies have shown that bilateral amygdala damage impairs recognition of emotions in facial expressions, especially fear. However, one study did not find such an impairment, and, in general, comparison across studies has been made difficult because of the different stimuli and tasks employed. In a collaborative study to facilitate such comparisons, we report here the recognition of emotional facial expressions in nine subjects with bilateral amygdala damage, using a sensitive and quantitative assessment. Compared to controls, the subjects as a group were significantly impaired in recognizing fear, although individual performances ranged from severely impaired to essentially normal. Most subjects were impaired on several negative emotions in addition to fear, but no subject was impaired in recognizing happy expressions. An analysis of response consistency showed that impaired recognition of fear could not be attributed simply to mistaking fear for another emotion. While it remains unclear why some subjects with amygdala damage included here are not impaired on our task, the results overall are consistent with the idea that the amygdala plays an important role in triggering knowledge related to threat and danger signaled by facial expressions.  相似文献   

17.
S B Hamann  R Adolphs 《Neuropsychologia》1999,37(10):1135-1141
Bilateral damage to the amygdala in humans has been previously linked to two deficits in recognizing emotion in facial expressions: recognition of individual basic emotions, especially fear, and recognition of similarity among emotional expressions. Although several studies have examined recognition of individual emotions following amygdala damage, only one subject has been examined on recognition of similarity. To assess the extent to which deficits in recognizing similarity among facial expressions might be a general consequence of amygdala damage, we examined this ability in two subjects with complete bilateral amygdala damage. Both subjects had previously demonstrated entirely normal recognition of individual facial emotions. Here we report that these two patients also are intact in their ability to recognize similarity between emotional expressions. These results indicate that, like the recognition of individual basic emotions in facial expressions, the recognition of similarity among emotional expressions does not have an absolute dependence on the amygdala.  相似文献   

18.
Sentence processing problems form a common consequence of left‐hemisphere brain injury, in some patients to such an extent that their pattern of language performance is characterized as “agrammatic”. However, the location of left‐hemisphere damage that causes such problems remains controversial. It has been suggested that the critical site for syntactic processing is Broca's area of the frontal cortex or, alternatively, that a more widely distributed network is responsible for syntactic processing. The aim of this study was to identify brain regions that are required for successful sentence processing. Voxel‐based lesion‐symptom mapping (VLSM) was used to identify brain regions where injury predicted impaired sentence processing in 50 native speakers of Icelandic with left‐hemisphere stroke. Sentence processing was assessed by having individuals identify which picture corresponded to a verbally presented sentence. The VLSM analysis revealed that impaired sentence processing was best predicted by damage to a large left‐hemisphere temporo‐parieto‐occipital area. This is likely due to the multimodal nature of the sentence processing task, which involves auditory and visual analysis, as well as lexical and syntactic processing. Specifically impaired processing of noncanonical sentence types, when compared with canonical sentence processing, was associated with damage to the left‐hemisphere anterior superior and middle temporal gyri and the temporal pole. Anterior temporal cortex, therefore, appears to play a crucial role in syntactic processing, and patients with brain damage to this area are more likely to present with receptive agrammatism than patients in which anterior temporal cortex is spared. Hum Brain Mapp 34:2715–2723, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The ventromedial prefrontal cortex has been implicated in a variety of emotion processes. However, findings regarding the role of this region specifically in emotion recognition have been mixed. We used a sensitive facial emotion recognition task to compare the emotion recognition performance of 7 subjects with lesions confined to ventromedial prefrontal regions, 8 subjects with lesions elsewhere in prefrontal cortex, and 16 healthy control subjects. We found that emotion recognition was impaired following ventromedial, but not dorsal or lateral, prefrontal damage. This impairment appeared to be quite general, with lower overall ratings or more confusion between all six emotions examined. We also explored the relationship between emotion recognition performance and the ability of the same patients to experience transient happiness and sadness during a laboratory mood induction. We found some support for a relationship between sadness recognition and experience. Taken together, our results indicate that the ventromedial frontal lobe plays a crucial role in facial emotion recognition, and suggest that this deficit may be related to the subjective experience of emotion.  相似文献   

20.
Individuals can experience negative emotions (e.g., embarrassment) accompanying self-evaluation immediately after recognizing their own facial image, especially if it deviates strongly from their mental representation of ideals or standards. The aim of this study was to identify the cortical regions involved in self-recognition and self-evaluation along with self-conscious emotions. To increase the range of emotions accompanying self-evaluation, we used facial feedback images chosen from a video recording, some of which deviated significantly from normal images. In total, 19 participants were asked to rate images of their own face (SELF) and those of others (OTHERS) according to how photogenic they appeared to be. After scanning the images, the participants rated how embarrassed they felt upon viewing each face. As the photogenic scores decreased, the embarrassment ratings dramatically increased for the participant's own face compared with those of others. The SELF versus OTHERS contrast significantly increased the activation of the right prefrontal cortex, bilateral insular cortex, anterior cingulate cortex, and bilateral occipital cortex. Within the right prefrontal cortex, activity in the right precentral gyrus reflected the trait of awareness of observable aspects of the self; this provided strong evidence that the right precentral gyrus is specifically involved in self-face recognition. By contrast, activity in the anterior region, which is located in the right middle inferior frontal gyrus, was modulated by the extent of embarrassment. This finding suggests that the right middle inferior frontal gyrus is engaged in self-evaluation preceded by self-face recognition based on the relevance to a standard self.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号