首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary cicatricial alopecias (PCA) represent uncommon inflammatory disorders that result in permanent loss of scalp hair. Cutaneous autoimmunity, most prominently chronic cutaneous lupus erythematosus (CCLE), can result in this kind of scarring hair loss. The cosmetic disfigurement caused by PCA and the very unsatisfactory therapeutic options available to date all demand a better understanding of the obscure pathobiology of PCA so as to define new therapeutic targets and strategies. Hair follicle (HF) cycling and regeneration are abolished in PCA due to irreversible, epithelial hair follicle stem cell (eHFSC) damage, triggered by major, yet unclear pro-inflammatory events (e.g. type I interferon-associated cytotoxic inflammation, loss of HF immune privilege, loss of immunosuppressive "no danger" signals). Therefore, immuno-protection of eHFSC and restitution of their immune privilege are attractive future therapeutic strategies in PCA. Chronic cutaneous lupus erythematosus-associated PCA may serve as a model system for other diseases where epithelial stem cells undergo immuno-destruction.  相似文献   

2.
Alopecia areata (AAR) and androgenetic alopecia (AGA) are two major forms of alopecia based on altered hair growth condition. In general, the cell cycle is regulated by several mechanisms including the stem cell factor/c-kit signaling. To assess a role for stem cell activity in alopecia, we performed histopathological, immunohistochemical, and semiquantitative analyses of c-kit as well as Ki-67 in scalp biopsy specimens obtained from 14 patients with AAR, 18 patients with AGA, and 6 age-matched control subjects, using the specific antibodies. Formalin-fixed, paraffin-embedded skin sections were examined. Immunoreactivities for Ki-67 and c-kit were localized in keratinocytes and melanocytes in the outermost layer of hair follicles. The mean length of hair follicles was significantly shorter in the AAR and AGA groups than in the control group. The mean number of Ki-67-immunoreactive cells per follicle was significantly reduced in the AAR and AGA groups as compared with the control group. The mean number of c-kit-immunoreactive cells per follicle was significantly increased in the AAR and AGA groups as compared with the control group. Our results indicate that c-kit is upregulated in the hair follicle cells in these forms of alopecia, and suggest that the upregulation reflects a negative feedback mechanism in response to possible downregulation of the ligand stem cell factor.  相似文献   

3.
Our laboratory discovered nestin-expressing hair follicle stem cells and demonstrated their pluripotency. We have shown that nestin-positive and K15-negative multipotent hair follicle stem cells are located above the hair follicle bulge, and we termed these cells hair follicle pluripotent stem (hfPS) cells. We have previously shown that hair follicle stem cells can regenerate peripheral nerve and spinal cord. In the present study, we describe the embryonic development of the hair follicle stem cell area (hfPSCA), which is located above the bulge and below the sebaceous glands in the adult mouse. At embryonic day 16.5 (E16.5) of nestindriven GFP (ND-GFP) transgenic mice, which express nestin in hfPS cells, the ND-GFP hair follicle stem cells are located in mesenchymal condensates. At postnatal day 0 (P0), the ND-GFP-expressing cells are migrating to the upper part of the hair follicle from the dermal papilla. At P3, keratin 15 (K15)-positive cells, derived from ND-GFP dermal papilla cells, are located in the outer-root sheath and basal layer of the epidermis. By P10, the ND-GFP have formed the K15-positive outer-root sheath as well as the ND-GFP hfPSA. These results suggest that ND-GFP hfPS cells in the dermal papilla form nestin-expressing hair follicle stem cells in the first hair cycle. These observations provide new insight into the origins of hfPS cells and the hfPSCA.  相似文献   

4.
【摘要】毛囊干细胞是毛囊组织维持自我更新的基础,它具有干细胞的一般特征,普遍认为定位于毛囊隆突部。毛囊干细胞的标记物是分离和鉴定细胞的重要依据,在多种信号通路调控下可以分化为毛囊、皮脂腺和表皮。至此,毛囊干细胞在组织工程皮肤中的作用引起人们的关注,就毛囊干细胞的研究进展作一阐述。  相似文献   

5.
It is known that chemotherapy induces alopecia in humans, with important psychological and social implications in spite of its reversibility. Among chemotherapeutic drugs, anthracyclines are widely used, yet cause severe alopecia. One of the causes for the elevated sensibility of hair follicles to anthracyclines, and to drugs in general, is the high proliferation rate of follicular epithelium and the long duration of the growth phase (up to 7 years in humans). To clarify the mechanism of anthracycline toxicity, we used a rat model and focused our attention on the morphological alterations in hair follicles induced by doxorubicin. We observed the progression of hair follicle degeneration in the epithelial and mesenchymal compartments until alopecia arose, by both light and electron microscopy. As a first sign of damage, significant apoptosis was detected in the proximal perifollicular connective tissue sheath and sporadically in the matrix, near the interface between matrix and follicular papilla. We propose the apoptotic remodeling of the mesenchymal compartment as a process that is fundamental to the progression of events leading to alopecia. Regarding the epithelial compartment, it is important to note that oncosis was observed in a large number of follicular cells in the outer root sheath during the last stages of hair follicle regression. This indicates that oncosis is involved in a major way in the damage of epithelial cells.  相似文献   

6.
背景:越来越多的研究发现,维生素D及其受体与毛发有一定关系。 目的:全面阐述维生素D及其受体与毛囊干细胞、毛发生长周期、信号转导以及脱发性疾病等的关系。 方法:应用计算机以“维生素D、维生素D受体、毛发、脱发、基因多态性”或“vitamin D,vitamin D receptor,hair,alopecia,gene polymorphism”为检索词检索PubMed和CNKI数据库1990/2011-11发表的关于维生素D及其受体与毛发关系的文章,同一领域选择近期发表或发表在权威杂志上的文章。 结果与结论:初检得到152篇文献,根据纳入排除标准选择30篇文章进行综述。目前研究显示,维生素D及其受体在毛发中扮演重要角色,其异常可导致脱发等疾病的产生,为预防和治疗脱发性疾病提供新的可能,并有望在未来广泛应用。关键词:维生素D;维生素D受体;毛发;脱发;基因多态性;毛囊干细胞 doi:10.3969/j.issn.1673-8225.2012.14.035  相似文献   

7.
Hair follicle (HF) formation is initiated when epithelial stem cells receive cues from specialized mesenchymal dermal papilla (DP) cells. In culture, DP cells lose their HF-inducing properties, but during hair growth in vivo, they reside within the HF bulb and instruct surrounding epithelial progenitors to orchestrate the complex hair differentiation program. To gain insights into the molecular program that maintains DP cell fate, we previously purified DP cells and four neighboring populations and defined their cell-type-specific molecular signatures. Here, we exploit this information to show that the bulb microenvironment is rich in bone morphogenetic proteins (BMPs) that act on DP cells to maintain key signature features in vitro and hair-inducing activity in vivo. By employing a novel in vitro/in vivo hybrid knockout assay, we ablate BMP receptor 1a in purified DP cells. When DPs cannot receive BMP signals, they lose signature characteristics in vitro and fail to generate HFs when engrafted with epithelial stem cells in vivo. These results reveal that BMP signaling, in addition to its key role in epithelial stem cell maintenance and progenitor cell differentiation, is essential for DP cell function, and suggest that it is a critical feature of the complex epithelial-mesenchymal cross-talk necessary to make hair.  相似文献   

8.
Selected immunophilin ligands (IPLs) are not only potent immunosuppressants but also modulate hair growth. Their considerable side effects, however, justify at best topical applications of these drugs for the management of clinical hair growth disorders. Therefore, we have explored hair growth manipulation by topical cyclosporin A (CsA) and FK 506 in previously established murine models that mimic premature hair follicle regression (catagen) or chemotherapy-induced alopecia, two major pathomechanisms underlying human hair loss. We confirm that topical CsA and FK 506 induce active hair growth (anagen) in the back skin of C57BL/6 mice with all follicles in the resting stage (telogen) and show that both IPLs also inhibit massive, dexamethasone-induced, premature catagen development in these mice. Furthermore, we demonstrate that CsA and FK 506 provide relative protection from alopecia and follicle dystrophy induced by cyclophosphamide, possibly by favoring the dystrophic anagen pathway of follicle response to chemical damage. Although it remains to be established whether these IPLs exert the same effects on human hair follicles, our study provides proof of the principle that topical IPLs can act as potent manipulators of clinically relevant hair-cycling pathomechanisms. This strongly encourages one to explore the use of topical IPLs in the management of human hair growth disorders.  相似文献   

9.
We show that neural crest stem cells affect mouse hair follicle development. During embryogenesis hair follicle induction is regulated by complex reciprocal and functionally redundant signals between epidermis and dermis, which remain to be fully understood. Canonical Wnt signalling is a hallmark of neural crest cells and also a prerequisite for hair follicle induction prior to hair placode formation in the epidermis. As neural crest stem cells invade the epidermis during early embryonic development we aimed at determining whether neural crest cells affect hair follicle development. To attenuate, but not silence, canonical Wnt signalling specifically in neural crest cells, we analyzed Wnt1-cre(+/?)::Pygo2(?/?) mice in which the β-catenin co-activator gene, Pygopus 2 (Pygo2), is deleted specifically in neural crest cells. Both, hair density and hair thickness were reduced in mutant mice. Furthermore, hair development was delayed and the relative ratio of hair types was affected. There was a decrease in zig-zag hairs and an increase in awl hairs. Mouse neural crest stem cells expressed ectodysplasin, an essential effector in the formation of zig-zag hair. Taken together, our data support the novel notion that neural crest cells are involved in the earliest stages of hair follicle development.  相似文献   

10.
Yan X  Owens DM 《Stem cell reviews》2008,4(2):113-118
To maintain homeostasis in the adult skin, epithelial keratinocyte stem cells are thought to divide infrequently giving rise to short-lived (transit amplifying) cells that undergo a limited number of cell divisions and ultimately terminal differentiation. This model for the epidermal stem cell niche has increased in complexity by the multiple putative progenitor keratinocyte populations that have recently been identified in distinct regions of the interfollicular epidermis and hair follicle appendages. Under normal conditions, these progenitor populations are long-lived and able to sustain the cellular input to certain epidermal structures including the interfollicular epidermis and sebaceous gland. Other putative epithelial progenitors derived from the hair follicle possess high in vitro proliferative capacity and are able to regenerate skin, hair and sebaceous lineages in transplantation studies. These new findings present the cutaneous epithelium as a highly compartmentalized structure potentially maintained by multiple classes of progenitor cells. In this review, we will discuss the implications of these new putative epithelial progenitor populations and their potential to be influenced by external stimuli for skin homeostasis and carcinogenesis.  相似文献   

11.
背景:研究发现富血小板血浆在促进骨再生、软组织修复以及组织工程研究中种子细胞的增殖分化方面有着重要的作用。 目的:观察不同制备方法、不同体积分数富血小板血浆对体外培养大鼠毛囊干细胞增殖的影响。 方法:联合采用显微分离技术,两步酶法及差速贴壁法获取纯度较高、生长状态较好的第3代大鼠毛囊干细胞。采用2次离心法和3次离心法获取大鼠富血小板血浆,分别按1.0%,2.0%,4.0%不同浓度稀释于K-SFM培养基中,以加入含不同体积分数富血小板血浆培养基组为实验组,并以未加入富血小板血浆的培养基为对照。 结果与结论:联合采用显微分离技术,两步酶法及差速贴壁法能获取纯度较高的毛囊干细胞。培养前2 d各实验组与对照组的比较差异无显著性意义(P > 0.05),实验组加入富血小板血浆干预2 d后,毛囊干细胞出现较高的增殖活性,第4天开始进入生长对数期,细胞第5天即达到70%-80%汇合,培养六七天细胞进入平台期。高剂量富血小板血浆组对细胞增殖效果优于低剂量组,体积分数相同的情况下3次离心法制备所得富血小板血浆对毛囊干细胞增殖作用明显高于2次离心法,以加入3次离心法制备且体积分数为4.0%的富血小板血浆组毛囊干细胞增殖效果最明显。  相似文献   

12.
Primary cicatricial alopecias (PCAs) are a group of permanent hair loss disorders, of which the pathogenesis is still poorly understood. The alopecia and excoriation (AE) mouse strain is a dominant mutant generated from ethyl nitrosourea mutagenesis. AE mice exhibit a progressive alopecia phenotype similar to that seen in PCAs, resulting from a point mutation in the gasdermin A3 gene. Mutant mice begin to show alopecia on the head from postnatal day 22 and experience complete hair loss by the age of 6 months, along with hyperkeratosis and catagen delay. The results of a histological examination showed that bulge stem cells in AE skin are gradually depleted, as indicated by decreased keratin 15 and CD34 expression, and reduced bromodeoxyuridine label-retaining cells in the AE bulge. In addition, AE mice display an inflammatory condition in the skin from postnatal day 7, including elevated tumor necrosis factor-α and monocyte chemotactic protein-1 mRNA levels and significantly increased macrophages and dendritic cell number. Immune privilege in the bulge was also compromised in AE skin. Consistently, after treatment with the immunosuppressive agent, cyclosporine A, immune privilege collapse, stem cell destruction, and alopecia phenotype of AE mice were all rescued. Collectively, our data demonstrate that immune-mediated destruction of bulge stem cells plays a crucial role in the pathogenesis of alopecia in AE mice, and this strain might be an interesting model for PCAs, especially for lichen planopilaris.  相似文献   

13.
Zhao J  Liu LQ  Wang YJ  Yang W  Geng WX  Wei J  Li LW  Chen FL 《Medical hypotheses》2008,70(5):1014-1016
The affected individual of hair loss demands help, because hair is viewed as a sign of youth and good health. Nowadays treatment of alopecia includes drug therapy and hair transplantation. Some drugs may promote hair growth, at least temporarily, but the treatment is effective only in milder alopecia, instead of extensive alopecia. Furthermore, the side effect of long period medication could not be avoided. Hair transplantation involves harvesting small pieces of hair-bearing scalp grafts from a donor site and relocating them to a bald area. This method does not increase the number of existing hairs, but only redistributes them. The operation is sophisticated and time-consuming, thus the patient suffers a lot during the process. The discovery of hair follicle stem cells (FSC) brings gospel to the affected individual of hair loss because of its capacity of generating new hair when they interact with mesenchymal dermal papilla cells (DPC). Besides, both FSC and DPC have strong proliferative capacity and the patient's own cells could be expanded considerably in vitro. Thus we hypothesize that the microencapsulation of the two kinds of cells in alginate gels could be implanted into the bald scalp of the patient since alginate gels is effective in cell transplantation. The strategy may provide a more convenient and valid alternative to hair loss if the hypothesis proved to be practical.  相似文献   

14.
毛囊细胞--一种新的皮肤组织工程种子细胞   总被引:1,自引:0,他引:1  
毛囊的上皮细胞和真皮细胞与皮肤的表皮角朊细胞和真皮成纤维细胞具有很大的相似性,但其具有更强的增殖分化能力和更多的生物学特性,并且毛囊真皮细胞具有干细胞的一些特性,作为皮肤组织工程的种子细胞具有更独特的优势,在构建带有皮肤附属器的组织工程皮肤上有潜在的前景.  相似文献   

15.
Hair follicles form during embryonic development and, after birth, undergo recurrent cycling of growth, regression, and relative quiescence. As a functional mini-organ, the hair follicle develops in an environment with dynamic and alternating changes of diverse molecular signals. Over the past decades, genetically engineered mouse models have been used to study hair follicle morphogenesis and significant advances have been made toward the identification of key signaling pathways and the regulatory genes involved. In contrast, much less is understood in signals regulating hair follicle regeneration. Like hair follicle development, hair follicle regeneration probably relies on populations of stem cells that undergo a highly coordinated and stepwise program of differentiation to produce the completed structure. Here, we review recent advances in the understanding of the molecular signals underlying hair follicle morphogenesis and regeneration, with a focus on the initiation of the primary hair follicle structure placode. Knowledge about hair follicle morphogenesis may help develop novel therapeutic strategies to enhance cutaneous regeneration and improve wound healing.  相似文献   

16.
17.
18.
19.
20.
Epithelial stem cells (EP-SCs) located in the bulge region of a hair follicle (HF) have the potential to give rise to hair follicle stem/progenitor cells that migrate down to regenerate HFs. Bone morphogenetic protein (BMP) signaling has been shown to regulate the HF cycle by inhibiting anagen induction. Here we show that active BMP signaling functions to prevent EP-SC activation and expansion. Dynamic expression of Noggin, a BMP antagonist, releases EP-SCs from BMP-mediated restriction, leading to EP-SC activation and initiation of the anagen phase. Experimentally induced conditional inactivation of the BMP type IA receptor (Bmpr1a) in EP-SCs leads to overproduction of HF stem/progenitor cells and the eventual formation of matricomas. This genetic manipulation of the BMP signaling pathway also reveals unexpected activation of beta-catenin, a major mediator of Wnt signaling. We propose that BMP activity controls the HF cycle by antagonizing Wnt/beta-catenin activity. This is at least partially achieved by BMP-mediated enhancement of transforming growth factor-beta-regulated epithelial cell-specific phosphatase (PTEN) function. Subsequently, PTEN, through phosphatidyl inositol 3-kinase-Akt, inhibits the activity of beta-catenin, the convergence point of the BMP and Wnt signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号