首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemokine CXCL12, via its receptor CXCR4, promotes increased survival of chronic lymphocytic leukemia (CLL) B cells that express high levels of ζ-chain-associated protein (ZAP-70), a receptor tyrosine kinase associated with aggressive disease. In this study, we investigated the underlying molecular mechanisms governing this effect. Although significant differences in the expression or turnover of CXCR4 were not observed between ZAP-70(+) and ZAP-70(-) cell samples, CXCL12 induced greater intracellular Ca(2+) flux and stronger and more prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and mitogen-activated protein kinase/ERK kinase (MEK) in the ZAP-70(+) CLL cells. The CXCL12-induced phosphorylation of ERK and MEK in ZAP-70(+) CLL cells was blocked by sorafenib, a small molecule inhibitor of RAF. Furthermore, ZAP-70(+) CLL cells were more sensitive than ZAP-70(-) CLL cells to the cytotoxic effects of sorafenib in vitro at concentrations that can readily be achieved in vivo. The data suggest that ZAP-70(+) CLL cells may be more responsive to survival factors, like CXCL12, that are elaborated by the leukemia microenvironment, and this sensitivity could be exploited for the development of new treatments for patients with this disease. Moreover, sorafenib may have clinical activity for patients with CLL, particularly those with ZAP-70(+) CLL.  相似文献   

2.
Stromal cell-derived factor 1alpha (CXCL12) induces chemotaxis of lymphocytes through its receptor CXCR4. We examined the role of nonreceptor tyrosine kinases in CXCL12-induced chemotaxis of T cells and natural killer (NK) cells. Damnacanthal, a specific Lck inhibitor, but not the Syk inhibitor piceatannol, inhibited CXCL12-induced chemotaxis of both lymphocyte subsets. Similarly, damnacanthal was shown to inhibit CXCL12-induced chemotaxis of the Jurkat T-cell line. Stimulating T and NK cells with CXCL12 increased both the tyrosine phosphorylation and the kinase activity of Lck. A direct involvement of Lck in CXCL12-induced chemotaxis was demonstrated in the Lck-deficient Jurkat-derived cell line JCaM1.6. Although JCaM1.6 cells express CXCR4, no significant migration was detected after CXCL12 stimulation. Reconstitution with wild-type Lck restored both CXCL12-induced chemotaxis and Lck activation. Furthermore, cotransfection of wild-type Lck with C-terminal Src kinase (Csk) into JCaM1.6 failed to restore the chemotactic response induced by CXCL12. Finally, by targeting critical residues in the Src homology-2 (SH2) or SH3 domains of Lck, we observed that the SH3 domain is important for the function of Lck in CXCL12-mediated chemotaxis. Together, these results suggest a role for Lck in CXCL12-induced signaling pathways leading to lymphocyte chemotaxis.  相似文献   

3.
Events mediating stromal cell-derived factor-1 (SDF-1alpha/CXCL12) chemotaxis of lymphocytes are not completely known. We evaluated intracellular signaling through RasGAP-associated protein p62Dok-1 (downstream of tyrosine kinase [Dok-1]) and associated proteins. SDF-1alpha/CXCL12 stimulated Dok-1 tyrosine phosphorylation and association with RasGAP, adaptor protein p46Nck, and Crk-L in Jurkat T cells. The phosphorylation of Dok-1 was blocked by pretreatment of cells with the src kinase inhibitor PP2. Src kinase family member Lck was implicated. SDF-1alpha/CXCL12 did not phosphorylate Dok-1 in J.CaM1.6 cells, a Jurkat derivative not expressing Lck, but did phosphorylate Dok-1 in J.CaM1.6 cells expressing Lck. SDF-1alpha/CXCL12 induced the tyrosine phosphorylation of Pyk2 and the association of Pyk2 with zeta chain-associated protein-70 kilodaltons (Zap-70) and Vav. SDF-1alpha/CXCL12 enhanced the association of RasGAP with Pyk2. CXCR4-expressing NIH3T3 and Baf3 cells transfected with full-length Dok-1 cDNA were suppressed in their responses to SDF-1alpha/CXCL12-induced chemotaxis; mitogen-activated protein (MAP) kinase activity was also decreased. Chemotaxis to SDF-1/CXCL12 was significantly enhanced in Dok-1(-/-) CD4+ and CD8+ splenic T cells. These results implicate Dok-1, Nck, Crk-L, and Src kinases-especially Lck, Pyk2, Zap-70, Vav, and Ras-GAP-in intracellular signaling by SDF-1alpha/CXCL12, and they suggest that Dok-1 plays an important role in SDF-1alpha/CXCL12-induced chemotaxis in T cells.  相似文献   

4.
The chemokine receptor CXCR4 and its functional ligand, CXCL12, are essential regulators of development and homeostasis of hematopoietic and lymphoid organs. Heterozygous truncating mutations in the CXCR4 intracellular tail cause a rare genetic disease known as WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis), whose pathophysiology remains unclear. We report CXCR4 function in 3 patients with WHIM syndrome carrying heterozygous truncating mutations of CXCR4. We show that CXCR4 gene mutations in WHIM patients do not affect cell surface expression of the chemokine receptor and its internalization upon stimulation with CXCL12. Moreover, no significant differences in calcium mobilization in response to CXCL12 are found. However, the chemotactic response of both polymorphonuclear cells and T lymphocytes in response to CXCL12 is increased. Furthermore, immunophenotypic analysis of circulating T and B lymphocytes reveals a decreased number of memory B cells and of naive T cells and an accumulation of effector memory T cells associated with a restricted T-cell repertoire. Based on our results, we suggest that the altered leukocyte response to CXCL12 may account for the pathologic retention of mature polymorphonuclear cells in the bone marrow (myelokathexis) and for an altered lymphocyte trafficking, which may cause the immunophenotyping abnormalities observed in WHIM patients.  相似文献   

5.
T cell receptor (TCR) antagonists inhibit antigen-induced T cell activation and by themselves fail to induce phenotypic changes associated with T cell activation. However, we have recently shown that TCR antagonists are inducers of antigen-presenting cell (APC)-T cell conjugates. The signaling pathway associated with this cytoskeleton-dependent event appears to involve tyrosine phosphorylation and activation of Vav. In this study, we investigated the role played by the protein tyrosine kinases Fyn, Lck, and ZAP-70 in antagonist-induced signaling pathway. Antagonist stimulation increased tyrosine phosphorylation and kinase activity of Fyn severalfold, whereas little or no increase in Lck and ZAP-70 activity was observed. Second, TCR stimulation of Lck(-), Fyn(hi) Jurkat cells induced strong tyrosine phosphorylation of Vav. In contrast, minimal increase in tyrosine phosphorylation of Vav was observed in Lck(hi), Fyn(lo) Jurkat cells. Finally, study of T cells from a Fyn-deficient TCR transgenic mouse also showed that Fyn was required for tyrosine phosphorylation and activation of Vav induced by both antagonist and agonist peptides. The deficiency in Vav phosphorylation in Fyn-deficient T cells was associated with a defect in the formation of APC-T cell conjugates when T cells were stimulated with either agonist or antagonist peptide. We conclude from these results that Vav is a selective substrate for Fyn, especially under conditions of low-affinity TCR-mediated signaling, and that this signaling pathway involving Fyn, Vav, and Rac-1 is required for the cytoskeletal reorganization that leads to T cell-APC conjugates and the formation of the immunologic synapse.  相似文献   

6.
ZAP-70 in chronic lymphocytic leukemia (CLL) has been associated with enhanced B-cell receptor (BCR) signaling, survival, and migration. We investigated whether ZAP-70 can directly govern migration and the underlying mechanisms. In the ZAP-70 stably transfected Ramos cell line, IgM stimulation, but no IgD, enhanced phosphorylation of ERK1/2, Akt and Syk, and delayed IgM and CD79b internalization. In contrast, in the Raji cell line, where ZAP-70 was constitutively phosphorylated, ERK1/2, but not Akt, was phosphorylated, suggesting that MAPK pathway mediates ZAP-70 effects. BCR stimulation modulated the expression of CCR7, CXCR4, CXCR5, CD44, CD49d, and CD62L, which were up-regulated in ZAP-70-positive CLL primary subclones. The most dramatic change after BCR engagement in ZAP-70-transfected cells was CCR7 up-regulation, this being impaired by ERK1/2 inhibition and translating into both increased signaling and migration toward CCL21. Primary CLL subclones with high ZAP-70 expression showed increased migration toward CCL21. In conclusion, ZAP-70 ectopic expression led to enhanced BCR signaling after IgM stimulation and increased the expression of CCR7 predominantly via ERK1/2, increasing the response and migration toward CCL21. In primary CLL samples, cellular subsets with high ZAP-70 expression had increased expression of adhesion molecules and chemokine receptors in addition to an enhanced ability to migrate toward CCL21.  相似文献   

7.
p52Shc is required for CXCR4-dependent signaling and chemotaxis in T cells   总被引:1,自引:0,他引:1  
ShcA is an important mediator of Ras/MAPK activation in PTK-regulated pathways triggered by surface receptors. This function is subserved by the constitutively expressed p52-kDa isoform. Besides activating Ras, p52Shc couples the TCR to Rho GTPases, and thereby participates in actin cytoskeleton remodeling in T cells. Here we have addressed the potential involvement of p52Shc in T-cell chemotaxis and the role of the phosphorylatable tyrosine residues, YY239/240 and Y317, in this process. We show that CXCR4 engagement by the homeostatic chemokine, SDF-1alpha, results in p52Shc phosphorylation and its assembly into a complex that includes Lck, ZAP-70, and Vav. This process was found to be both Lck and Gi dependent. Expression of p52Shc mutants lacking YY239/240 or Y317, or p52Shc deficiency, resulted in a profound impairment in CXCR4 signaling and SDF-1alpha-dependent chemotaxis, underscoring a crucial role of p52Shc as an early component of the CXCR4 signaling cascade. p52Shc was also found to be required for ligand-dependent CXCR4 internalization independently of tyrosine phosphorylation. Remarkably, CXCR4 engagement promoted phosphorylation of the zeta chain of the TCR/CD3 complex, which was found to be essential for CXCR4 signaling, as well as for SDF-1alpha-dependent receptor endocytosis and chemotaxis, indicating that CXCR4 signals by transactivating the TCR.  相似文献   

8.
AIM: Despite the presence of lymphocyte infiltration, human hepatocellular carcinoma (HCC) is typically a rapidly progressive disease. The mechanism of regulation of lymphocyte migration is poorly understood. In this study, we investigated various factors regulating T cell migration in HCC patients. We examined serum CXC chemokine levels in HCC patients and demonstrated the production of CXC chemokines by HCC cell lines. We determined the effect of both HCC patient serum and tumor cell conditioned supernatant upon lymphocyte expression of chemokine receptor CXCR3 as well as lymphocyte migration. Lastly, we examined the chemotactic responses of lymphocytes derived from HCC patients. METHODS: The serum chemokines IP-10 (CXCL10) and Mig (CXCL9) levels were measured by cytometric bead array (CBA) and the tumor tissue IP-10 concentration was measured by ELISA. The surface expression of CXCR3 on lymphocytes was determined by flow cytometry. The migratory function of lymphocytes to the corresponding chemokines was assessed using an in vitro chemotactic assay. Phosphorylation of extracellular signal-regulated kinase (ERK) was determined by Western blot analysis. RESULTS: Increased levels of IP-10 and Mig were detected in HCC patient serum and culture supernatants of HCC cell lines. The IP-10 concentration in the tumor was significantly higher than that in the non-involved adjacent liver tissues. HCC cell lines secreted functional chemokines that induced a CXCR3-specific chemotactic response of lymphocytes. Furthermore, tumor-cell-derived chemokines induced initial rapid phosphorylation of lymphocyte ERK followed by later inhibition of ERK phosphorylation. The culture of normal lymphocytes with HCC cell line supernatants or medium containing serum from HCC patients resulted in a significant reduction in the proportion of lymphocytes exhibiting surface expression of CXCR3. The reduction in T cell expression of CXCR3 resulted in reduced migration toward the ligand IP-10, and both CD4+ and CD8+ T cells from HCC patients exhibited diminished chemotactic responses to IP-10 In vitro compared to T cells from healthy control subjects. CONCLUSION: This study demonstrates functional desensitization of the chemokine receptor CXCR3 in lymphocytes from HCC patients by CXCR3 ligands secreted by tumor cells. This may cause lymphocyte dysfunction and subsequently impaired immune defense against the tumor.  相似文献   

9.
Stimulation of the T-cell antigen receptor (TCR) leads to tyrosine phosphorylation of a number of cellular proteins, including phospholipase C (PLC) gamma 1 and the TCR zeta chain. We describe here a 70-kDa tyrosine phosphoprotein (ZAP-70) that associates with zeta within 15 sec following TCR stimulation. The phosphorylation of ZAP-70 and its association with zeta is independent of the other TCR chains since stimulation of a functional CD8/zeta chimeric receptor in a TCR-negative T cell leads to coprecipitation of ZAP-70 with the chimeric protein. In a Jurkat cell expressing the TCR and the CD8/zeta chimeric protein, tyrosine phosphorylation and association of ZAP-70 occurs exclusively with the stimulated receptor complex. In addition, a tyrosine kinase that does not appear to be fyn associates with the cytoplasmic domain of zeta and phosphorylates zeta and ZAP-70 in vitro.  相似文献   

10.
HIV-1 infection is associated with B-cell abnormalities, such as hypergammaglobulinemia, poor immunization responses, and loss of serologic memory. To determine whether altered expression of chemokine receptors and their ligands may play a role in B-cell dysfunctions during HIV-1 infection, the expression of CXC chemokine receptor 4 (CXCR4), CXCR5, and CC chemokine receptor 7 (CCR7) and their respective ligands on CD19(+) B cells were examined in HIV-1-infected patients and controls. We report a decreased CXCR5 expression on B cells from patients (P < .05), a phenomenon associated with a low CD4 T-cell count (< 350 cells/microL). Interestingly, an increased expression of CXC chemokine ligand 13 (CXCL13), the ligand for CXCR5, was found in peripheral B cells from HIV-1-infected patients. Moreover, on B-cell activation in vitro, CXCL13 was secreted in culture. CXCL13(+) B cells were also found in the lymph nodes of HIV-1-infected patients, but not in control tissue. B-cell migration toward CXCL13, CXCL12, and CC chemokine ligand 21 (CCL21), ligands for CXCR5, CXCR4, and CCR7 was also evaluated. In patients with a low CD4 T-cell count, migration toward all ligands was increased. Our findings indicate that altered expression of the chemokine receptor-ligand pair, CXCR5/CXCL13, may participate in the establishment of B-cell dysfunctions during HIV-1 infection.  相似文献   

11.
AIM:To evaluate the expression of C-X-C motif chemokine receptor 4(CXCR4)and its signaling cascades,which were previously identified as a key factor for cancer cell progression and metastasis,in cholangiocarcinoma cell lines.METHODS:The expression of CXCR4 and its signaling cascades were determined in the cholangiocarcinoma cell lines(RMCCA1 and KKU100)by Western blotting.The invasion assays and the detection of actin polymerization were tested in these cholangiocarcinoma cells treated with CXC chemokine ligand-12(CXCL12).RESULTS:Expression of CXCR4 was detected in both cholangiocarcinoma cell lines and activation of CXCR4 with CXCL12 triggered the signaling via the extracellular signal-regulated kinase-1/2(ERK1/2)and phosphoinositide 3-kinase(PI3K)and induction of cholangiocarcinoma cell invasion,and displayed high levels of actin polymerization.Addition of CXCR4 inhibitor(AMD3100)abrogated CXCL12-induced phosphorylation of MEK1/2 and Akt in these cells.Moreover,treatment with MEK1/2 inhibitor(U0126)or PI3K inhibitor(LY294 002)also attenuated the effect of CXCL12-induced cholangiocarcinoma cell invasion.CONCLUSION:These results indicated that the activation of CXCR4 and its signaling pathways(MEK1/2 and Akt)are essential for CXCL12-induced cholangiocarcinoma cell invasion.This rises Implications on a potential role for the inhibition of CXCR4 or its signal cascades in the treatment of cholangiocarcinoma.  相似文献   

12.
Common variable immunodeficiency (CVID) is a primary immune disorder characterized by impaired antibody production, which is in many instances secondary to defective T-cell function (T-CVID). We have previously identified a subset of patients with T-CVID characterized by defective T-cell receptor (TCR)-dependent protein tyrosine phosphorylation. In these patients, ZAP-70 fails to be recruited to the TCR as the result of impaired CD3zeta phosphorylation, which is, however, not dependent on defective Lck expression or activity. Here we show that neither Fyn nor CD45 is affected in these patients. On the other hand, T-CVID T cells show dramatic defects in the Vav/Rac pathway controlling F-actin dynamics. A significant deficiency in Vav protein was indeed observed; in 3 of 4 patients with T-CVID, it was associated with reduced VAV1 mRNA levels. The impairment in Vav expression correlated with defective F-actin reorganization in response to TCR/CD28 co-engagement. Furthermore, TCR/CD28-dependent up-regulation of lipid rafts at the cell surface, which requires F-actin dynamics, was impaired in these patients. The actin cytoskeleton defect could be reversed by reconstitution of Vav1 expression in the patients' T cells. Results demonstrate an essential role of Vav in human T cells and strongly suggest Vav insufficiency in T-CVID.  相似文献   

13.
CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occured in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.  相似文献   

14.
Rho GTPases control many facets of cell polarity and migration; namely, the reorganization of the cellular cytoskeleton to extracellular stimuli. Rho GTPases are activated by GTP exchange factors (GEFs), which induce guanosine diphosphate (GDP) release and the stabilization of the nucleotide-free state. Thus, the role of GEFs in the regulation of the cellular response to extracellular cues during cell migration is a critical step of this process. In this report, we have analyzed the activation and subcellular localization of the hematopoietic GEF Vav in human peripheral blood lymphocytes stimulated with the chemokine stromal cell-derived factor-1 (SDF-1alpha). We show a robust activation of Vav and its redistribution to motility-associated subcellular structures, and we provide biochemical evidence of the recruitment of Vav to the membrane of SDF-1alpha-activated human lymphocytes, where it transiently interacts with the SDF-1alpha receptor CXCR4. Overexpression of a dominant negative form of Vav abolished lymphocyte polarization, actin polymerization, and migration. SDF-1alpha-mediated cell polarization and migration also were impaired by overexpression of an active, oncogenic Vav, although the mechanism appears to be different. Together, our data postulate a pivotal role for Vav in the transmission of the migratory signal through the chemokine receptor CXCR4.  相似文献   

15.
The interaction of chemokine (C-X-C motif) ligand 12 (CXCL12) and its receptor CXCR4 may play an important role in the regulation of anterior pituitary function. In this study, we investigated the expression of CXCL12 and CXCR4 and their role in normal rat pituitary and GH-producing GH3 tumor cell line. RT-PCR analysis and immunohistochemistry revealed that CXCR4 was expressed in normal rat anterior pituitary and GH3 tumor cells. Double immunofluorescent staining showed the complete colocalization of CXCR4 with GH in rat pituitary, indicating that CXCR4 is specifically expressed in rat somatotrophs. Using rat primary pituitary cell cultures and GH releasing hormone receptor expressing stable GH3 cells (GH3-GHRHR), we evaluated the function of CXCL12 compared with GHRH. CXCL12 stimulated GH gene activation in both primary rat anterior pituitary cells and GH3-GHRHR cells. CXCL12 also stimulated GH secretion from primary rat pituitary cells in a dose-dependant manner. BrdU incorporation was increased in response to CXCL12 addition in GH3 cell culture, indicating CXCL12-induced cell proliferation. CXCL12-dependent phosphorylation of ERK1/2 was also confirmed by western blot analysis, supporting the evidence that MAPK is an intracellular mediator of CXCL12/CXCR4 interaction in GH3 cell proliferation. In conclusion, these results indicate that CXCL12/CXCR4 interaction plays an important role in GH production, secretion, and the proliferation of somatotrophs.  相似文献   

16.
Molecular markers like IgV(H) mutational status, chromosomal abnormalities, and CD38 and ZAP-70 expression have prognostic value in B-cell chronic lymphocytic leukemia (B-CLL). These may be pathogenetic because of the coincidental expression of ZAP-70 and increased B-cell receptor (BCR) signaling and the signaling function of CD38 in CLL. This study shows that ZAP-70(+) CLL B cells respond in vitro more readily than ZAP-70(-) CLL and normal B cells to chemokine migratory signals through enhanced surface CCR7 expression (P = .009; P < .001) and increased responsiveness to its ligands CCL19 and CCL21, demonstrated by F-actin polymerization (P < .05) and cellular migration (P < .01). In addition, ZAP-70(+) CLL cells exhibit sustained ERK phosphorylation/activation following stimulation with CXCL12 (SDF1-alpha, a survival factor produced by stromal cells) compared with ZAP-70(-) cells (P = .004). Following coculture with nurse-like cells, the survival of ZAP-70(+) but not ZAP-70(-) CLL cells is significantly enhanced by the addition of CXCL12 (P < .05), an effect that is partially blocked by the MEK inhibitor PD98059. These advantageous migratory and survival responses may promote easier access to and greater proliferation in pseudo-germinal centers and explain in part the more progressive nature of ZAP-70(+) disease.  相似文献   

17.
Human natural killer (NK) and NK T cells play an important role in allogeneic bone marrow (BM) transplantation and graft-versus-leukemia (GVL) effect. The mechanisms by which these cells home to the BM and spleen are not well understood. Here we show that treatment of these cells with pertussis toxin and neutralizing antibodies to the chemokine receptor CXCR4 inhibited homing of the cells to the BM, but not the spleen, of NOD/SCID mice. The retention of NK and NK T cells within the spleen and BM was dependent on Galphai signaling and CXCR4 function. The chemokine receptors CXCR4 and CXCR3 are expressed predominantly on the cell surface of NK T cells. Following activation with interleukin-2 (IL-2), the levels of CXCR4 on NK and NK T cells decreased significantly. Treatment of cells with IL-2 inhibited their migration in response to CXCL12 and their homing and retention in the BM and spleen of NOD/SCID mice. In contrast to CXCR4, the expression levels of the chemokine receptor CXCR3 and the migration of cells in response to CXCL9 and CXCL10 increased after IL-2 treatment. Thus, down-regulation of CXCR4 and up-regulation of CXCR3 may direct the trafficking of cells to the site of inflammation, rather than to hematopoietic organs, and therefore may limit their alloreactive potential.  相似文献   

18.
The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.  相似文献   

19.
Renal cell carcinoma (RCC) infiltrating lymphocytes (TILs) express killer cell immunoglobulinlike receptors (KIRs) that inhibit the antitumor CD8(+) T-cell lysis. In the present study, to better examine the functional consequences of KIR engagement on cytotoxic T lymphocyte (CTL)/tumor interaction, we have investigated the influence of KIR CD158a on early steps of T-cell activation. We show that coengagement of T-cell receptor (TCR) and CD158a by tumor cells inhibited tyrosine phosphorylation of early signaling proteins ZAP-70 and LAT, lipid raft coalescence, and TCR/CD3 accumulation at the CTL/tumor cell interface. In addition, the guanine exchange factor Vav was not phosphorylated, and no actin cytoskeleton rearrangement was observed. Our data indicate a role of KIR CD158a in the dynamic events induced by TCR triggering, preventing CTL membrane reorganization, and subsequent completion of CTL activation program. Accordingly, the expression of CD158 by TILs may favor tumor cell escape to the immune response.  相似文献   

20.
Previously, we reported that activation of the human prolactin receptor (PRLR) produced a protein phosphorylation pattern strikingly similar to that provoked by Concanavalin A (Con A), an activator of the T-cell antigen receptor (TCR). These results suggested that certain signaling components of the TCR may be shared by the activated PRLR. Additional studies here assessed the levels of TCR expression following PRLR stimulation and the effect of TCR activation on PRL-stimulated proliferation in lactogen-dependent pre-T Nb2-11 lymphoma cells. The results indicated that the TCR was expressed on the surface of approx 4% of exponentially proliferating and prolactin- (PRL) treated cells. In contrast, approx 45% of quiescent cells, cultured in the absence of PRL for 24 h, expressed the TCR at the cell surface, suggesting that lactogen withdrawal may up-regulate TCR cell-surface expression. Moreover, TCR activation with anti-CD3 antibodies attenuated PRL-stimulated Nb2-11 cell proliferation in a concentration-dependent manner. In other experiments, immunoprecipitation and immunoblotting of Nb2-11 lysates revealed that activation of the PRLR resulted in rapid tyrosyl phosphorylation of ZAP-70, a critical TCR-associated tyrosine kinase. In addition, ZAP-70 was found to associate transiently with the putative guanine nucleotide exchange factor and substrate, Vav, in PRL-treated cells. ZAP-70 was also found to associate constitutively with the PRLR; PRL stimulation provoked the transient recruitment of Vav to the complex. These observations suggest that PRL signaling reflects the transient formation of a PRLR-ZAP-70-Vav complex and its immunomodulatory actions involve diverse interactions that affect TCR expression and signaling mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号