首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Makino  C K Shieh  L H Soe  S C Baker  M M Lai 《Virology》1988,166(2):550-560
An intracellular defective-interfering (DI) RNA, DIssE, of mouse hepatitis virus (MHV) obtained after serial high multiplicity passage of the virus was cloned and sequenced. DIssE RNA is composed of three noncontiguous genomic regions, representing the first 864 nucleotides of the 5' end, an internal 748 nucleotides of the polymerase gene, and 601 nucleotides from the 3' end of the parental MHV genome. The DIssE sequence contains one large continuous open reading frame. Two protein products from this open reading frame were identified both by in vitro translation and in DI-infected cells. Sequence comparison of DIssE and the corresponding parts of the parental virus genome revealed that DIssE had three base substitutions within the leader sequence and also a deletion of nine nucleotides located at the junction of the leader and the remaining genomic sequence. The 5' end of DIssE RNA was heterogeneous with respect to the number of UCUAA repeats within the leader sequence. The parental MHV genomic RNA appears to have extensive and stable secondary structures at the regions where DI RNA rearrangements occurred. These data suggest that MHV DI RNA may have been generated as a result of the discontinuous and nonprocessive manner of MHV RNA synthesis.  相似文献   

2.
3.
Liao CL  Zhang X  Lai MM 《Virology》1995,208(1):319-327
We have developed an expression vector system using a defective-interfering (DI) RNA of mouse hepatitis virus (MHV), a prototype coronavirus, to deliver and express a foreign gene in MHV-infected cells. This vector contains an MHV intergenic sequence to promote the expression of foreign genes. In this study, we used this vector to introduce a hemagglutinin-esterase (HE) protein, an optional MHV structural protein, into the MHV-infected cells. The engineered HE protein could be efficiently incorporated into the virion which did not synthesize its own HE protein, thus generating a pseudorecombinant virus that expresses an exogenous HE protein. The engineered HE protein could be made distinguishable from the native protein by attaching an 8-amino-acid peptide tag at the carboxyl-terminus. Both the engineered and native HE proteins from the HE-producing virus train could be incorporated into the virion, thus generating phenotypically mixed virus particles. We also showed that the HE-expressing DI RNA could be incorporated into viruses, and the engineered HE protein expressed in the infected cells for at least three serial virus passages. Furthermore, we have made two mutants, in which parts of the external domain of the HE protein have been deleted, to study the sequence requirements for the stable expression of HE and its incorporation into MHV virions. Although both of the mutant HE proteins could be expressed in the MHV-infected cells, they failed to be incorporated into virions, suggesting the importance of the extracellular domain of HE protein for its incorporation into virus particles. This vector system enabled the first successful incorporation of a selected coronaviral protein into virions and demonstrates its utility as an expression vector for studying the molecular biology of coronaviruses.  相似文献   

4.
5.
Mizutani T  Repass JF  Makino S 《Virology》2000,275(2):238-243
Infection with coronavirus results in the accumulation of genomic-sized mRNA and six to eight subgenomic mRNAs that make up a 3' coterminal nested-set structure. Genome-length negative-strand RNA and subgenomic-length negative-strand RNAs, each of which corresponds to each of the subgenomic mRNAs, also accumulate in infected cells. The present study examined whether the genome-length negative-strand RNA serves as a template for subgenomic mRNA synthesis. Genome-length replicative intermediate (RI) RNA was purified by two-dimensional gel electrophoresis of intracellular RNAs from cells infected with mouse hepatitis virus. RNase A treatment of the purified genome-length RI resulted in the production of the genome-length replicative form RNA, indicating that the genome-length RI included genome-length template RNA. RNase protection assays using the purified genome-length RI and two probes, which corresponded to the 5' 300-nt region of mRNA 6 and to the same region of mRNA 7, showed the presence of nascent leader sequence-containing subgenomic mRNAs in the genome-length RI. These data demonstrated that the genome-length negative-strand RNA serves as a template for subgenomic mRNA synthesis.  相似文献   

6.
Ray D  White KA 《Virology》1999,256(1):162-171
Prototypical defective interfering (DI) RNAs of the plus-strand RNA virus tomato bushy stunt virus contain four noncontiguous segments (regions I-IV) derived from the viral genome. Region I corresponds to 5'-noncoding sequence, regions II and III are derived from internal positions, and region IV represents a 3'-terminal segment. We analyzed the internally located region III in a prototypical DI RNA to understand better its role in DI RNA accumulation. Our results indicate that (1) region III is not essential for DI RNA accumulation, but molecules that lack it accumulate at significantly reduced levels ( approximately 10-fold lower), (2) region III is able to function at different positions and in opposite orientations, (3) a single copy of region III is favored over multiple copies, (4) the stimulatory effect observed on DI RNA accumulation is not due to region III-mediated RNA stabilization, (5) DI RNAs lacking region III permit the efficient accumulation of head-to-tail dimers and are less effective at suppressing helper RNA accumulation, and (6) negative-strand accumulation is also significantly depressed for DI RNAs lacking region III. Collectively, these results support a role for region III as an enhancer-like element that facilitates DI RNA replication. A scanning-type mutagenesis strategy was used to define portions of region III important for its stimulatory effect on DI RNA accumulation. Interestingly, the results revealed several differences in the requirements for activity when region III was in the forward versus the reverse orientation. In the context of the viral genome, region III was found to be essential for biological activity. This latter finding defines a critical role for this element in the reproductive cycle of the virus.  相似文献   

7.
Wu HY  Guy JS  Yoo D  Vlasak R  Urbach E  Brian DA 《Virology》2003,315(1):174-183
5' and 3' UTR sequences on the coronavirus genome are known to carry cis-acting elements for DI RNA replication and presumably also virus genome replication. 5' UTR-adjacent coding sequences are also thought to harbor cis-acting elements. Here we have determined the 5' UTR and adjacent 289-nt sequences, and 3' UTR sequences, for six group 2 coronaviruses and have compared them to each other and to three previously reported group 2 members. Extensive regions of highly similar UTR sequences were found but small regions of divergence were also found indicating group 2 coronaviruses could be subdivided into those that are bovine coronavirus (BCoV)-like (BCoV, human respiratory coronavirus-OC43, human enteric coronavirus, porcine hemagglutinating encephalomyelitis virus, and equine coronavirus) and those that are murine hepatitis virus (MHV)-like (A59, 2, and JHM strains of MHV, puffinosis virus, and rat sialodacryoadenitis virus). The 3' UTRs of BCoV and MHV have been previously shown to be interchangeable. Here, a reporter-containing BCoV DI RNA was shown to be replicated by all five BCoV-like helper viruses and by MHV-H2 (a human cell-adapted MHV strain), a representative of the MHV-like subgroup, demonstrating group 2 common 5' and 3' replication signaling elements. BCoV DI RNA, furthermore, acquired the leader of HCoV-OC43 by leader switching, demonstrating for the first time in vivo recombination between animal and human coronavirus molecules. These results indicate that common replication signaling elements exist among group 2 coronaviruses despite a two-cluster pattern within the group and imply there could exist a high potential for recombination among group members.  相似文献   

8.
Cologna R  Spagnolo JF  Hogue BG 《Virology》2000,277(2):235-249
  相似文献   

9.
10.
S Makino  C K Shieh  J G Keck  M M Lai 《Virology》1988,163(1):104-111
The mechanism of synthesis of the defective viral RNAs in cells infected with defective-interfering (DI) particles of mouse hepatitis virus was studied. Two DI-specific RNA species, DIssA of genomic size and DIssE of subgenomic size, were detected in DI-infected cells. Purified DI particles, however, were found to contain predominantly DIssA and only a trace amount of DIssE RNA. Despite its negligible amount, the DIssE RNA in virions appears to serve as the template for the synthesis of DIssE RNA in infected cells. This conclusion was supported by two studies. First, the uv target size for DIssE RNA synthesis is significantly smaller than that for DIssA. Second, when purified DIssE RNA was transfected into cells which had been infected with a helper virus, DIssE RNA could replicate itself and became a predominant RNA species in the infected cells. Thus, DIssE RNA was not synthesized from the genomic RNA of DI particles. By studying the relationship between virus dilution and the amount of intracellular viral RNA synthesis, we have further shown that DIssE RNA synthesis requires a helper function, but it does not utilize the leader sequence of the helper virus. In contrast, DIssA synthesis appears to be helper-independent and can replicate itself. Thus DIssA codes for a functional RNA polymerase.  相似文献   

11.
Two different defective interfering RNAs of Semliki Forest virus have been cloned and sequenced previously. These molecules have repeated sequence blocks between unique terminal regions. The late gene region of SV40 virus has been replaced with the repeating unit detected in both defective-inferfering (DI) RNAs, and by complementation with a tsA mutant of SV40 a mixed stock of recombinant and helper virus was obtained. Upon infection of monkey kidney cells the recombinant expressed the repeated part of the DI RNA (svDI301 RNA). Superinfection of these cells with standard Semliki Forest virus showed that (i) the synthesis of SFV genomic RNA is marginally if at all affected by the svDI301 RNA, (ii) the svDI301 RNA is not replicated by SFV-RNA-dependent RNA polymerase, and (iii) packaging efficiency of the standard SFV genome RNA into virions is clearly decreased in the presence of svDI301 RNA. These results suggest that the terminal regions of the DI RNA molecule are required for efficient replication while the central repeated elements are involved in encapsidation.  相似文献   

12.
13.
Mutagenesis of a hexanucleotide sequence conserved in potexvirus RNAs.   总被引:8,自引:0,他引:8  
K A White  J B Bancroft  G A Mackie 《Virology》1992,189(2):817-820
  相似文献   

14.
The putative, 3'-terminal stem-loop structure in satellite tobacco necrosis virus strain C (STNV-C) RNA constitutes an essential cis-acting structure for the promotion of negative-strand RNA synthesis and a single-stranded tail is also important. The putative, 5'-terminal stem-loop structure in STNV-C RNA is not essential for productive, plus-strand RNA accumulation but is required for optimal accumulation. Residues 2 and 3 are the minimal cis-acting sequences required for RNA synthesis. The RNA of chimeric mutants, which exchanged 3'- and 5'-untranslated regions between STNV-C and helper tobacco necrosis virus strain D RNAs, accumulated in protoplasts, implying similar replication mechanisms for both RNAs.  相似文献   

15.
Chernysheva OA  White KA 《Virology》2005,332(2):640-649
Satellite (sat) RNAs are parasitic sub-viral RNA replicons found associated with certain positive-strand RNA viruses. Typical sat RNAs, such as those associated with members of the genus Tombusvirus, share little or no sequence identity with their helper virus genomes. Here, we have investigated a tombusvirus sat RNA and determined that it contains two functionally-relevant higher-order RNA domains, a T-shaped domain and a downstream domain, that are similar to elements shown previously to be present in the 5' untranslated regions (UTRs) of tombusvirus genomes. Although the two sat RNA domains showed only limited sequence identity with their viral counterparts, they were able to adopt comparably-folded RNA secondary structures. Interestingly, the relative spacing between the domains in the viral and satellite contexts was notably different. In the viral 5' UTR, the two domains are adjacent and separated by a small hairpin, however, in the sat RNA they are separated by a 137-nt long segment. Despite this distal modular arrangement, the two domains were found to be united spatially in the sat RNA through the formation of an RNA-RNA bridge. This co-localization facilitated an important inter-domain interaction and was essential for efficient helper-mediated sat RNA accumulation in protoplasts. These results indicate that the tombusvirus sat RNA and helper genome contain structurally and functionally equivalent RNA domains. It is proposed that the limited sequence identity observed between these corresponding higher-order RNA structures is related to a strategy that reduces the induction of gene silencing, which presumably would be detrimental to both viral and sat RNA replicons.  相似文献   

16.
The relatedness of the genomes of satellite panicum mosaic virus (SPMV) and its helper virus, panicum mosaic virus (PMV), were investigated by nucleic acid hybridization. The results show that the satellite and helper virus RNAs have no appreciable homology or complementarity as assessed by hybridization with cDNA probes derived from the genomes of PMV and SPMV and with a probe complementary to the 3' terminus of SPMV RNA. The complete nucleotide sequence of SPMV RNA reveals that the genome is 826 nucleotides (nt) long. The ability to label SPMV RNA with polynucleotide kinase only after phosphatase treatment suggests that the 5' terminus is phosphorylated, but the extent of phosphorylation was not determined. The first open reading frame (ORF), encountered after an 88-nt 5'-untranslated region, encodes a 17,000 mol wt protein of a size and amino acid composition that are consistent with analysis of SPMV coat protein. An additional short ORF, located near the 3' end of the RNA, could encode a 6300 mol wt polypeptide. The minus strand also contains two ORFs that could potentially encode polypeptides of 7100 and 11,000 mol wt. No evidence is available to determine whether the second positive-strand ORF or the two minus-strand ORFs are expressed. The data presented here clearly show the SPMV RNA is distinct from the RNAs of other satellite viruses, in both size and nucleotide sequence. However, the 5'-untranslated portions of SPMV and satellite tobacco mosaic virus RNAs share some structural features that may be important in initiation of translation.  相似文献   

17.
18.
19.
Fabian MR  Na H  Ray D  White KA 《Virology》2003,313(2):567-580
The plus-strand RNA genome of tomato bushy stunt virus (TBSV) contains a 351-nucleotide (nt)-long 3'-untranslated region. We investigated the role of the 3'-proximal 130 nt of this sequence in viral RNA accumulation within the context of a TBSV defective interfering (DI) RNA. Sequence comparisons between different tombusviruses revealed that the 3' portion of the 130-nt sequence is highly conserved and deletion analysis confirmed that this segment is required for accumulation of DI RNAs in protoplasts. Computer-aided sequence analysis and in vitro solution structure probing indicated that the conserved sequence consists of three stem-loop (SL) structures (5'-SL3-SL2-SL1-3'). The existence of SLs 1 and 3 was also supported by comparative secondary structure analysis of sequenced tombusvirus genomes. Formation of the stem regions in all three SLs was found to be very important, and modification of the terminal loop sequences of SL1 and SL2, but not SL3, decreased DI RNA accumulation in vivo. For SL3, alterations to an internal loop resulted in significantly reduced DI RNA levels. Collectively, these data indicate that all three SLs are functionally relevant and contribute substantially to DI RNA accumulation. In addition, secondary structure analysis of other tombusvirus replicons and related virus genera revealed that a TBSV satellite RNA and members of the closely related genus Aureusvirus (family Tombusviridae) share fundamental elements of this general structural arrangement. Thus, this secondary structure model appears to extend beyond tombusvirus genomes. These conserved 3'-terminal RNA elements likely function in vivo by promoting and/or regulating minus-strand synthesis.  相似文献   

20.
Cheng CP  Pogany J  Nagy PD 《Virology》2002,304(2):460-473
Tombusviruses, which are positive-strand RNA viruses of plants, frequently generate defective interfering (DI) RNAs that consist of three to four noncontiguous segments of the parental RNA. Replicase jumping was postulated to cause multiple deletions leading to the de novo formation of DI RNAs in planta. This model was tested using a partially purified RNA-dependent RNA polymerase (RdRp) preparation from tombusvirus-infected plants in vitro. The tombusvirus RdRp was capable of primer extension without the need for sequence complementarity between the primer and the acceptor template in vitro, although the most efficient primer extension was obtained with primers forming a 5-bp duplex with the acceptor region. Primers forming 14- to 20-bp duplexes with the acceptor region were used less efficiently by the tombusvirus RdRp in vitro. In addition, primers with 3' noncomplementary nucleotides were also extended by the tombusvirus RdRp, albeit with a reduced efficiency. The preference of the tombusvirus RdRp for short base-paired primers in vitro is consistent with the lack of extended sequence similarities at the junction sites in the de novo generated tombusvirus-associated DI RNAs. The in vitro experiments also revealed that the acceptor region plays a significant role in primer extension. Comparison of tombusvirus-derived, heterologous and artificial acceptor regions revealed that the conserved regions present in DI RNAs are the best acceptor regions when they are available in the minus-strand orientation. These data suggest that recombination/deletion events may be more frequent at some regions, rather than occurring randomly throughout the parental genome. In addition, these findings support a model that predicts a higher frequency of replicase jumping, i.e., recombination/deletion events, during plus-strand synthesis than during minus-strand synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号