首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of the atypical agonists pindolol and celiprolol with beta adrenergic receptors were compared with those of the full agonist, isoproterenol. Studies were carried out using intact cells as well as membranes prepared from C6 glioma cells. Computer-assisted analysis of dose-response curves resulting from the inhibition of the binding of [125I]iodopindolol by the beta-1 and beta-2 selective compounds ICI 89,406 and ICI 118,551 revealed that approximately one-third of the beta adrenergic receptors on these cells were beta-1 receptors. Addition of GTP to the binding assay simplified the dose-response curve for inhibition of the binding of [125I]iodopindolol by isoproterenol and diminished the potency of the agonist. GTP had no effect on the binding of pindolol or celiprolol, suggesting that these drugs do not induce the formation of a ternary complex with the receptor and the guanine nucleotide-binding protein for stimulation of adenylate cyclase activity. When added to the growth medium of intact C6 cells, isoproterenol induced a 40-fold increase in cyclic AMP accumulation. Pindolol and celiprolol, however, caused no elevation of enzyme activity. Addition of isoproterenol to the growth medium of intact cells resulted in an 80% decrease in the density of both beta-1 and beta-2 adrenergic receptors within 8 hr. Growing cells in the presence of pindolol or celiprolol induced a 50% decrease in the density of beta-2 receptors, which was inhibited by beta adrenergic antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The relationship between occupancy of beta adrenergic receptors and stimulation of adenylate cyclase in dog atrial tissue was examined by studying the binding of [125I]iodopindolol and the activation of adenylate cyclase. Computer-assisted nonlinear regression analysis was used to analyze the inhibition of isoproterenol-stimulated adenylate cyclase activity by beta-1- or beta-2-selective antagonists. The Ki values for each subtype of receptor for the selective antagonists resulting from studies of the inhibition of adenylate cyclase activity were similar to those determined in studies of the inhibition of the binding of [125I]iodopindolol. To compare further the occupancy of beta-1 or beta-2 adrenergic receptors with the activation of adenylate cyclase mediated by each class of receptor, computer modeling of the stimulation of adenylate cyclase by the beta-1-selective agonist norepinephrine was carried out. The EC50 values of norepinephrine for each receptor subtype, as measured in studies of norepinephrine-stimulated adenylate cyclase activity, were similar to the Ki values for the inhibition by norepinephrine of the binding of [125I]iodopindolol to each receptor subtype. The data led to the conclusion that beta-1 adrenergic receptors make up about 70% of the total number of beta adrenergic receptors and mediate 70% of the increase in adenylate cyclase activity produced by isoproterenol. These results suggest that the relationship between occupancy of each class of receptor and activation of adenylate cyclase is linear and that, when agonist-stimulated adenylate cyclase activity is used as a functional response, neither spare beta-1 nor spare beta-2 adrenergic receptors exist in the atrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Norepinephrine stimulates the synthesis of melatonin in the pineal gland. The action of norepinephrine is believed to be mediated primarily by beta adrenergic receptors, and involves activation of adenylate cyclase. Ethanol, 25 to 50 mM, added to cultured pineal glands in vitro, enhanced isoproterenol-induced stimulation of cyclic AMP and melatonin production. The action of ethanol was observed only at doses of isoproterenol that produced a submaximal effect, and ethanol alone had no effect on cyclic AMP or melatonin release. Butanol, at a concentration of 2 mM, was as effective as 50 mM ethanol in increasing isoproterenol-stimulated cyclic AMP and melatonin release, indicating that the response to alcohols was not due simply to changes in osmolarity, and may reflect a hydrophobic interaction of the alcohols with the cell membrane. The effects of ethanol on pineal cyclic AMP and melatonin release were reversible after a 15-min preincubation, but not after a 2-hr preincubation, suggesting that, over a long incubation period, ethanol may sensitize the pineal beta adrenergic receptor-coupled adenylate cyclase system to isoproterenol. The findings in this study are consistent with earlier work showing that ethanol increases cerebral cortical beta adrenergic receptor-coupled adenylate cyclase activity, and demonstrate that the effect of ethanol on the receptor-effector system can result in an endocrinological response.  相似文献   

4.
Development of functional dependence on ethanol in dopaminergic systems   总被引:10,自引:0,他引:10  
Withdrawal of mice from chronic ethanol treatment results in a decreased responsiveness of striatal (but not mesolimbic) dopamine-sensitive adenylate cyclase activity to stimulation by dopamine. This subsensitivity is not apparent at the time of withdrawal from chronic feeding of ethanol, when animals are still intoxicated, but becomes evident as ethanol is eliminated from the animals. Addition of ethanol in vitro to tissue homogenates from ethanol-withdrawn animals, at concentrations similar to those found in brain at the time of withdrawal, normalizes the response of the adenylate cyclase to dopamine. No difference is evident between control and ethanol-withdrawn animals in stimulation of adenylate cyclase by sodium fluoride. The specificity of the response of striatal adenylate cyclase to stimulation by dopamine, as compared to other transmitters, is unaltered by chronic ethanol feeding. Chronic treatment with ethanol and withdrawal also does not affect the specific binding of spiroperidol in either striatal or mesolimbic regions. It is suggested that the decreased response of adenylate cyclase to dopamine in ethanol-withdrawn animals results from decreased efficiency of coupling between dopamine "receptor" sites and catalytic units of adenylate cyclase.  相似文献   

5.
To study the epigenetic regulation of beta adrenergic receptor subtypes, we examined the effects of phorbol esters on beta adrenergic receptor coupling to adenylyl cyclase in 3T3-L1 fibroblasts, which express both beta-1 and beta-2 adrenergic receptor subtypes. Pretreatment of intact 3T3-L1 cells with the protein kinase C activator phorbol dibutyrate caused a dose- and time-dependent decrease in subsequent cyclic AMP (cAMP) accumulation mediated by the beta adrenergic agonist isoproterenol. This effect was selective for beta-adrenergic receptor-mediated responses because there was a potentiation of cAMP accumulation caused by other activators such as prostaglandin E1, forskolin or cholera toxin. The inactive phorbol, alpha-phorbol dibutyrate was ineffective at 1 microM in attenuating isoproterenol stimulation, and 25 nM of the protein kinase C inhibitor staurosporine blocked the effects of phorbol ester on beta adrenergic agonist responses. Stimulation of cAMP accumulation by isoproterenol occurred through a greater proportion of beta-2 adrenergic receptors in phorbol dibutyrate-treated cells than in control cells. This was demonstrated using the beta-1 adrenergic selective antagonist ICI 89.406 and the beta-2 adrenergic selective antagonist ICI 118.551 to inhibit competitively isoproterenol-stimulated cAMP accumulation. Beta-2 adrenergic receptor number and subtype in these cells are regulated by glucocorticoids and butyrate. Decreasing the proportion of beta-1 adrenergic receptors and concomitantly increasing beta-2 adrenergic receptors with either glucocorticoids or butyrate decreased the ability of phorbol ester pretreatment to attenuate cAMP accumulation by isoproterenol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The ability of the atypical agonists celiprolol and pindolol to induce sequestration and down regulation of beta adrenergic receptors was investigated in S49 lymphoma cells. Sequestration was measured as the loss of binding sites for [3H]CGP-12177, a hydrophilic radioligand that binds only to surface beta adrenergic receptors at 6 degrees C. Down regulation was measured as the loss of binding sites for [125I]iodopindolol, a lipophilic radioligand which at 37 degrees C binds to both surface and sequestered receptors. Pindolol and celiprolol do not stimulate adenylate cyclase in membranes from wild-type (WT) S49 cells or do they induce the sequestration of beta adrenergic receptors on intact cells. Incubation of WT S49 lymphoma cells with isoproterenol for 24 hr resulted in the loss of 75% of total cellular beta adrenergic receptors (down regulation). Exposure of WT S49 cells to pindolol or celiprolol for 24 hr resulted in the loss of approximately half of the total cellular beta adrenergic receptors. In mutant S49 cells [cyc- (variant of S49 lymphoma cells which lacks Ns activity) and UNC (variant of S49 lymphoma cells in which Ns is present but cannot interact with beta adrenergic receptors)] in which interaction of beta adrenergic receptors with the stimulatory guanine nucleotide binding regulatory protein (Ns) does not occur, a 24 hr incubation with isoproterenol caused the loss of approximately half of the beta adrenergic receptors, whereas pindolol and celiprolol caused no change in the number of receptors. These results suggest that there are two mechanisms of down regulation of beta adrenergic receptors in S49 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Beta adrenergic receptors have been previously characterized in human neutrophil sonicates. In the present study the intact neutrophil has been assessed for the number and affinity of beta adrenergic binding sites by using the antagonist DNA. Agonist and antagonist potencies, characterized by their effect on DHA binding and cyclic AMP accumulation, are compared with agonist inhibition of lysosomal enzyme (beta glucuronidase) release. Criteria for beta adrenergic receptor identification were successfully demonstrated. At 30 degrees C, beta adrenergic binding was rapid (t 1/2 2 min) and reversible (t 1/2 9 min). Receptor binding was saturable, revealing approximately 900 high-affinity receptors per neutrophil with DHA concentrations of 0.1 to 10 nM. By utilizing both equilibrium and kinetic techniques, the KD was determined to be approximately 0.6 nM. Agonists and antagonists competed for DHA binding in a manner consistent with their effect on cyclic AMP generation. Rank order potency was suggestive of a beta-2 receptor: isoproterenol greater than epinephrine greater than norepinephrine. Stereoselectivity was shown by the greater potency of L-propranolol compared to the D isomer. A high degree of receptor-adenylate cyclase coupling efficiency was suggested by the observation that with only 1% receptor occupancy isoproterenol stimulated 50% maximal cyclic AMP generation. Finally, there was an excellent correlation between the isoproterenol concentration which resulted in 50% of maximal inhibition of beta glucuronidase release (Ki) and that causing 50% maximal cyclic AMP stimulation (Kact), suggestive of a close relationship between beta adrenergic-induced adenylate cyclase activation and beta adrenergic regulation of neutrophil lysosomal enzyme release. The data presented suggest that the use of the intact neutrophil for study of the beta adrenergic receptor is feasible and may provide information which is considerably more closely related to modulation of physiological function by neurohormones than is possible with disrupted cell preparations.  相似文献   

8.
The cyclic AMP response to catecholamines in rat cortical slices is mediated by a beta adrenergic receptor which is coupled to adenylate cyclase and an alpha adrenergic receptor which potentiates the response to beta receptor stimulation. The present studies examined the effects of repeated restraint stress, adrenocorticotropin or desmethylimipramine administration on the beta and alpha adrenergic components of this response. Restraint was found to produce a small nonsignificant decrease of the beta receptor response accompanied by a significant reduction of the alpha receptor-induced potentiation of the beta response. Desmethylimipramine was found to lower the cyclic AMP response to beta receptor stimulation but not to alter the alpha-induced potentiation of the beta response. Adrenocorticotropin, like restraint stress, was found to reduce only the alpha-induced potentiation of the beta response. Experiments with adenosine and histamine showed that restraint stress lowered the alpha-induced potentiation of cyclic AMP responses to these neurohormones also. It is concluded that restraint stress acts primarily to reduce the response to stimulation of central alpha adrenergic receptors whereas desmethylimipramine acts primarily to reduce the response to stimulation of beta adrenergic receptors. Adrenocorticotropin has the same effect as restraint stress suggesting that pituitary adrenal hormones mediate the stress effect.  相似文献   

9.
Many antidepressant drugs, when administered chronically to rats, have been shown to produce decreases in the density of beta adrenergic receptors in the central nervous system. The centrally active beta adrenergic receptor agonist clenbuterol is currently being evaluated clinically as an antidepressant. The chronic administration of this drug to rats resulted in a large decrease in the density of beta adrenergic receptors in some areas of the rat brain but not in others. Thus, autoradiographic studies revealed that the total density of beta adrenergic receptors in the molecular layer of the cerebellum, but not in layers 1 to 3 or layer 4 of the cerebral cortex, was decreased. To examine whether this regional selectivity occurred because of differences in plasticity of cerebellum and cortex or because cerebellum contains mainly beta-2 adrenergic receptors and cortex contains mainly beta-1 adrenergic receptors, separate analyses of the subtypes of beta adrenergic receptors were performed in each area. These experiments indicated that the decrease in receptor density was entirely specific for beta-2 adrenergic receptors, whereas the density of beta-1 receptors was unchanged. Thus, even in layers 1 to 3 and layer 4 of the cerebral cortex, beta-2 receptor density was decreased, with no change in beta-1 receptor density. Using the autoradiographic assay for ligand binding, it was shown that clenbuterol has equal affinity for beta-1 and beta-2 adrenergic receptors, indicating that the selective effect of this drug was not due to a selective affinity for beta-2 receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abrupt withdrawal after the chronic administration of propranolol results in clinical syndromes that suggest adrenergic hypersensitivity. Furthermore, propranolol administration has been shown to lead to an increase in the density of beta adrenergic receptors on human lymphocytes. The present studies were designed to assess the relevance of changes measured in lymphocytes to changes that may occur in solid tissues. Direct measurement of the density and properties of beta adrenergic receptors in membrane fragments was performed in vitro using the radioligand [125I]iodohydroxybenzylpindolol. Chronic infusion of propranolol by s.c. implanted osmotic minipumps generated sustained plasma concentrations of propranolol sufficient to cause chronic blockade of beta adrenergic receptors. Infusion of propranolol for 7 days resulted in significant increases in the density of beta adrenergic receptors in rat ventricles, lungs and lymphocytes. A computer-assisted graphic analysis of results obtained in studies with drugs selective for beta-1 or beta-2 receptors revealed increases in the densities of both beta-1 an beta-2 adrenergic receptors. These results are consistent with the hypothesis that change in beta adrenergic receptors on lymphocytes are qualitatively similar to alterations in beta adrenergic receptors in solid tissues not routinely accessible in humans. Increases in the densities of beta-1 and/or beta-2 adrenergic receptors in solid tissues may be related to some of the untoward effects observed in humans after abrupt discontinuation of propranolol administration.  相似文献   

11.
Incubation of slices of rat cerebral cortex with the beta adrenergic receptor agonist (-)-isoproterenol led to a 30 to 50% decrease in the number of binding sites for [125I]iodohydroxybenzylpindolol and to a 60 to 80% decrease in isoproterenol-stimulated cyclic AMP accumulation. The density of beta adrenergic receptors was also decreased following incubation with (-)-norepinephrine but not with (+)-isoproterenol or dopamine and the decrease in receptor density was blocked by co-incubation with the beta adrenergic receptor antagonist sotalol. The half-time for loss of receptors was approximately 3 min and recovery was observed during a 1 hr reincubation of tissue slices or following exposure to guanine nucleotides. A decrease in beta adrenergic receptor density was also observed following chronic treatment with desmethylimipramine which blocks norepinephrine reuptake and thus potentiates the effects of neurally released norepinephrine at adrenergic receptors. The loss of receptors induced in vitro could be reversed by reincubation or by exposure to guanine nucleotides. In contrast, the loss of receptors induced in vivo was not affected by these procedures.  相似文献   

12.
Male CF-1 mice were treated for 14 days with diets containing haloperidol, thioridazine HCl and 4'-fluoro-4[[4-(p-fluorophenyl)-4-methoxycyclohexyl]-amino]-butyrophenone HCl (U35,777A). At various times during and after neuroleptic treatment, spontaneous and d-amphetamine-stimulated motor activity were measured. Two days after cessation of treatment, the mice displayed enhanced spontaneous and d-amphetamine-stimulated motor activity. This effect was no longer apparent 9 days after neuroleptic intake was terminated. With a quantal test based on the climbing activity induced by apomorphine, it was determined that mice were also supersensitive to apomorphine at 2 days but not 9 days after withdrawal from chronic haloperidol. In an attempt to correlate this supersensitivity to a biochemical parameter related to receptor function, dopamine-stimulated adenyl cyclase activity was assayed in striatal homogenates of mice 2 days after haloperidol withdrawal. No alteration in this parameter was observed. Likewise, the ability of apomorphine to elevate striatal cyclic adenosine monophosphate concentrations in vivo was unaltered by withdrawal from chronic haloperidol. Chronic treatment with neuroleptics results in a brief supersensitivity to dopaminergic agents. This effect does not appear to be accompanied by increases in dopamine-stimulated adenyl cyclase activity in the corpus striatum.  相似文献   

13.
The effects of ethanol on the beta adrenergic receptor-coupled adenylate cyclase system were examined in vitro using membranes prepared from S49 lymphoma cells. Ethanol caused a dose-dependent increase in adenylate cyclase activity in membranes prepared from wild-type cells when the activity was measured in the presence of GTP. Activity measured in the presence of isoproterenol was also increased by ethanol, but the fold-stimulation by isoproterenol was lower in the presence of ethanol. Ethanol also shifted the dose-response curve for stimulation of the enzyme by isoproterenol to the right. This shift was due to a decrease in the affinity of the beta adrenergic receptor for isoproterenol. A decrease in the affinity of the receptor for the antagonists [125I]iodopindolol and propranolol was also observed, but the magnitude of this effect was less than that seen with the agonist isoproterenol. The density of binding sites for [125I]iodopindolol was not affected by ethanol. Dose-response curves for NaF and guanosine-5'-O-(3-thiotriphosphate), both of which stimulate adenylate cyclase activity through an effect on the stimulatory guanine nucleotide-binding protein (Gs), were shifted to the left by the addition of ethanol. In membranes prepared from the CYC- variant of S49 cells, which lacks the alpha subunit of Gs, guanosine-5'-O-(3-thiotriphosphate) inhibited forskolin-stimulated adenylate cyclase activity. The inhibition by guanosine-5'-O-(3-thiotriphosphate) was not affected by ethanol. In membranes prepared from both wild-type and CYC- S49 cells, ethanol inhibited forskolin-stimulated adenylate cyclase activity. Whereas the inhibition of this activity by GTP was greatly attenuated in membranes prepared from CYC- S49 cells which had been pretreated with pertussis toxin, the inhibition by ethanol was not affected by pretreatment with pertussis toxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Prior biochemical studies have suggested that beta adrenergic receptors in the ciliary process are mostly of the beta-2 subtype. The present experiments evaluate a number of beta adrenergic antagonists, including several recently developed drugs, for their ability to block rabbit and human ciliary process and heart beta adrenergic receptors activating adenylate cyclase. Three of these agents (alpha-methylpropranolol, IPS 339 and ICI 118,551) demonstrated a high degree of oculoselectivity in both rabbit and human. The other agents (S 37-429, S 32-468, ICI 78,462,H35/25, butoxamine, propranolol, timolol, atenolol and practolol) showed either modest or no oculoselectivity. Structure-activity studies suggested that, among antagonists of the aryloxymethyl type, methylation of the side-chain alpha-carbon or the aromatic ring may enhance oculoselectivity primarily by decreasing potency at cardiac beta adrenergic receptors. Additional physiological studies of cardiac chronotropic response revealed that, compared with nonselective beta blockers, compounds with biochemical oculoselectivity demonstrate decreased physiological effects on cardiac function. This was true when the selective agents were applied either systemically or topically to the eye. On the other hand, the systemic absorption of topical timolol was sufficient to block cardiac chronotropic effects completely. These findings, identifying relatively specific blockers of rabbit and human ciliary process beta adrenergic receptors, have implications for the development of ocular hypotensive agents with fewer systemic side effects on tissues enriched in beta-1 adrenergic receptors.  相似文献   

15.
In vitro incubation of cells with catecholamines leads to both down regulation of beta adrenergic receptor number and desensitization of agonist-stimulated adenylate cyclase activity. These same parameters, down regulation of beta adrenergic receptor number and desensitization of adenylate cyclase activity were assessed in rat lung membranes after in vivo administration of metaproterenol, a beta-2 selective agonist. In vivo treatment with metaproterenol leads to: 1) reduced beta adrenergic receptor number; 2) reduced isoproterenol-stimulated adenylate cyclase activity; 3) unaffected NaF or 5'-guanylylimidodiphosphate-stimulated adenylate cyclase activity; and 4) reduced affinity of the receptor for isoproterenol similar to the affinity observed in the presence of 5'-guanylylimidodiphosphate. The date suggest that in vivo metaproterenol administration results in an uncoupled receptor-adenylate cyclase complex. The effects of in vivo administration of the glucocorticoid, methylprednisolone, to metaproterenol-pretreated animals were also assessed. Glucocorticoid treatment was associated with 1) increased beta adrenergic receptor number in rats in which the receptors have been down regulated, 2) increased isoproterenol responsiveness in agonist-desensitized rats and 3) no effect on agonist affinity in desensitized animals. These data suggest that the restoration of agonist responsiveness by glucocorticoids in the catecholamine refractive state is not simply a reversal of receptor down regulation or adenylate cyclase desensitization.  相似文献   

16.
Genetic influence on the regulation of beta adrenergic receptors in mice   总被引:1,自引:0,他引:1  
The regulation of beta adrenergic receptors was investigated in inbred mouse strains in which previous studies revealed differences in the regulation of dopamine receptors. The density of beta adrenergic receptors in the cerebral cortex of BALB/J mice was about one-third of that in CBA/J and C57BL/6J mice. Strain differences in the binding of [125I]iodohydroxypindolol to beta adrenergic receptors were due to changes in the density of beta-1 adrenergic receptors. Chronic administration of propranolol did not result in an increase in the density of beta adrenergic receptors receptors in cortices of C57BL/6J and BALB/cJ mice were observed. In contrast, pretreatment with 6-hydroxydopamine resulted in increases in the density of beta adrenergic receptors in the cerebral cortex of all three strains. Analysis of the effects of these treatments on the subtypes of beta adrenergic receptors revealed that the changes were restricted to changes in the density of beta-1 receptors. The failure to observe a response to propranolol in CBA/J mice expands the extent of deficits reported previously in this strain for striatal dopamine receptor supersensitivity after chronic treatment with haloperidol (Severson et al., Brain Res. 210: 201-215, 1981). CBA/J mice may be a useful model for genetic analysis of mechanisms for the control of receptor sensitivity and to investigate the impairments of the regulation of catecholaminergic receptors observed in aged rodents.  相似文献   

17.
To study the effects of beta-2 agonist on metabolic regulation in fetal lamb lung, ritodrine hydrochloride, a preferential beta-2 agonist, was infused i.v. at a rate of 1.3 +/- 0.4 micrograms/kg/min (mean +/- S.D.) for 24 hr into six twin chronically catheterized fetal lambs starting between 0.86 and 0.91 gestation. Lung glycogen was depleted 56% in the ritodrine-infused twins and glycogen phosphorylase a activity was increased 1.8-fold whereas glycogen synthase activity remained unchanged. Cyclic AMP-dependent protein kinase activity increased 1.7-fold, calcium-calmodulin-dependent protein kinase (phosphorylase kinase) activity increased 1.4-fold and calcium-phospholipid-dependent protein kinase (protein kinase C) activity increased 1.6-fold. In addition, the maximal binding capacity of pulmonary beta receptors decreased 49% in the ritodrine-infused twins. However, lung cyclic AMP content was unchanged after 24 hr of ritodrine infusion. We conclude that beta-2 agonist activates protein kinases, depletes glycogen and reduces the binding capacity of beta receptors in the fetal lamb lung. We speculate that these adrenergic mechanisms are involved in regulating the effects of beta-2 agonist on fetal lung liquid and surfactant production.  相似文献   

18.
The properties of the binding of [125I]iodopindolol ([125I]IPIN) to beta adrenergic receptors on plasma membranes prepared from right atrial tissue removed during cardiac bypass surgery were investigated. Some of the patients from whom the tissue was removed had been treated before surgery with either a beta adrenergic receptor antagonist or a calcium entry blocker or both. The specific binding of [125I]IPIN to beta adrenergic receptors was saturable, stereoselective and rapidly reversible. Studies of the inhibition of the specific binding of [125I]IPIN by drugs selective for beta-1 or beta-2 adrenergic receptors suggested that both beta-1 and beta-2 adrenergic receptors are present in the tissue, with approximately 55% of the receptors having the properties of beta-2 adrenergic receptors. The density of receptors in patients not treated with beta adrenergic receptor antagonists or calcium entry blockers was approximately 80 fmol/mg of protein, whereas the density of beta adrenergic receptors in treated patients was increased by approximately 50%. The relative proportion of beta-1 to beta-2 adrenergic receptors in subjects treated with beta adrenergic receptor antagonists and/or calcium entry blockers was not significantly different from that in untreated subjects. Studies were also carried out with a limited number of samples of human ventricular muscle obtained from untreated subjects at the time of surgery. The density of receptors was lower than that observed in studies with atrial tissue. However, as with atrial tissue, approximately half of the receptors appeared to be beta-2 adrenergic receptors.  相似文献   

19.
Pharmacological characterization of rat retinal dopamine receptors   总被引:5,自引:0,他引:5  
The dopamine (DA) D-1 and D-2 receptors coupled to adenylate cyclase in the rat retina were characterized pharmacologically. In confirmation of reports using other neural tissues, activation of D-1 receptors with DA, apomorphine or SKF 38393 resulted in activation of adenylate cyclase and enhanced accumulation of cyclic AMP (cAMP). The response to DA was blocked by SCH 23390, a D-1 receptor antagonist. D-2 receptors negatively coupled to adenylate cyclase were demonstrated by preincubating retina with SCH 23390 and then with DA or apomorphine. D-2 receptor responses were also elicited with quinpirole or bromocriptine, D-2 receptor agonists, in the absence of SCH 23390. (+)-Butaclamol, but not (-)-butaclamol, blocked the D-2 receptor-induced decrease of cAMP. Moreover, I-sulpiride was more active than d-sulpiride in reversing the DA-induced inhibition of cAMP accumulation. D-1 and D-2 receptor responses were also evident in forskolin-activated retina. The intraocular injection of pertussis toxin prevented the fall of cAMP and enhanced the rise of cAMP by DA, indirectly implicating the need for a guanine nucleotide regulatory protein in the process. Our results demonstrate that retinal tissue contains DA receptors that are similar to those found in brain and they imply that therapeutic agents that interact with the receptors in brain might interact with the receptors in retina.  相似文献   

20.
The ability of 10 muM epinephrine or isoproterenol to stimulate cyclic AMP accumulation was decreased in hepatocytes isolated from hyperthyroid (triiodothyronine treated) as compared to euthyroid rats. In the presence of methylisobutylxanthine, epinephrine or isoproterenol-stimulated cyclic AMP accumulation was approximately 65% lower in hyperthyroid as compared with euthyroid rat hepatocytes. The ability of glucagon to stimulate a cyclic AMP response was also decreased in the hyperthyroid state, when assayed in either the absence or presence of a methyl xanthine. The character of the catecholamine-stimulated cyclic AMP response was beta adrenergic in both the hyperand euthyroid states. No evidence for an alpha(2) adrenergic mediated component of catecholamine action on cyclic AMP levels was noted. Cyclic AMP phosphodiesterase activity of hepatocyte homogenates was not altered in the hyperthyroid state. Hormone-stimulated, guanine nucleotide- and fluoride-activatable adenylate cyclase activity was reduced in subcellular fractions obtained from hyperthyroid as compared with euthyroid rat hepatocytes. Beta adrenergic receptor binding was reduced approximately 35% and glucagon receptor binding reduced approximately 50% in the hyperthyroid as compared with euthyroid rat hepatocyte membrane fractions. The status of the regulatory components of adenylate cyclase were examined by in vitro treatment of subcellular fractions with cholera toxin. The ability of cholera toxin to modulate adenylate cyclase was not altered by hyperthyroidism. Cholera toxin catalyzed AD[(32)P]ribosylation of hyperthyroid and euthyroid rat hepatocyte proteins separated electrophoretically displayed nearly identical autoradiograms. Studies of the reconstitution of adenylate cyclase activity of S49 mouse lymphoma cyc(-) mutant membranes by detergent extracts from rat hepatocyte membranes, indicated that hyperthyroidism was associated with a reduced capacity of regulatory components to confer fluoride, but not guanine nucleotide activatability to catalytic cyclase. Thyroid hormones regulate the hormone-sensitive adenylate cyclase system of rat hepatocytes at several distinct loci of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号