首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migliaccio  G; Migliaccio  AR; Adamson  JW 《Blood》1988,72(1):248-256
The effects of recombinant human erythropoietin (Ep), granulocyte/macrophage (GM) and granulocyte (G) colony-stimulating factors (CSF), and interleukin-3 (IL-3) on erythroid burst and GM colony growth have been studied in fetal bovine serum (FBS)- supplemented and FBS-deprived culture. Sources of progenitor cells were nonadherent or nonadherent T-lymphocyte-depleted marrow or peripheral blood cells from normal humans. G-CSF, in concentrations up to 2.3 X 10(-10) mol/L, induced only the formation of neutrophil colonies. In contrast, GM-CSF and IL-3 both induced GM colonies and sustained the formation of erythroid bursts in the presence of Ep. However, the activities of these growth factors were affected by the culture conditions. IL-3 induction of GM colonies depended on the presence of FBS, whereas the degree of GM-CSF induction of GM colonies in FBS- deprived cultures depended on the method by which adherent cells were removed. GM-CSF increased colony numbers in a concentration-dependent manner only if the cells had been prepared by overnight adherence. Both GM-CSF and IL-3 exhibited erythroid burst-promoting activity in FBS- deprived cultures. However, some lineage restriction was evident because GM-CSF was two- to threefold more active than IL-3 in inducing GM colonies but IL-3 was two- to threefold more active in promoting erythroid burst growth. Furthermore, in FBS-deprived cultures, the number of both erythroid bursts and GM colonies reached the maximum only when Ep, GM-CSF, and IL-3 or GM-CSF, IL-3, and G-CSF, respectively, were added together. These results suggest that the colonies induced by IL-3, GM-CSF, and G-CSF are derived from different progenitors.  相似文献   

2.
The expression of fetal hemoglobin was studied in erythroid cultures of bone marrow cells from normal baboons using globin biosynthesis and double immunofluorescent labeling with anti-gamma and anti-beta-chain monoclonal antibodies. Baboon erythroid cultures differed from human erythroid cultures in several respects. Erythroid clusters, CFUe, and to a lesser extent BFUe, could be grown without added erythropoietin (Epo), and in vitro maturation time of both CFUe and BFUe was shorter than of their human equivalents. In both CFUe and BFUe cultures Hb F synthesis increased following addition of Epo and reached a plateau at 0.5-1.0 IU. The biosynthetically determined levels of Hb F (mean, SD, and range of gamma/gamma + beta ratios) were: 0.84 +/- 0.09 (0.68-0.89) in BFUe colonies grown in 1.0-2.0 IU of Epo; 0.61 +/- 0.13 (0.45-0.85) in BFUe colonies grown in 0.2 IU of Epo; 0.28 +/- 0.12 (0.21-0.46) in erythroid clusters and CFUe-derived colonies grown at 0.2-0.5 IU of Epo; and 0.04 +/- 0.02 (0.02-0.06) in CFUe colonies and e-clusters grown in the absence of added Epo. Immunofluorescent labeling revealed a pancellular expression of Hb F in all BFUe-derived colonies and bimorphism of Hb F expression in CFUe colonies and in a few erythroid clusters. These results show that, in the baboon, the level of Hb F expression in culture decreases as the presumed differentiative state of cells that produce the erythroid colonies advances.  相似文献   

3.
The effect of recombinant human interleukin (IL)-1 and IL-6 on the differentiation and proliferation in vitro of human granulocyte-macrophage (GM) and erythroid progenitors has been investigated in either fetal bovine serum (FBS)-supplemented or FBS-deprived cultures. Sources of progenitor cells were unfractionated bone marrow cells or marrow cells depleted of adherent and/or T cells. Each interleukin was investigated either alone or in combination with GM-colony-stimulating factor (CSF), IL-3 and erythropoietin (Epo), or granulocyte (G)-CSF. In FBS-supplemented cultures of unfractionated marrow cells, IL-1 induced optimal GM colony growth and increased by 50% the number of erythroid bursts that formed in the presence of Epo. The addition to these cultures of a neutralizing anti-GM-CSF monoclonal antibody or of an anti-IL-3 serum decreased the growth of GM colonies by 80% and 40%, respectively. Under the same conditions, IL-6 had no effect on GM colony growth but increased by 90% the number of erythroid bursts. This effect was partially (40%) neutralized by addition of anti-IL-3 serum. IL-1 and IL-6 were weak stimuli, or had no effect at all, either alone or in combination with GM-CSF and IL-3 in FBS-deprived cultures or in FBS-supplemented cultures of nonadherent or nonadherent, T-cell-depleted marrow cells. IL-1 and IL-6 had no effect, either alone or in combination with IL-3, in maintaining the number of progenitor cells in short-term liquid suspension cultures. These results indicate that the actions of IL-1 and IL-6 on hematopoiesis are mainly indirect and mediated by the production of GM-CSF and/or IL-3 by accessory cells. However, neither IL-1 nor IL-6 alone is sufficient to stimulate production of growth factor(s) by accessory cells, and at least a second stimulus, provided by FBS, is also required. These data are in agreement with a multisignal model of regulation of the expression of growth factor genes.  相似文献   

4.
We studied the kinetics of erythroid differentiation and the globin synthetic patterns of circulating early erythroid progenitors (erythroid burst-forming units, BFUe) stimulated to differentiate in suspension cultures in the presence of interleukin 3 (IL-3) and erythropoietin. Erythroid progenitor cells present at the onset of culture and on successive days (2-12) thereafter were quantitatively assessed by clonal assays, whereas globin synthesis was measured sequentially in aliquots from the suspension culture. Although BFUe numbers increased to a peak value by day 4, the number of progenitors generating larger bursts was progressively decreasing with a concomitant increase in the number of smaller sized bursts. Erythroid colony-forming units (CFUe) and erythroid clusters were first detected by day 4 and peaked on day 6. Proerythroblasts were morphologically identifiable on day 4, and they progressively increased in number and maturity so that, at culture days 10 and 12, 51% and 59% of the culture cells were erythroblasts, respectively. In keeping with the morphologic changes during the liquid culture, globin mRNA was first detected on day 4. gamma/gamma + beta mRNA ratios were highest on days 4 and 6 and declined thereafter. Our results show that circulating BFUe (at least the majority of them) can differentiate and mature as a cohort in suspension cultures, providing terminal progeny with accelerated kinetics compared to semisolid, clonal cultures. In this system the same cohort of cells can be easily sampled throughout the culture for molecular studies on erythroid differentiation.  相似文献   

5.
Interferons have the ability to enhance or diminish the expression of specific genes and have been shown to affect the proliferation of certain cells. Here, the effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes. This supports the concept that developmental globin gene switching can be regulated by environmental factors.  相似文献   

6.
To obtain information on the cellular mechanism of induction of fetal hemoglobin (HbF) by sodium butyrate (NaB), we treated adult baboons with NaB and assessed its effects on HbF expression. Infusion of NaB increased F reticulocytes and F-positive CFUe and e-cluster colonies without induction of reticulocytosis or increase in progenitor cell numbers. Addition of NaB in bone marrow cultures increased the frequency of F-positive CFUe and e-clusters without increasing progenitor cell numbers. NaB induced HbF in human adult BFUe cultures and increased the gamma/gamma + beta globin chain and mRNA ratios in short-term incubations of culture-derived erythroblasts. There was a synergistic induction of HbF by NaB and 5-azacytidine (5-azaC), but not when the animal was treated with NaB and cytarabine (AraC). Our results suggest that the activation of gamma-globin expression by NaB reflects an action of this compound on globin genes or globin chromatin.  相似文献   

7.
8.
9.
Y Fujimori  M Ogawa  S C Clark  G J Dover 《Blood》1990,75(8):1718-1722
Adult erythroid progenitors produce significantly higher fetal hemoglobin (HbF) levels in cultures containing fetal calf serum (FCS) and erythropoietin (Ep) than in vivo. The precise mechanisms for this increased HbF production in culture have not been elucidated. We examined HbF biosynthesis by enriched human progenitors in serum-free (SF) culture. We measured globin chain biosynthesis by combination of isoelectric focusing and autoradiography and examined percent nucleated erythrocytes containing HbF (%FNRBC) using microscopic immunodiffusion. CD34 (My10)-positive marrow cells from a normal subject yielded an almost negligible amount of gamma-globin in SF culture stimulated by 100 U/mL interleukin-3 (IL-3) and 2 U/mL Ep, while corresponding FCS culture revealed significant gamma-globin biosynthesis. The %FNRBC of the erythroid bursts in SF cultures derived from nine normal adults (2.0% +/- 0.9% F cells) was 3.0% +/- 3.4%, while in FCS culture, it was 25% +/- 12% (mean +/- SD). Dosages of IL-3 between 10 and 10,000 U/mL did not increase %FNRBC in FCS of SF conditions. Mean Hb contents of nucleated erythrocytes (NRBC) assayed by microdensitometry of pericellular immunoprecipitate were similar in FCS and SF cultures. The number of erythroid bursts per 2 x 10(3) CD34-positive marrow cells was 48 +/- 20 in FCS and 36 +/- 12 in SF cultures. In two experiments, progenitors grown for 7 days under SF conditions were isolated and recultured in either SF or FCS conditions for 7 days, and the resulting erythroid bursts were analyzed for FNRBC. The bursts that had been returned to FCS cultures yielded values of %FNRBC intermediate between those obtained from progenitors grown entirely in SF or FCS cultures, indicating that serum effect is not solely due to growth selection for certain subpopulations of erythroid burst-forming units. This experiment also demonstrated that the factors present in serum responsible for HbF augmentation act at both early and late stages during erythroid burst development. SF culture of peripheral blood progenitors of one subject with heterocellular hereditary persistence of fetal hemoglobin (HPFH) yielded elevated levels of FNRBC (19% +/- 5%) that accurately reflected the F cell (18%) of the circulating blood. Similarly, FNRBC in cultures of progenitors from one umbilical cord blood sample (86% F reticulocytes) was 87 +/- 3% FNRBC. The SF culture for enriched human progenitors, which nearly reflects the physiologic HbF programs of the donor, should facilitate studies of the exact mechanisms of postnatal reactivation of HbF production.  相似文献   

10.
11.
Established cell lines were screened for secretion of activities than can stimulate fetal hemoglobin (HbF) production in adult burst-forming unit-erythroid (BFUe) cultures. Conditioned media from four cell lines, a human teratocarcinoma, an osteosarcoma, a bladder cell carcinoma, and feline leukemia virus (FeLV) A-infected feline fibroblasts (FEF-A cells), consistently increased the relative production of fetal globin in BFUe-derived colonies. In vitro translation of RNA from these cells in Xenopus oocytes yielded products that increased the gamma to gamma+beta ratio in adult erythroid colonies. These results demonstrate that a variety of cell lines produce factors that stimulate the production of HbF in vitro. The genes of such factors could be isolated by expression cloning of cDNA from cell lines using the Xenopus oocyte system.  相似文献   

12.
Increasing the expression of the gamma globin genes is considered a useful therapeutic approach to the beta globin diseases. Because butyrate and alpha-amino-n-butyric acid (ABA) augment gamma globin expression in normal neonatal and adult erythroid progenitors, we investigated the effects of sodium butyrate and ABA on erythroid progenitors of patients with beta thalassemia and sickle cell anemia who might benefit from such an effect. Both substances increased fetal hemoglobin (Hb F) expression in Bfu-e from 7% to 30% above levels found in control cultures from the same subjects with sickle cell anemia. The fraction of cultured erythroblasts producing Hb F increased more than 20% with sodium butyrate treatment in 70% of cultures. In most cultures, this produced greater than 20% total Hb F and greater than 70% F cells, levels which have been considered beneficial in ameliorating clinical symptoms. Alpha: non-alpha (alpha-non-alpha) imbalance was decreased by 36% in erythroid progenitors of patients with beta thalassemia cultured in the presence of butyrate compared with control cultures from the same subjects. These data suggest that sodium butyrate may have therapeutic potential for increasing gamma globin expression in the beta globin diseases.  相似文献   

13.
Erythroid progenitors (BFU-E) from adult human peripheral blood generate erythroid bursts in semisolid culture supplemented with at least two growth factors, ie, erythropoietin (Ep) and interleukin-3 (IL- 3) or granulocyte-macrophage colony-stimulating factor (GM-CSF). We have analyzed the hematopoietin(s) requirement of human embryonic BFU- E, as compared to that of adult peripheral blood progenitors: This was basically evaluated in fetal calf serum-free (FCS-) methylcellulose culture of partially or highly purified progenitors treated with human recombinant hemopoietins. At a low seeding concentration (2 x 10(3) cells/dish) purified embryonic BFU-E generated erythroid bursts when treated only with Ep: Further addition of IL-3 or GM-CSF had no effect on BFU-E cloning efficiency, although the size of bursts was increased in a dose-dependent manner, particularly with IL-3. At a similar seeding concentration (ie, 10(3) cells/dish), purified adult BFU-E efficiently generated erythroid bursts in the presence of Ep and GM-CSF or IL-3, while only few small erythroid colonies were observed in the presence of Ep alone. In a final series of experiments, unicellular FCS- cultures of purified embryonic BFU-E gave rise to erythroid bursts in the presence of Ep alone. Furthermore, the cloning efficiency induced by Ep was unmodified by further addition of GM-CSF or IL-3. Unicellular FCS- cultures of highly purified adult peripheral blood progenitors generated no erythroid bursts in the presence of Ep alone. The addition of GM-CSF or IL-3 was required to generate BFU-E colonies. These studies indicate that in human embryonic life, BFU-E require only Ep for efficient erythroid burst formation, while IL-3 and GM-CSF essentially enhance the proliferation of early erythropoietic precursors.  相似文献   

14.
Stimulation of fetal hemoglobin production by short chain fatty acids   总被引:6,自引:2,他引:4  
Butyrate, a four-carbon fatty acid, and its two-carbon metabolic product, acetate, are inducers of gamma-globin synthesis. To test whether other short-chain fatty acids share this property, we first examined whether propionic acid, a three-carbon fatty acid that is not catabolized to acetate, induces gamma-globin expression. Sodium propionate increased the frequency of fetal hemoglobin containing erythroblasts and the gamma/gamma + beta mRNA ratios in adult erythroid cell cultures and F reticulocyte production in a nonanemic juvenile baboon. Short-chain fatty acids containing five (pentanoic), six (hexanoic), seven (heptanoic), eight (octanoic), and nine (nonanoic) carbons induced gamma-globin expression (as measured by increase in gamma-positive erythroblasts and gamma/gamma + beta mRNA ratios) in adult erythroid burst-forming unit cultures. There was a clear-cut relationship between the concentration of fatty acids in culture and the degree of induction of gamma-globin expression. Three-, four-, and five-carbon fatty acids were better inducers of gamma globin in culture as compared with six- to nine-carbon fatty acids. These results suggest that all short-chain fatty acids share the property of gamma-globin gene inducibility. The fact that valproic acid, a derivative of pentanoic acid, also induces gamma-globin expression suggests that short-chain fatty acid derivatives that are already approved for human use may possess the property of gamma-globin inducibility and may be of therapeutic relevance to the beta-chain hemoglobinopathies.  相似文献   

15.
We report that bromodeoxyuridine (BrdU) addition in semi-solid cultures of normal adult erythroid progenitors causes a sharp rise of gamma-globin gene expression in erythroid colonies. Control studies were carefully carried out to exclude the possibility of toxic effects exerted by the drug in these experimental conditions. In particular, BrdU addition induces a sharp increase in the level of relative gamma-globin synthesis and content in pooled BFU-E-derived colonies: this rise is clearly observed in single bursts of the mature type (largely composed of late erythroblasts) but not in immature ones (essentially comprising early erythroblasts). Furthermore, it is associated with an increase of the G gamma/G gamma + A gamma synthetic ratio from adult up to fetal like values. Reactivation of gamma-synthesis was observed even if BrdU was added to colonies composed essentially of early erythroblasts, ie, when BrdU was added to either bursts at day 10 of culture or late CFU-E-derived clones at day 1. These in vitro observations indicate modulation of gamma-synthesis at the stage of erythroblasts from normal adults. At the molecular level we suggest that BrdU, by replacing thymidine in DNA, may inhibit the switch from a fetal-like biosynthetic program expressed in early erythroblastic differentiation to the adult program expressed in later stages of maturation.  相似文献   

16.
17.
Supernatants of COS-1 cells transfected with gibbon cDNA encoding interleukin 3 (IL-3) with homology to sequences for human IL-3 were tested for ability to promote growth of various human hemopoietic progenitors. The effect of these supernatants as a source of recombinant IL-3 was compared to that of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) as well as to that of medium conditioned by phytohemagglutinin-stimulated leukocytes. The frequency of multilineage colonies, erythroid bursts, and megakaryocyte colonies in cultures containing the COS-1 cell supernatant was equivalent to the frequency observed in the controls and significantly higher than found in cultures plated with recombinant GM-CSF. G-CSF did not support the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. In contrast, growth of granulocyte-macrophage colonies was best supported with GM-CSF, while recombinant IL-3 yielded colonies at lower or at best equivalent frequency. The simultaneous addition of higher concentrations of GM-CSF to cultures containing IL-3 in optimal amounts did not enhance the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. However, the frequency of such colonies and bursts increased with GM-CSF when cultures were plated with suboptimal concentrations of IL-3. Growth of colonies within the granulocyte-macrophage lineage is optimally supported by GM-CSF and does not increase with further addition of IL-3.  相似文献   

18.
19.
Human leukaemic K562 cells can be induced in vitro to erythroid differentiation by a variety of chemical compounds, including haemin, butyric acid, 5-azacytidine, cytosine arabinoside, mithramycin and chromomycin, cisplatin and cisplatin analogues. Differentiation of K562 cells is associated with an increase of expression of embryo-fetal globin genes, such as the zeta-, epsilon- and gamma-globin genes. The K562 cell line has been proposed as a very useful in vitro model system to determine the therapeutic potential of new differentiating compounds as well as to study the molecular mechanism(s) regulating changes in the expression of embryonic and fetal human globin genes. Inducers of erythroid differentiation stimulating gamma-globin synthesis could be considered for possible use in the therapy of haematological diseases associated with a failure in the expression of normal beta-globin genes. We have analysed the effects of tallimustine and distamycin on cell growth and differentiation of K562 cells. The results demonstrated that tallimustine is a potent inducer, while distamycin is a weak inducer, of K562 cell erythroid differentiation. Erythroid differentiation was associated with an increase of accumulation of gamma-globin mRNA and of production of both haemoglobin (Hb) Gower 1 and Hb Portland. In addition, tallimustine-mediated erythroid induction occurred in the presence of activation of the apoptotic pathway. The reasons for proposing tallimustine as an inducer of gamma-globin gene expression are strongly sustained by the finding that this compound stimulates fetal haemoglobin production in human erythroid precursor cells from normal subjects.  相似文献   

20.
Migliaccio  AR; Bruno  M; Migliaccio  G 《Blood》1987,70(6):1867-1871
The biologic activity of human biosynthetic granulocyte-monocyte colony stimulating factor (GM-CSF) was investigated in serum-free culture of erythroid progenitors derived from adult peripheral blood. The morphology of erythroid bursts and the cloning efficiency of BFU-E under serum-free conditions were similar to those observed in dishes with fetal bovine serum (FBS). For these experiments, progenitor cells were partially purified by Ficoll-Paque density centrifugation, adherence to a plastic surface, and complement-mediated cytotoxicity of Leu-1+ elements. For some studies, blastlike cells were harvested directly from 6-day-old semisolid cultures. In serum-free culture of the light-density cell fraction, biosynthetic erythropoietin (Ep) was sufficient for formation of pure and mixed erythroid colonies whereas GM-CSF was required for granulocyte-monocytic colonies. When adherent and Leu-1+ cells were removed, or when in vitro differentiated blast cells were used as a source of progenitors, neither Ep or GM-CSF alone induced colony formation. In dishes supplemented with both growth factors, erythroid bursts were detected. Although the presence of GM- CSF alone did not induce formation of any colony or clusters, BFU-E were recorded when Ep was added 8 days later, suggesting that BFU-E could be maintained. Terminal maturation of the resulting erythroid bursts was delayed by 8 days. These results provide evidence that GM- CSF acts directly on early erythroid progenitors. Furthermore, they suggest that both Ep and GM-CSF are necessary to start the differentiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号