首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subtilase cytotoxin (SubAB) is an AB5 cytotoxin produced by some strains of Shiga-toxigenic Escherichia coli. The A subunit is a subtilase-like serine protease and cleaves an endoplasmic reticulum chaperone, BiP, leading to transient inhibition of protein synthesis and cell cycle arrest at G1 phase. Here we show that SubAB, but not the catalytically inactive mutant SubAB(S272A), induced apoptosis in Vero cells, as detected by DNA fragmentation and annexin V binding. SubAB induced activation of caspase-3, -7, and -8. Caspase-3 appeared earlier than caspase-8, and by use of specific caspase inhibitors, it was determined that caspase-3 may be upstream of caspase-8. A general caspase inhibitor blocked SubAB-induced apoptosis, detected by annexin V binding. SubAB also stimulated cytochrome c release from mitochondria, which was not suppressed by caspase inhibitors. In HeLa cells, Apaf-1 small interfering RNA inhibited caspase-3 activation, suggesting that cytochrome c might form an apoptosome, leading to activation of caspase-3. These data suggested that SubAB induced caspase-dependent apoptosis in Vero cells through mitochondrial membrane damage.Shiga-toxigenic Escherichia coli (STEC) is an etiologic agent of hemorrhagic colitis. Gastrointestinal disease caused by STEC may progress to systemic complications, including hemolytic uremic syndrome (HUS), which is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and renal failure (13, 23). Shiga toxin 1 (Stx1) and Stx2 are both produced by STEC. However, whether Shiga toxins are the only factors responsible for these devastating diseases is still not clear.A new member of the AB5 toxin family, named subtilase cytotoxin (SubAB), was identified (22, 23) in E. coli O113:H21 strain 98NK2, which produced Stx2 and was responsible for an outbreak of HUS. SubAB consists of one A subunit and five B subunits, which form a pentamer, similar to the case for Stx. The SubAB A subunit, with a molecular size of 35 kDa, shares sequence homology with a subtilase-like serine protease of Bacillus anthracis, and the toxin was named “subtilase cytotoxin.” The A subunit cleaves at a specific single site of endoplasmic reticulum (ER) chaperone BiP (21). The B subunits bind to some N-glycosylated membrane proteins, and α2β1 integrin has been shown to one of the receptors for vacuolating activity of B subunits (18, 30). Recently, it was reported that B subunits specifically bound to glycans terminating in the sialic acid N-glycolylneuraminic acid (3). SubAB is lethal for mice, causing extensive microvascular thrombosis as well as necrosis in the brain, kidney, and liver and apoptosis in the spleen, kidney, and liver. These findings are similar to the histopathologic, biochemical, and hematologic changes seen in human HUS (22, 26).SubAB is cytotoxic to Vero cells. BiP cleavage by the A subunit is necessary for Vero cell death (17, 18, 21, 22). BiP is known as a master regulator of ER function and homeostasis (11). SubAB induces ER stress (17, 27), as shown by activation of double-stranded RNA-activated protein kinase-like ER kinase (PERK) and eukaryotic initiation factor 2α (eIF2α), leading to transient protein synthesis inhibition and stress-inducible C/EBP-homologous protein (CHOP) induction, with cell cycle arrest in G1 phase as a result of downregulation of cyclin D1 (17).Apoptosis, or programmed cell death, is a physiological event important in a diverse array of biological processes ranging from embryo development to bacterial infection (7, 31, 33). Morphologically, cells undergoing apoptosis demonstrate nuclear/cytoplasmic condensation and membrane protrusions. Biochemically, apoptotic cells are characterized by reduction in the mitochondrial transmembrane potential, intracellular acidification, production of reactive oxygen species, externalization of phosphatidylserine residues in membrane bilayers, selective proteolysis of a subset of cellular proteins, and internucleosomal degradation of DNA, resulting in a typical fragmentation pattern (28). There are multiple potential participants described for ER stress-induced apoptosis; however, the precise mechanisms of ER stress-induced apoptosis have not been fully elucidated (29). Recently, SubAB-induced apoptosis was partially described (27). We report here that SubAB triggers apoptosis in Vero cells initiated via mitochondrial membrane damage, followed by activation of a caspase-dependent cell death pathway.  相似文献   

2.
Enterohemorrhagic Escherichia coli (EHEC) O113:H21 can invade epithelial cells. In this study, we found that invasion but not adherence was inhibited by anti-FliC(H21) specific antibodies. In addition, deletion of fliC(H21) from EHEC O113:H21 resulted in an eightfold decrease in invasion that was restored upon transcomplementation with fliC(H21) but not with fliC(H6). These results suggested that FliC plays an important role in the pathogenesis of infections caused by EHEC O113:H21 by allowing bacteria to penetrate the intestinal epithelium.  相似文献   

3.
The contribution of flagellin to the virulence of the O113:H21 Shiga-toxigenic Escherichia coli (STEC) strain 98NK2 was investigated in the streptomycin-treated mouse model. Groups of mice were challenged with either the wild-type STEC or a fliC deletion derivative thereof. There was no difference in the level of gut colonization by the two strains, but the fliC mutant was significantly less virulent than its parent; the overall survival rates were 43.7% and 81.2%, respectively (P < 0.025). This is the first report of a nontoxic accessory virulence factor contributing to a fatal outcome of STEC infection in this model. Although H21 FliC is known to be a potent inducer of CXC chemokines, including interleukin 8, there was no obvious difference in the recruitment of polymorphonuclear leukocytes to the intestinal epithelium of mice challenged with either strain. However, immunofluorescence microscopy suggested that the fliC mutant was less capable of forming a close association with the colonic epithelium. This may have reduced the uptake of Stx2 by mice infected with the mutant.  相似文献   

4.
Infection of humans with verotoxin-producing Escherichia coli (VTEC) O113:H21 is associated with clinical features comparable to those associated with infection with attaching and effacing VTEC strains including those of serotype O157:H7. We have shown previously that the adhesion phenotype of VTEC O157:H7 is influenced by the presence of a homolog of the chromosomal eaeA (for E. coli attaching and effacing) gene. In contrast, by colony blot hybridization, VTEC O113:H21 is negative for the eaeA gene. Therefore, the aim of this study was to define the adhesion phenotype of VTEC O113:H21 strain CL-15 to both cultured epithelial cells (HEp-2) and rabbit intestine in vivo. Under transmission electron microscopy, areas of microvillus effacement were observed in regions directly beneath the organism in CL-15-infected cells both in vitro and in vivo. However, F-actin adhesion pedestals on the host plasma membrane were absent. Failure of CL-15 to induce polymerization of actin was confirmed by using staining of F-actin with fluorescein-labeled phalloidin. Under indirect immunofluorescence microscopy, CL-15-infected HEp-2 cells also failed to demonstrate the recruitment of another cytoskeletal element, alpha-actinin, below foci of bacterial adhesion. In contrast, VTEC O157:H7 infection of HEp-2 cells was associated with increased alpha-actinin immunofluorescence. These findings suggest that bacterial factors distinct from those of EaeA are necessary for the adhesion phenotype of VTEC O113:H21.  相似文献   

5.
Shiga-toxigenic Escherichia coli (STEC) O113:H21 strains that lack the locus of enterocyte effacement (LEE) efficiently invade eukaryotic cells in vitro, unlike LEE-positive O157:H7 strains. We used a fliC deletion mutant of the O113:H21 STEC strain 98NK2 (98NK2ΔfliC) to show that invasion of colonic epithelial (HCT-8) cells is heavily dependent on production of flagellin, even though adherence to the cells was actually enhanced in the mutant. Flagellin binds and signals through Toll-like receptor 5 (TLR5), but there was no evidence that either TLR5, the adaptor protein myeloid differentiation primary response gene 88 (MyD88), or the serine kinase interleukin-1 receptor-associated kinase (IRAK) were required for invasion of HCT-8 cells by strain 98NK2, as judged by transfection, RNA knockdown, or inhibitor studies. However, pretreatment of cells with anti-asialo-GM1 significantly decreased 98NK2 invasion (by 40.8%), while neuraminidase treatment (which cleaves terminal sialic acid residues, thus converting GM1 into asialo-GM1) significantly increased invasion (by 70.7%). Pretreatment of HCT-8 cells with either the cholesterol-depleting agent methyl-β-cyclodextrin (MβCD) or the tyrosine kinase inhibitor genistein significantly decreased invasion by 98NK2, indicating a potential role for lipid rafts in the invasion mechanism. Confocal microscopy also showed invading 98NK2 colocalized with lipid raft markers caveolin-1 and GM1. Interestingly, anti-asialo-GM1, neuraminidase, MβCD, and genistein have similar effects on the vestigial level of STEC invasion seen for STEC strain 98NK2ΔfliC, indicating that lipid rafts mediate a common step in flagellin-dependent and flagellin-independent cellular invasion.  相似文献   

6.
Subtilase cytotoxin (SubAB) is the prototype of a recently emerged family of AB5 cytotoxins produced by Shiga-toxigenic Escherichia coli (STEC). Its mechanism of action involves highly specific A-subunit-mediated proteolytic cleavage of the essential endoplasmic reticulum (ER) chaperone BiP. Our previous in vivo studies showed that intraperitoneal injection of purified SubAB causes a major redistribution of leukocytes and elevated leukocyte apoptosis in mice, as well as profound splenic atrophy. In the current study, we investigated selected chemokine and proinflammatory cytokine responses to treatment with SubAB, a nontoxic derivative (SubAA272B), or Shiga toxin 2 (Stx2) in human macrophage (U937), brain microvascular endothelial (HBMEC), and colonic epithelial (HCT-8) cell lines, at the levels of secreted protein, cell-associated protein, and gene expression. Stx2 treatment upregulated expression of chemokines and cytokines at both the protein and mRNA levels. In contrast, SubAB induced significant decreases in secreted interleukin-8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) in all three tested cell lines and a significant decrease in secreted IL-6 in HBMECs. The downregulation of secreted chemokines or cytokines was not observed in SubAA272B-treated cells, indicating a requirement for BiP cleavage. The downregulation of secreted chemokines and cytokines by SubAB was not reflected at the mRNA and cell-associated protein levels, suggesting a SubAB-induced export defect.  相似文献   

7.
Bromthymol blue, at a concentration of 0.1% in tryptose-glucose broth, inhibited growth of 98.4% of Escherichia coli serotype O157:H7 isolates but only 0.8% of E. coli non-O157:H7 isolates after an overnight incubation at 44.5 degrees C, but not 35 degrees C. The inhibition was dependent on temperature, density of inoculum, bromthymol blue concentration, time of incubation, and composition of the medium. Compared with serologic typing, the inhibition had sensitivity, specificity, predictive values of the positive and negative tests, and overall agreement between the two tests of 98.4, 99.2, 98.4, 99.2, and 98.9%, respectively. The inhibition could be useful as a presumptive test to identify E. coli isolates of serotype O157:H7, especially in laboratories that do not have serotyping capabilities.  相似文献   

8.
Shiga-toxigenic Escherichia coli (STEC) strains cause serious gastrointestinal disease, which can lead to potentially life-threatening systemic complications such as hemolytic-uremic syndrome. Although the production of Shiga toxin has been considered to be the main virulence trait of STEC for many years, the capacity to colonize the host intestinal epithelium is a crucial step in pathogenesis. In this study, we have characterized a novel megaplasmid-encoded outer membrane protein in locus of enterocyte effacement (LEE)-negative O113:H21 STEC strain 98NK2, termed Sab (for STEC autotransporter [AT] contributing to biofilm formation). The 4,296-bp sab gene encodes a 1,431-amino-acid protein with the features of members of the AT protein family. When expressed in E. coli JM109, Sab contributed to the diffuse adherence to human epithelial (HEp-2) cells and promoted biofilm formation on polystyrene surfaces. A 98NK2 sab deletion mutant was also defective in biofilm formation relative to its otherwise isogenic wild-type parent, and this was complemented by transformation with a sab-carrying plasmid. Interestingly, an unrelated O113:H21 STEC isolate that had a naturally occurring deletion in sab was similarly defective in biofilm formation. PCR analysis indicated that sab is present in LEE-negative STEC strains belonging to serotypes/groups O113:H21, O23, and O82:H8. These findings raise the possibility that Sab may contribute to colonization in a subset of LEE-negative STEC strains.Shiga-toxigenic Escherichia coli (STEC) strains are prominent food-borne pathogens that cause watery or bloody diarrhea and hemorrhagic colitis, which can progress to the life-threatening hemolytic-uremic syndrome (HUS) (15, 21, 29). In order to establish and maintain an infection, STEC strains are equipped with a diverse array of virulence factors. Among these factors, Shiga toxin has been considered to be a sine qua non of virulence, as reviewed previously (21, 29). However, attachment of STEC to the human intestinal mucosa is a critical first step in pathogenesis. Many STEC strains, including those of the highly prevalent O157:H7 serotype, carry the locus of enterocyte effacement (LEE) pathogenicity island, which encodes the capacity to produce attaching and effacing (A/E) lesions on the intestinal epithelium, similarly to those produced by enteropathogenic E. coli strains (11, 35). These STEC strains are often referred to as enterohemorrhagic E. coli (EHEC), although this classification is ill defined. A/E lesions are characterized by ultrastructural changes including the remodeling of the host cell cytoskeleton and intimate attachment of the bacteria to the cell surface (11, 35). The process of the generation of A/E lesions involves the expression of the eae gene, which encodes intimin, an outer membrane surface adhesin, and the delivery of the intimin receptor Tir and several other effector proteins into host cells via the LEE-encoded type III secretion apparatus (reviewed in references 5 and 11).However, many STEC isolates from cases of severe disease, including HUS, lack the LEE locus yet are clearly capable of efficient colonization of the human gut (28, 29). Several candidate adhesins have been identified in these strains, including the megaplasmid-encoded autoagglutinating adhesin Saa (26), the long polar fimbriae encoded by the lpf operon (10) (two distinct homologues of which are also present in STEC O157:H7 strains [39, 40]), and the immunoglobulin-binding protein EibG, which contributes to a chain-like adherence phenotype on HEp-2 cells (18). Tarr et al. (38) also previously identified Iha, a homologue of Vibrio cholerae IrgA, which promotes the adherence of STEC O157:H7 to HeLa cells and is widely distributed in LEE-positive and LEE-negative strains. STEC O157:H7 strains also produce a type IV pilus, HCP (47), and an E. coli common pilus, ECP (30), both of which contribute to in vitro adherence to intestinal epithelial cells. Additional putative adhesins from LEE-positive STEC strains include Efa1, which mediates the attachment of O111:NM STEC strains to Chinese hamster ovary cells (23). In addition, Torres et al. (41) previously identified a calcium-binding and heat-extractable AT protein of EHEC, termed Cah, which mediates aggregation and participates in biofilm formation. Recently, Wells et al. (45) also characterized the EHEC-encoded AT protein EhaA, which contributes to adherence to primary bovine epithelial cells (but not HeLa cells) and promotes biofilm formation as well.The AT proteins referred to above belong to a rapidly growing family of gram-negative surface proteins that are exported across the periplasmic space and either attached to the external face of the outer membrane or released by proteolysis into the environment (13). These large proteins share a characteristic structure comprising three distinct domains, namely, an N-terminal signal peptide, a divergent functional passenger domain (α-domain), and a conserved C-terminal domain which forms a β-barrel pore in the outer membrane (13, 46). This unique protein structure provides all the information required for transport to the cell surface, with the N-terminal sequence directing the protein to the periplasm via the sec pathway and the C-terminal domain mediating the translocation of the passenger domain to the external surface (14). The various α-domains confer a broad range of functions and/or phenotypes including aggregation, biofilm formation, adherence, invasion, serum resistance, and protease or esterase activity (7, 12).Research in our laboratory has focused on the identification of novel virulence factors of LEE-negative STEC strains associated with human disease. In this study, we describe the identification and characterization of a member of the AT family produced by hypervirulent LEE-negative O113:H21 STEC strain 98NK2, which confers adherence to human epithelial cells and mediates biofilm formation.  相似文献   

9.
In order to evaluate the pathological role of verotoxin 2 (VT2), we investigated the effects of VT2 on neutrophil apoptosis in vitro. The results showed that VT2 caused a significant delay in spontaneous neutrophil apoptosis and that the effect was abrogated by a protein kinase C inhibitor. These data indicate that longer survival of neutrophils may aggravate neutrophil-mediated tissue damage in VT2-associated diseases.  相似文献   

10.
Vaccination has been proposed for the prevention of disease due to enterohemorrhagic Escherichia coli (EHEC), but the immune response following human infection, including the choice of potential antigens, has not been well characterized. To study this, sera were obtained from five pediatric patients with acute diarrhea caused by E. coli O157:H7 0, 8, and 60 days after hospitalization. These sera were used to examine the immune response to four different EHEC virulence factors: Tir (translocated intimin receptor, which is inserted into the host cell membrane), intimin (bacterial outer membrane protein which binds to Tir), EspA (secreted protein which forms filamentous structures on EHEC surface), and EspB (inserted into the host membrane and cytoplasm). The response to O157:H7 lipopolysaccharide was also examined. Sera were assayed against purified recombinant proteins using immunoblot analysis and by enzyme-linked immunosorbent assay to determine the sera's titers to each of the antigens in all patients. We found that there was little reaction to EspA, EspB, and intimin in the acute-phase sera, although there was some reactivity to Tir. By day 8, titers of antibody to all four virulence factors were present in all patients, with a very strong response against Tir (up to a titer of 1:256,000), especially in hemolytic-uremic syndrome patients, and lesser strong responses to the other three antigens. The titer to the antigens 60 days after hospitalization was decreased but was still highest for Tir. These results suggest that there is a strong immune response to Tir, and to a lesser extent to the other three virulence factors, following EHEC disease, indicating that these bacterial molecules are potential vaccine candidates for preventing EHEC disease. They also suggest that bacterial virulence factors that are inserted into host cells during infection by type III secretion systems (Tir or EspB) are still recognized by the host immune response.  相似文献   

11.
Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx2 mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx2 repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.  相似文献   

12.
Shiga toxigenic Escherichia coli (STEC) strains are a diverse group of organisms capable of causing severe gastrointestinal disease in humans. Within the STEC family, certain strains appear to have greater virulence for humans. STEC strains carrying eae and belonging to serogroup O157 or O111 have been responsible for the vast majority of outbreaks of STEC disease reported to date. Here we describe a STEC O113:H21 strain lacking eae that was responsible for a cluster of three cases of hemolytic-uremic syndrome. This strain produces a single Stx2-related toxin and adheres efficiently to Henle 407 cells.  相似文献   

13.
Recent research has established that the terminal rectum is the predominant colonization site of enterohemorrhagic Escherichia coli O157:H7 in cattle. The main aim of the present work was to investigate pathological changes and associated immune responses at this site in animals colonized with E. coli O157:H7. Tissue and gastrointestinal samples from a total of 22 weaned Holstein-cross calves challenged with E. coli O157:H7 were analyzed for bacterial colonization and pathology. Five unexposed age-matched calves were used as comparative negative controls. E. coli O157:H7 bacteria induced histopathological alterations of the rectal mucosa with enterocyte remodeling. This was often associated with removal of the colonized epithelial layer. Immunogold labeling and transmission electron microscopy (TEM) showed E. coli O157 bacteria on pedestals, as part of attaching and effacing lesions. These pathological changes induced a local infiltration of neutrophils that was quantified as larger in infected animals. Rectal mucosal immunoglobulin A responses were detected against the E. coli O157:H7 antigen. This work presents evidence that E. coli O157:H7 is not a commensal bacteria in the bovine host and that the mucosal damage produced by E. coli O157:H7 colonization of the terminal rectum induces a quantifiable innate immune response and production of specific mucosal antibodies.  相似文献   

14.
目的 开发肠出血性大肠杆菌O157:H7的多重PCR-变性高效液相色谱(DHPLC)检测方法 .方法 以编码大肠杆菌0157抗原的rfbE 基因、编码毒力因子的类志贺毒素(SLT)基因为目的 基因,选择2对引物,建立并优化了大肠杆菌O157:H7的多重PCR-DHPLC检测体系.扩增产物分别为224 bp和499 bp.结果 采用37株细菌验汪了该多重PCR具有良好的特异件.PCR榆测的灵敏度可达到4 CFU/ml.结论 实验证明,研究建立的多重PCR-DHPLC方法 可特异、灵敏地实现对大肠杆菌O157:H7的检测.  相似文献   

15.
Genomic O island 122 (OI-122) of the verocytotoxin-producing Escherichia coli (VTEC) strain EDL933 contains four putative virulence genes, Z4321, Z4326, Z4332, and Z4333. However, strain CL3 (serotype O113:H21) contains only Z4321, not the other three genes. To determine whether Z4321 is part of a different genomic island in CL3, a region of 27,293 bp up- and downstream of Z4321 was sequenced and found to contain elements of two different EDL933 genomic islands (OI-48 and OI-122) and a Yersinia pestis-like hemolysin/adhesin gene cluster. The region contained OI-48 genes Z1635, Z1636, and Z1637 at the left terminus and Z1641, Z1642, Z1643, and Z1644 at the right. The middle portion consisted of OI-48 gene Z1640, which was separated into three fragments by genomic segments including the Y. pestis cluster and EDL933 OI-122 genes Z4322, Z4321, and Z4318. In a PCR investigation of 36 VTEC strains of different serotypes, intact Z1640 was present in strains of serotypes O157:H7, O26:H11, O103:H2, O111:NM, and O145:NM, which are associated with hemolytic uremic syndrome and outbreaks. In contrast, fragmented Z1640 was seen in strains of nonepidemic serotypes, such as O91:H21 and O113:H21, and in animal serotypes that have not been associated with human disease, indicating that Z1640 might be a virulence gene.  相似文献   

16.
17.
Shiga toxigenic Escherichia coli (STEC) strains are a diverse group of organisms associated with severe gastrointestinal and systemic diseases in humans. Within the STEC family, eae-positive STEC strains, particularly those belonging to serogroups O157 and O111, appear to have greater virulence for humans. However, in spite of being eae negative, STEC strains belonging to serogroup O113 have frequently been associated with cases of severe STEC disease, including hemolytic-uremic syndrome (HUS). We have developed a modified multiplex PCR assay for detection of STEC strains belonging to these three serogroups in cultures of feces by using primers specific for portions of the genetic loci (rfb) encoding biosynthesis of the respective O antigen. These primers direct amplification of PCR products of 259, 406, and 593 bp for serogroups O157, O111, and O113, respectively. The assay was validated by testing 40 previously characterized STEC strains, with 100% agreement. It also detected STEC strains of the appropriate genotype in primary fecal cultures from 13 patients with HUS or bloody diarrhea. Thirty other primary fecal cultures from patients without evidence of STEC infection were negative.  相似文献   

18.
Detection of Escherichia coli O157:H7 by multiplex PCR.   总被引:16,自引:1,他引:16       下载免费PDF全文
In order to develop a PCR assay for Escherichia coli O157:H7, a portion of the 60-MDa plasmid harbored by enterohemorrhagic E. coli (EHEC) was sequenced and PCR primers were designed. A multiplex PCR method was then designed by employing primers specific for the EHEC eaeA gene, conserved sequences of Shiga-like toxins I (SLT-I) and II (SLT-II), and the 60-MDa plasmid. PCR products of 1,087 bp (eaeA), 227 and/or 224 bp (SLT-I and/or SLT-II), and 166 bp (plasmid) were successfully amplified simultaneously in a single reaction. The multiplex PCR method can be used to specifically identify EHEC of serogroup O157.  相似文献   

19.
20.
The contribution of long polar fimbriae to intestinal colonization by Escherichia coli O157:H7 was evaluated in sheep, conventional pigs, and gnotobiotic piglets. E. coli O157:H7 strains with lpfA1 and lpfA2 mutated were recovered in significantly lower numbers and caused fewer attachment and effacement lesions than the parent strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号