首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the mechanisms by which brinzolamide reduces intraocular pressure (IOP) in healthy rabbits and in monkeys with unilateral ocular hypertension. Intraocular pressures were measured by pneumatonometry and aqueous flow was determined by fluorophotometry before and after three twice-daily drops of 1% brinzolamide to both eyes per monkey and after similar treatment to one eye per rabbit. In monkeys, outflow facility was determined by fluorophotometry and uveoscleral outflow was calculated. In rabbits, outflow facility was determined by two-level constant pressure infusion and uveoscleral outflow was measured by an intracameral tracer technique. Compared with contralateral vehicle-treated rabbit eyes, IOP was reduced in brinzolamide-treated eyes by 2.5 +/- 1.9 mmHg (mean +/- standard deviation; p =.006) at four hours after the second dose. Aqueous flow was reduced by 0.50 +/- 0.65 microl/min (p =.02). This effect was found in rabbits previously treated with brinzolamide but not in naive rabbits. Treated hypertensive eyes of monkeys had a reduction in IOP of 7.3 +/- 8.8 mmHg (p = 0.01) and aqueous flow of 0.69 +/- 1.10 microL/min (p = 0.05) when compared with baseline. Brinzolamide did not affect outflow facility or uveoscleral outflow in either rabbits or monkeys. It is concluded that, in normotensive eyes of rabbits and hypertensive eyes of monkeys, brinzolamide reduces IOP by reducing aqueous flow and not by affecting aqueous humor drainage.  相似文献   

2.
Aqueous humor dynamics in monkeys with laser-induced glaucoma.   总被引:1,自引:0,他引:1  
This study determines the effects of laser-induced glaucoma on aqueous humor dynamics of 18 cynomolgus monkeys. Baseline measurements of 12 monkeys included intraocular pressure (IOP) by pneumatonometry, aqueous flow by fluorophotometry and outflow facility by tonography. Beginning 4 to 14 days later, the trabecular meshwork of one eye was treated repeatedly with laser photocoagulation until elevated IOP was induced. Thirty-six to 75 days after the last laser treatment, all measurements were repeated. Between 1.7 and 11.4 years after laser treatment, the same 12 monkeys plus 6 additional monkeys underwent IOP and aqueous flow measurements. In addition, outflow facility was determined with fluorophotometry, and uveoscleral outflow was both calculated (n=18) and measured with an intracameral tracer (n=7). In glaucoma eyes compared to control eyes (n=12), IOP was increased (p<0.04) by at least 8 mmHg at Time 1 (1 to 3 months) or Time 2 (3 to 4 years) after laser treatment; aqueous flow was reduced (p=0.0007) by 46% at Time 1 but returned to baseline levels at Time 2; tonographic outflow facility was reduced (p=0.0008) by 71% at Time 1. In lasered eyes compared to control eyes, fluorophotometric outflow facility was reduced (p=0.0008; n=18) by 63%, and uveoscleral outflow was increased (p<0.05), whether calculated or measured with tracers at least 1 year after laser treatment. The increased IOP in monkeys with laser-induced glaucoma was caused by a sustained reduction in outflow facility. The uveoscleral outflow increase was not enough to prevent the rise in IOP.  相似文献   

3.
PURPOSE: To determine the mechanism by which travoprost, a prodrug of a prostaglandin F2alpha analog, reduces intraocular pressure (IOP) in cynomolgus monkey eyes. METHODS: One eye each of 12 monkeys was treated with laser burns to the trabecular meshwork to elevate IOP. At least 4 months later (Baseline Day), IOP was measured by pneumatonometry (9:00 AM and 11:45 AM), and aqueous flow and outflow facility were determined by a fluorophotometric method. Uveoscleral outflow was calculated. Both eyes were treated with travoprost 0.004% at 9:00 AM and 5:00 PM for two days and at 9:30 AM on the third day (Treatment Day), when measurements were repeated as on Baseline Day. Statistical analyses were performed using two-tailed, paired t tests. RESULTS: On Treatment Day compared with Baseline Day, IOP in hypertensive eyes was reduced at 2.25 hours (25.8 +/- 11.2 vs 33.7 +/- 13.2 mm Hg; mean +/- standard error of the mean [SEM]; P = 0.02) and 16 hours (26.3 +/- 10.2 vs 35.1 +/- 13.6 mm Hg; P = 0.02) after treatment. The increase in uveoscleral outflow was not significant. In normotensive eyes, IOP was reduced at 2.25 hours (19.0 +/- 3.7 vs 23.0 +/- 4.0 mm Hg; P = 0.03) and 16 hours (20.7 +/- 5.4 vs 23.4 +/- 5.3 mm Hg; P = 0.01) after treatment, and uveoscleral outflow was significantly (P = 0.02) increased (1.02 +/- 0.43 vs 0.35 +/- 0.72 microL/min). CONCLUSION: Travoprost reduces IOP in normotensive monkey eyes by increasing uveoscleral outflow. The IOP reduction in hypertensive eyes is probably via the same mechanism, although the increased uveoscleral drainage did not reach statistical significance. Travoprost had no effect on aqueous flow or outflow facility.  相似文献   

4.
The effects of pergolide mesylate, an ergoline derivative, were studied on intraocular pressure (IOP), outflow facility, aqueous humor flow, and pupil size in monkeys. Unilateral topical administration of two 20-microliters drops of 0.1% pergolide significantly lowered IOP in the treated- and contralateral eye in both normal- and glaucomatous monkeys. In 12 normal monkeys, the baseline IOP of 18.3 +/- 0.4 mmHg [mean +/- S.E.(M.)] was maximally reduced to 14.4 +/- 0.7 mmHg in the treated eye (P less than 0.001) and 14.6 +/- 0.6 mmHg in the contralateral eye (P less than 0.001) at 2 hr after drug administration. In 10 monkeys made bilaterally glaucomatous by argon laser treatment of the trabecular meshwork, the baseline IOP of 33.9 +/- 3.0 mmHg [mean +/- S.E.(M.)] in the treated eyes and 31.7 +/- 3.3 mmHg in the untreated eyes maximally decreased to 23.9 +/- 2.2 mmHg (P less than 0.05) and 26.2 +/- 3.3 mmHg (P less than 0.005), respectively, at 5 hr. No significant change (P greater than 0.7) in outflow facility occurred in either eye of 11 normal monkeys 2 hr after unilateral 0.1% pergolide treatment. In six normal monkeys, the baseline aqueous humor flow of 1.58 +/- 0.20 microliter min-1 in treated eyes and 1.44 +/- 0.18 microliter min-1 in untreated eyes was reduced to 0.92 +/- 0.08 microliter min-1 (P less than 0.02) and 1.09 +/- 0.11 microliter min-1 (P greater than 0.10), respectively, from 0.5- to 3.5 hr after drug administration. A mydriatic response was observed in both eyes after unilateral treatment from 1- to 2 hr in eight normal monkeys. By the third day of treatment, bilateral twice a day 0.1% pergolide drops in eight glaucomatous monkey eyes no longer significantly (P greater than 0.05) decreased IOP.  相似文献   

5.
Numerous studies have provided conflicting evidence to explain the ocular hypotensive mechanism of action of epinephrine. Although epinephrine has been shown consistently to increase outflow facility, its effects on aqueous flow and uveoscleral outflow are not as clear. The purpose of this study was to clarify the effects of multiple doses of topical epinephrine on aqueous humor dynamics in human eyes. This was done by evaluating the four main parameters that determine steady state intraocular pressure. These parameters were assessed at baseline and after a week of twice-daily treatment of epinephrine hydrochloride 2% to one eye. Twenty-six human volunteers were enrolled in the study. Intraocular pressure was measured by pneumatonometry, aqueous flow and trabecular outflow facility by fluorophotometry, episcleral venous pressure by venomanometry and uveoscleral outflow by mathematical calculation. In epinephrine-treated eyes compared to baseline, intraocular pressure and aqueous flow were reduced from 21.2 +/- 0.3 to 17.1 +/- 0.2 mmHg (19%, p = .01) and 3.3 +/- 0.2 to 2.9 +/- 0.2 microl/min (12%, p = .03), respectively. Trabecular outflow facility obtained by fluorophotometry was increased from 0.18 +/- 0.02 to 0.26 +/- 0.03 microl/min/mmHg (44%, p = .02). Topical epinephrine did not significantly affect uveoscleral outflow or episcleral venous pressure. In conclusion, multiple topical doses of epinephrine lowered intraocular pressure in human volunteers by reducing aqueous humor formation and increasing trabecular outflow facility. The increase in uveoscleral outflow suggested by other studies was not observed.  相似文献   

6.
PURPOSE: To assess the early effect of latanoprost on outflow facility and aqueous humor dynamics in the mouse. METHODS: Aqueous humor dynamics in NIH Swiss White mice were assessed with an injection and aspiration system, using fine glass microneedles. A single 200-ng (4 microL) dose of latanoprost was applied to one eye 2 hours before measurement. The fellow eye served as a control. Intraocular pressure (IOP) was measured by using an established microneedle procedure. Outflow facility (C) was determined by constant-pressure perfusion measurements obtained at two different IOPs. Aqueous humor flow (Fa) was determined by a dilution method using rhodamine-dextran. Conventional and uveoscleral outflow (Fc and Fu) were calculated by the Goldmann equation. RESULTS: Average IOP, Fa, and C of control eyes were 15.7 +/- 1.0 mm Hg, 0.144 +/- 0.04 microL/min (mean +/- SD, n = 8), and 0.0053 +/- 0.0014 microL/min per mm Hg (n = 21), respectively. Average IOP, Fa, and C of treated eyes were 14.0 +/- 0.8 mm Hg, 0.138 +/- 0.04 microL/min (n = 8 for each), and 0.0074 +/- 0.0016 microL/min per mm Hg (n = 21), respectively. The differences between treated and control eyes were significant for IOP and total outflow facility only. CONCLUSIONS: These data indicate that the early hypotensive effect of latanoprost in the mouse eye is associated with a significant increase in total outflow facility. Alterations in the aqueous dynamics induced by latanoprost can be measured reproducibly in the mouse and may provide a useful model for further determining the mechanism by which latanoprost reduces IOP and alters outflow facility.  相似文献   

7.
A new procedure for measuring the outflow facility in conscious rabbits is described. The Langham pneumatic tonometer is applied horizontally against the eye; the intraocular pressure (IOP) is recorded before, during and immediately following 2 min of a pre-determined increased ocular pressure that is maintained at a fixed value by digital pressure applied through the eyelids. An increased volume of aqueous humor outflow resulting from the IOP increase is evaluated from the initial and final IOP values and the pressure volume relation for eyes of living rabbits. Close agreement in values of the outflow facilities in pairs of eyes of individual rabbits and excellent reproducibility of the procedure were found in repeated measurements made over a 24-hr period. The mean values of the IOP and the total outflow facility in 60 eyes of 30 rabbits were 20.5 +/- 0.2 mmHg and 0.17 +/- 0.01 microliter min-1 mmHg-1 respectively. Thirty minutes after an intravenous injection of acetazolamide, the IOP had decreased in both eyes of individual rabbits. This was associated with a decrease in the outflow facility and with a decrease of more than 50% in the rate of aqueous humor formation. One hour after the unilateral application of epinephrine the IOP had decreased in the treated eyes while the outflow facility remained unchanged.  相似文献   

8.
Prostaglandin F2 alpha (PGF2 alpha) is a powerful ocular hypotensive agent in rabbit, cat, dog, monkey and human. In cynomolgus monkeys, the intraocular pressure (IOP) lowering is due to increased uveoscleral outflow (Fu). Because the anatomy of the rabbit outflow apparatus differs significantly from that of the primate, we sought to determine whether the mechanism of the PGF2 alpha-induced IOP fall was the same. PGF2 alpha tromethamine salt (PGF2 alpha-TS) (50 micrograms) applied to one eye of 14 conscious rabbits produced a significant IOP fall of 7.4 +/- 0.9 mmHg (P less than 0.001). In untreated control eyes, Fu determined from the quantity of intracamerally perfused [125I]albumin found in the ocular and periocular tissues accounted for 5-8% of total aqueous outflow. In 15 unilaterally PGF2 alpha-treated rabbits, after 4-6 hr dosing Fu was 49 +/- 14% higher in the treated than in the contralateral control eyes. Total outflow facility of outflow from the anterior chamber to the general circulation were measured concurrently in 11 rabbits using a two-level constant pressure perfusion and isotope accumulation technique. Both facilities tended to be higher in the treated eyes than in the controls, with a strong correlation between drug-induced changes in total facility and changes in facility of flow to blood (r = 0.85, P less than 0.001). In eight rabbits treated unilaterally with 50 micrograms PGF2 alpha-TS, the fluorophotometrically determined aqueous formation rate was probably not decreased relative to control eyes. Protein levels in the aqueous humor were approximately eight-fold higher in PG-treated vs. control eyes, suggesting a drug-induced compromise of the blood-aqueous barrier.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Long-term use of drugs that suppress aqueous humor formation, such as timolol and dorzolamide, or that redirect aqueous humor outflow from the trabecular meshwork, such as prostaglandin F2alpha analogues, could cause underperfusion of the trabecular meshwork and a secondary decrease in outflow facility. We investigated the mechanism of suppression of aqueous humor formation by timolol in monkey eyes by measuring aqueous humor ascorbate levels. We also determined whether suppression of aqueous humor formation with and without redirection of aqueous humor away from the trabecular meshwork could lead to a subsequent reduction in outflow facility, and whether this reduction was correlated with increased fibronectin levels in anterior chamber aqueous humor. In cynomolgus monkeys, unilateral dose/aqueous humor formation response curves were generated for timolol, dorzolamide, and a combination of timolol + dorzolamide. Aqueous humor formation and/or outflow facility were measured in both eyes after approximately four days, four weeks and seven weeks of twice daily treatment with 3.5 microg timolol + 1.0 mg dorzolamide to one eye and 30% DMSO to the other. In some monkeys, 5 microg prostaglandin F2alpha-isopropyl ester (PG) was added to timolol + dorzolamide for 4-week treatments. Intraocular pressure and corneal endothelial transfer coefficients (k(a)) were also measured at four weeks. Aqueous humor fibronectin levels were determined in four monkeys after approximately 9.5 weeks of timolol + dorzolamide treatment. Aqueous humor formation, intraocular pressure, and aqueous humor ascorbate levels were also determined in rhesus monkeys at baseline and after a single unilateral topical administration of 25 microg timolol. Compared to baseline for the same eye, aqueous humor formation was significantly decreased in treated eyes at all doses of timolol and at 1.8 and 4 mg dorzolamide. Compared to the opposite control eye, aqueous humor formation was lower in treated eyes after 3.5 and 5 microg timolol and after all doses of dorzolamide. Aqueous humor formation after treatment with 3.5 microg timolol + 1.0 mg dorzolamide was decreased in treated vs. control eyes, after four days and was suppressed in both treated and control eyes after four weeks of treatment, but not when PG was added. There was no difference in k(a) values with or without the addition of PG. Intraocular pressure was significantly lower in both treated and control eyes vs. baseline after approximately 6.5 weeks treatment with timolol + dorzolamide when taken 2 hr after the last dose and after approximately 3.5 weeks treatment with timolol + dorzolamide + PG when measured 6 hr after the last dose. Outflow facility after treatment with timolol + dorzolamide was unchanged after four days, tended to be lower in the treated vs. control eyes after four and seven weeks, and was significantly lower in treated vs. control eyes after four weeks treatment with timolol + dorzolamide + PG (0.352 +/- 0.052 vs. 0.515 +/- 0.096 microl min(-1) mmHg(-1), p < or = 0.02). Both treated vs. control eye aqueous humor fibronectin levels were below the level of detection for our assay (0.01 microg ml(-1)). The 25 microg timolol dose decreased ipsilateral, but not contralateral intraocular pressure (12.6 +/- 1.7 vs. 15.2 +/- 0.9; p < 0.05) and aqueous humor formation (1.40 +/- 0.08 vs. 2.03 +/- 0.09 microg ml(-1), p < or = 0.01). There was no difference in anterior chamber ascorbate levels in treated vs. control eyes or compared to their respective baselines. Our findings indicate that timolol affects neither ciliary epithelial transport of ascorbate nor aqueous fibronectin levels. Our data also indicate that decreasing aqueous humor formation over a period of time can lead to reduction in outflow facility, particularly when combined with therapy that redirects aqueous from the trabecular meshwork. Future intraocular pressure-lowering therapies for glaucoma may better be directed at enhancing flow through the trabecular pathway as opposed to decreasing aqueous humor formation or rerouting aqueous humor away from the trabecular meshwork.  相似文献   

10.
PURPOSE: To evaluate the effects of flunarizine, a nonselective calcium channel blocker, on intraocular pressure (IOP) in monkeys with laser-induced unilateral glaucoma and on aqueous humor dynamics in normal monkeys. METHODS: The IOP was measured before and hourly for 6 hours after single-dose administration of 0.5%, 1%, or 2% flunarizine to the glaucomatous eye of 8 monkeys with unilateral laser-induced glaucoma. In a separate multiple-dose study, 0.5% flunarizine was applied twice daily for 5 consecutive days to the glaucomatous eye of the same 8 monkeys. IOP was measured at untreated baseline, after treatment with vehicle only, and on treatment days 1, 3, and 5. Tonographic outflow facility and fluorophotometric flow rates of aqueous humor were measured in 7 normal monkeys before and after the fifth dose of twice-daily treatment with 0.5% flunarizine. RESULTS: Unilateral application of 50 microL of 0.5%, 1%, or 2% flunarizine reduced IOP bilaterally. In the treated glaucomatous eyes, flunarizine reduced the IOP for 2, 3, or 5 hours, with a maximum reduction of 2.5+/-0.5 (mean+/-SEM) mm Hg (9%), 3.0+/-0.4 mm Hg (10%), and 5.0+/-0.8 mm Hg (18%) following the 0.5%, 1%, and 2% concentrations, respectively (P<0.01). The maximum reductions in IOP in the contralateral untreated eyes were 1.3+/-0.5 mm Hg, 1.5+/-0.3 mm Hg, and 2.9+/-0.7 mm Hg following the 0.5%, 1%, and 2% concentrations, respectively (P<0.05). Both the magnitude and duration of the ocular hypotensive effect of 0.5% flunarizine were enhanced with twice-daily administration for 5 days. Outflow facility in normal monkey eyes was increased (P<0.05) by 39% in the treated eyes compared with vehicle-treated contralateral eyes and by 41% compared with baseline values, and aqueous humor flow rates were unchanged (P>0.30). CONCLUSIONS: Flunarizine reduces IOP in a dose-dependent manner when administered to glaucomatous monkey eyes, but also has an ocular hypotensive effect on the contralateral untreated eyes. An increase in tonographic outflow facility seems to account for the IOP reduction in normal monkey eyes.  相似文献   

11.
PURPOSE: Recent research indicates that intraocular pressure (IOP) does not decrease significantly during the nocturnal period, although aqueous humor flow decreases by 50% or more at night. This study was undertaken to investigate whether changes in outflow facility, episcleral venous pressure, or uveoscleral flow at night could account for the nocturnal IOP. METHODS: Sixty-eight eyes of 34 healthy subjects (age, 18-44 years; mean, 29) were studied. Aqueous humor flow rate, IOP, and outflow facility were measured with pneumatonometry, anterior chamber fluorophotometry, and Schiotz tonography respectively, in each eye during the mid-diurnal (2-4 PM) and mid-nocturnal (2-4 AM) periods. Nocturnal IOP, flow rate, and outflow facility were compared to the same variables during the diurnal period. Mathematical models based on the modified Goldmann equation were used to assess the conditions under which these results could be reconciled. RESULTS: Supine IOP decreased slightly from 18.9 +/- 2.7 mm Hg in the mid-diurnal period to 17.8 +/- 2.5 mm Hg in the mid-nocturnal period (mean +/- SD, P = 0.001). Aqueous flow rate decreased from 2.26 +/- 0.73 to 1.12 +/- 0.75 microL/min (mean +/- SD, P < 0.001). There was a nonsignificant trend toward a nocturnal decrease of outflow facility (diurnal, 0.27 +/- 0.11 microL/min/mm Hg; nocturnal, 0.25 +/- 0.08 microL/min/mm Hg; mean +/- SD, P = 0.13). CONCLUSIONS: Outflow facility measured by tonography does not decrease enough during the nocturnal period to compensate for the decreased aqueous humor flow rate. Modeling results indicate that the experimental results could be reconciled only if nocturnal changes in episcleral venous pressure and/or uveoscleral flow occurred.  相似文献   

12.
PURPOSE: To investigate the ocular hypotensive effect of the prostanoid EP2 receptor agonist butaprost and to establish its mechanism of action. METHODS: All experiments were performed in cynomolgus monkeys after topical application of butaprost (0.1%). The effects of butaprost on aqueous humor flow were determined by fluorophotometry. Total outflow facility was measured by the two-level, constant-pressure perfusion method, and uveoscleral outflow was determined by perfusion of FITC-labeled dextran through the anterior chamber. Effects on ocular morphology were studied after tissue fixation with transcardial perfusion by paraformaldehyde and immersion fixation of the globe, in animals subjected to long-term treatment with butaprost. Conscious ocular normotensive monkeys and monkeys with unilateral ocular hypertension were used for intraocular pressure (IOP) studies. RESULTS: Butaprost had no significant effect on aqueous humor flow or total outflow facility in ocular normotensive monkeys. Uveoscleral outflow was significantly higher in the butaprost treated eyes than in vehicle treated eyes, 1.03 +/- 0.20 vs. 0.53 +/- 0.18 microL.min(-1). After a 1-year treatment with butaprost, the morphology of the ciliary muscle was changed, showing increased spaces between ciliary muscle bundles and the apparent formation of new outflow channels. In many instances, changes were observed in the trabecular meshwork as well. Butaprost, in a single 0.1% dose, decreased IOP significantly in ocular normotensive monkeys and reduced IOP in laser-induced glaucomatous monkey eyes to the same level as that in the ocular normotensive contralateral eyes. CONCLUSIONS: The prostanoid EP2 receptor agonist butaprost appears to lower IOP by increasing uveoscleral outflow, according to both physiological and morphologic findings. Although the prostanoid EP2 receptor is structurally and functionally distinct from the FP receptor, the effects of EP2 and FP receptor stimulation on aqueous humor outflow are similar.  相似文献   

13.
Ocular perfusion studies from all non-human species performed to date consistently demonstrate a perfusion-volume-dependent increase in aqueous outflow facility known as the "washout" effect. However, this "washout" effect does not occur in human eyes. We have recently documented that, in bovine eyes, the washout associated increase in facility correlates with the extent of physical separation between the juxtacanalicular connective tissue (JCT) and the inner wall endothelium lining the aqueous plexus (the bovine equivalent of Schlemm's canal). We hypothesize that if washout truly correlates with inner wall/JCT separation then this separation should not occur in human eyes that do not exhibit the washout effect, even after prolonged perfusion. Eight enucleated human and eight bovine eyes were used in this study. Aqueous humor outflow facility was measured at 15 mmHg for long-duration (3 h) or short-duration (30 min to 1 h) perfusion (n=4 for each group). All eyes were perfusion-fixed at 15 mmHg, and examined morphologically with both light and electron microscopy. In bovine eyes, outflow facility increased 81% (p=0.049) from 1.06 +/- 0.06 microl/min per mmHg (mean+/-SEM) at baseline to 1.92 +/- 0.30 microl/min per mmHg after 3 h due to washout. The pre-fixation outflow facility in long-duration eyes (1.92 +/- 0.30 microl/min per mmHg) was 2-fold greater than pre-fixation facility in short-duration eyes (0.92 +/- 0.11 microl/min per mmHg; p=0.0387). In human eyes, washout was not observed; baseline outflow facility was similar between both groups (0.18 +/- 0.02 vs. 0.25 +/- 0.08 microl/min per mmHg; p=0.518); however, pre-fixation outflow facility in long-duration eyes showed a 40% decrease compared to baseline outflow facility in those same eyes (p=0.017, paired Student's t-test). In bovine eyes, significant expansion and rarefaction of the JCT and inner wall/JCT separation was much more prevalent in long-duration eyes, and data from all bovine eyes revealed a correlation between the extent of inner wall/JCT separation and the absolute value of outflow facility measured immediately prior to fixation (p=0.0024) as well as the washout-induced increase in outflow facility (p=0.0006). In human eyes, no significant morphologic differences were observed between long- and short-duration perfusion, with no observed change in inner wall/JCT separation or expansion between the two groups. Morphologic analysis revealed that the previously described "cribriform plexus" of elastic-like fibers was far more extensive in the JCT of human eyes, appearing to form numerous connections to the inner wall endothelium. The cribriform plexus appears to function as a mechanical tether that maintains inner wall/JCT connectivity in human eyes by opposing hydrodynamic forces generated during perfusion, potentially explaining the lack of washout in humans.  相似文献   

14.
Intravenous desmopressin, a synthetic antidiuretic hormone, resulted in a dose-dependent increase in intraocular pressure (IOP) in rabbits. IOP was increased 3.6 +/- 0.8 mm Hg 6 hr following injection of desmopressin 200 mUnits/kg with the increase lasting over 10 hr. IOP returned to baseline 24 hr after the injection. Systemic blood pressure, plasma osmolarity and arterial blood gases were not altered by desmopressin. The increased IOP was not associated with alterations in measured outflow facility or episcleral venous pressure. Five hours after desmopressin injection, calculated aqueous humor flow was increased approximately 57%. Aqueous humor ascorbate measurements for calculation of flow to diffusion ratios and anterior chamber fluorophotometry also were consistent with an increased rate of aqueous humor formation as the mechanism for the IOP elevation. Desmopressin administration did not increase aqueous humor protein or aqueous humor cyclic AMP concentration. Systemic pretreatment with indomethacin only partially blocked the IOP increase. Systemic pretreatment with demeclocycline completely blocked the desmopressin-induced increase in IOP.  相似文献   

15.
Aqueous humor dynamics in experimental iridocyclitis   总被引:3,自引:0,他引:3  
Ocular inflammation was induced by intravitreal bovine serum albumin (BSA) injection in one eye of each of six cynomolgus monkeys. The fellow eyes were injected with sterile saline alone. The intraocular pressure decreased by 12.2 +/- 1.3 mmHg (mean +/- SE) 2 days after BSA injection and 4.0 +/- 1.1 mmHg after saline injection. Aqueous flow and uveoscleral outflow were determined with fluorescein isothiocyanate (FITC) dextran 70. Aqueous flow in inflamed eyes averaged 0.32 +/- 0.04 ul/min, less than half the rate of control eyes (0.77 +/- 0.08 ul/min, P = 0.01). The facility of uveoscleral outflow in inflamed eyes was four times that of control eyes (0.2 +/- 0.03 vs 0.05 +/- 0.01 ul/min/mmHg, respectively, P = 0.009). Fluorescence microscopic examination revealed intense fluorescence of the edematous ciliary body muscle and of the suprachoroidal space extending to the posterior pole. These findings indicate that BSA-induced ocular inflammation causes a simultaneous reduction in aqueous humor flow and an increase in uveoscleral outflow, resulting in ocular hypotony.  相似文献   

16.
This study examines, in 11 cynomolgus monkeys with unilateral laser-induced glaucoma, the ocular hypotensive mechanism of action of AL-6598, partial agonist at the DP and EP prostanoid receptors. In a crossover fashion, both eyes of each monkey were dosed twice daily with 25 microL of either AL-6598 0.01% or vehicle for 2 days and on the morning of the 3rd day. Measurements were made on day 3 of each treatment. Alternative treatments were separated by at least 2 weeks. Intraocular pressures (IOPs) were measured by pneumatonometry and aqueous flow and outflow facility by fluorophotometry. Uveoscleral outflow was calculated mathematically. In the normotensive eyes, compared to vehicle treatment, AL-6598 decreased IOP from 22.5 +/- 0.7 to 18.7 +/- 0.9 mmHg (P = 0.006), increased uveoscleral outflow from 0.47 +/- 0.17 to 1.22 +/- 0.17 microL/min (P = 0.03), and increased aqueous flow from 1.49 +/- 0.10 to 1.93 +/- 0.13 microL/min (P = 0.01). No measurement in AL-6598-treated hypertensive eyes was significantly different from vehicle treatment. It is concluded that AL-6598 reduces IOP by increasing uveoscleral outflow in normotensive eyes of ketamine-sedated monkeys, despite an increase in aqueous flow. This effect is different from that of PGD(2), which decreases aqueous flow, and of the selective DP receptor agonist, BW245C, which increases both outflow facility and uveoscleral outflow in addition to decreasing aqueous flow.  相似文献   

17.
PURPOSE: To determine the effects of R-DOI, a selective 5-HT2 agonist, on intraocular pressure (IOP) and aqueous humor dynamics in monkeys. METHODS: Normotensive cynomolgus monkeys (n = 8) were treated topically once daily with four 5-muL drops of 0.5% R-DOI in one eye, vehicle in the opposite eye. The 6-hour IOP response (Goldmann applanation tonometry) was determined before the drug application and on the third day of treatment. Aqueous humor formation, or flow (AHF, measured by fluorophotometry), was measured from hours 3 to 8 after the third dose. Beginning 3.5 hours after the fourth or fifth dose, AHF was measured by dilution of radio-iodinated monkey albumin perfused through the anterior chamber and flow to blood by accumulation of albumin in the general circulation. Uveoscleral outflow (Fu) was calculated. Flow to blood was determined at spontaneous and elevated pressures, allowing calculation of trabecular outflow facility. Total outflow facility was determined by two-level constant pressure perfusion from 3.5 to 5 hours and from 5.5 to 6.25 hours after R-DOI treatment. RESULTS: Reduction of IOP in treated eyes was compared to the opposite control eyes corrected for the 6-hour IOP baseline before the first dose. After the third dose of R-DOI, IOP was significantly (P < 0.01, n = 7) decreased by 1.4 to 4.7 mm Hg over the 6 hours. AHF (by fluorophotometry) increased by 13% (P < 0.05, n = 8) in treated compared with control eyes corrected for baseline. AHF (isotope dilution) increased by 30% (P < 0.01, n = 8), flow to blood decreased by 28% (n = 5), and Fu increased by 241% (P < 0.05, n = 5). Total and trabecular outflow facility were unchanged. CONCLUSIONS: R-DOI caused a small but significant increase in AHF and lowered IOP in normotensive monkeys primarily by increasing Fu.  相似文献   

18.
PURPOSE: To compare the ocular hypotensive effects of 15-keto latanoprost (KL) with the commercial preparation of latanoprost (Xalatan; Pfizer, New York, NY) in monkey eyes with laser-induced unilateral glaucoma and to evaluate the effects of topical 0.005% KL on aqueous humor dynamics in normal monkey eyes. METHODS: Intraocular pressure (IOP) was measured hourly for 6 hours beginning at 9:30 AM on day 1 (untreated baseline); day 2 (vehicle only); and treatment days 1, 3, and 5 (topical, 30 microL of study drug) in the glaucomatous eyes of four to eight monkeys with unilateral laser-induced glaucoma. KL concentrations of 0.0001%, 0.001%, and 0.01% and latanoprost at 0.005% were studied separately, with a minimum washout period of 2 weeks between studies. Tonographic outflow facility (C) and fluorophotometric aqueous humor flow rates (F) were measured in nine normal monkeys before and after a single topical dose of 0.005% KL in one eye, with a vehicle-only control in the fellow eye. RESULTS: When applied once daily to glaucomatous monkey eyes, all three concentrations of KL and a 0.005% concentration of latanoprost produced significant (P < 0.05) reductions in IOP, with the maximum reduction on treatment day 5, regardless of the drug or concentration studied. The maximum reduction (P < 0.001) from vehicle-only baseline IOP was (mean +/- SEM) 3.0 +/- 0.3 mm Hg (9%) for 0.0001% KL, 7.6 +/- 0.6 mm Hg (23%) for 0.001% KL, 6.3 +/- 0.4 mm Hg (18%) for 0.01% KL, and 6.6 +/- 0.6 mm Hg (20%) for 0.005% latanoprost. After application of a single dose of 0.005% KL in nine normal monkey eyes, neither C nor F was altered (P > 0.80) when compared with untreated baseline values or vehicle-treated control eyes. CONCLUSIONS: The reduction in IOP produced by 0.001% KL was equivalent to, and at some measured time points, greater than the effect produced by 0.005% latanoprost. The IOP reduction by KL in normal monkeys appeared to have no effect on aqueous humor production or tonographic outflow facility and may thus indicate a drug-induced increase in uveoscleral outflow.  相似文献   

19.
By animal experiments and clinically we could prove that isoglaucon instillation caused the decrease in IOP due to both increase in outflow and reduction of humor secretion; the IOP decrease and changes in hydrodynamics being manifested more markedly in the fellow-eye. As reoophthalmography demonstrated "Isoglaucon" produced lumen narrowing in the anterior portion of the uveal tract. "Isoglaucon" was prescribed to 20 patients having open-angle-glaucoma, Two hours after instillation the 23 decreased in 26 eyes (of 28) by 9.3 +/- 1.0 mm Hg. When prescribed regularly "Isoglaucon" raised the outflow facility coefficient from 0.10 +/- 0.01 to 0.20 +/-0.02. The secretion decreased from 2.0 +/- 0.2 to 0.9 +/- 0.15. Thus, IOP decrease after "Isoglaucon" is accounted for by both improved outflow and reduction of aqueous humor secretion. The "isoglucon" instillation produced a rather moderate decrease in the total arterial pressure, though no expected parallelism in arterial and intraocular pressure was marked.  相似文献   

20.
目的分析非穿透性小梁切除术对开角型青光眼的手术效果,手术并发症及其房水引流机制。方法POAG组男22例(24眼),女24例(26眼),共46例(50眼)行NPT手术,PACG组男22例(24眼),女26例(27眼),共48例(52眼)行小梁切除术。比较两组术后眼压及并发症,随访3~18月。结果POAG组术中有4眼发生小梁-后弹力层微穿孔(8%),术后 2月眼压<21mmHg(1mmHg=0.133kPa)有44眼(88%),有2眼发生浅前房,6眼眼压升高,无前房出血,11眼结膜形成滤过手术典型滤过泡,28眼结膜疏松,无滤过泡形成,PACG组术后2月有38眼眼压<21mmHg(73%),并发症发生14眼(27%),其中浅前房5眼,前房出血4眼,脉络膜脱离2眼,黄斑部囊样水肿3眼,均有明显的结膜滤过泡形成。术后随访3-18月,眼压下降幅度POAG组44.5%,PACG组29.6%。结论NPT是一种降眼压效果较好并发症较少的青光眼滤过性手术疗法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号