首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The effect of a plasma-sprayed hydroxylapatite (HA) coating on the degree of bone ingrowth and interface shear attachment strength was investigated using a canine femoral transcortical implant model. Cylindrical implants were fabricated by sintering spherical Co-Cr-Mo particles 500-710 microns in diameter; the nominal implant dimensions were 5.95 +/- 0.05 mm diameter by 18 mm in length. One half of each implant was coated with hydroxylapatite, 25-30 microns in thickness, by a plasma-spray technique. Using strict aseptic technique, the implants were placed through both femoral cortices into defects approximately 0.05 mm undersized. After 2, 4, 6, 8, 12, 18, 26, and 52 weeks, the implants were harvested and subjected to mechanical pullout testing and undecalcified histologic evaluation. The application of the HA coating to porous implants enhanced both the amount of bone ingrowth and the interface attachment strength at all time periods. These differences were statistically significant for the percent of bone ingrowth at the 4-, 6-, 12-, 18-, 26-, and 52-week time periods, and interface shear strength values were significantly different at the 6-, 8-, 12-, 18-, and 26-week time periods. The rate of development of interface strength and bone ingrowth was also more rapid for the HA-coated implants. No evidence of any disruption, mechanical failure, or biologic resorption of the HA coating was observed. The results of the present study--demonstrating a beneficial effect of the HA coating at all time periods--are believed to be due to the use of paired comparisons, which allow assessment of subtle differences that might otherwise have been obscured by normal biological variability.  相似文献   

2.
A systematic mechanical and histologic evaluation of design variables affecting bone apposition to various biocompatible materials was undertaken. The variables investigated included material elastic modulus, material surface texture, as well as material surface composition. The implant materials included polymethylmethacrylate (PMMA), low-temperature isotropic (LTI) pyrolytic carbon, commercially pure (C.P.) titanium, and aluminum oxide (Al2O3). Implant surface texture was varied by either polishing or grit-blasting the various materials. Implant surface composition was varied by applying a coating of ultra-low temperature isotropic (ULTI) pyrolytic carbon to the various implants. A total of 12 types of implants were evaluated in vivo by placement transcortically in the femora of adult mongrel dogs for a period of 32 weeks. Following sacrifice, mechanical push-out testing was performed to determine interface shear strength and interface shear stiffness. The results obtained from mechanical testing indicate that for implants fixed by direct bone apposition, interface stiffness and interface shear strength are not significantly affected by either implant elastic modulus or implant surface composition. Varying surface texture, however, significantly affected the interface response to the implants. For each elastic modulus group the roughened surfaced implants exhibited greater strengths than the corresponding smooth surfaced implants. Undecalcified histologic evaluation of the implants demonstrated that the roughened implants exhibited direct bone apposition, whereas the smooth implants exhibited various degrees of fibrous tissue encasement. Thus, for implants utilizing direct bone apposition fixation, it appears that of the parameters investigated, implant surface texture is the most significant.  相似文献   

3.
羟磷灰石聚乙烯复合生物活性涂层的生物力学评价   总被引:5,自引:2,他引:3  
目的:对具有生物活性的羟磷灰石聚乙烯复合涂层进行生物力学性能评估。方法:利用狗经皮质骨植入模型,以无涂层钛合金假体作为对照,植入一定时间后,在力学实验机上,分别对羟磷灰石聚乙烯复合涂层和对照组进行推出实验,测定骨-涂层界面剪切强度。结果:羟磷灰石聚乙烯复合涂层各时间组的剪切强度值均大于无涂层对照组,是对照组的3-5倍,统计学有显著差异(方差分析P<0.01)。剪切强度随时间增加而增强,至12周达最大值。结论:羟磷灰石聚乙烯复合涂层其界面剪切强度比无涂层对照组明显增大,显示其良好的生物力学性能,为达到长期生物学固定提供了一种有效方法。  相似文献   

4.
The aim of this study was to compare titania (TiO(2))-coated, titania-silica (TiSi)-coated, and uncoated (cpTi) titanium fiber meshes as scaffolds for bone engineering. The scaffolds were loaded with bone marrow stromal cells and implanted subcutaneously in rats. Ectopic bone formation after 1, 4, and 12 weeks of implantation was evaluated using histology and histomorphometry. After 1 week of implantation, multiple patches of unorganized mineralizing tissue were seen in all implants. The amount of this bone-like tissue clearly increased from 1 to 4 weeks. Bone apposition occurred in direct contact with coated meshes, while a thin layer of unmineralized fibrous tissue was often observed surrounding cpTi mesh fibers. After 12 weeks, the structure of bone, with bone marrow-like tissue, was further matured and mesh fibers were embedded in lamellar bone. No statistical differences in the amount of mineralized bone were observed between scaffold types at any point of time. Only TiSi scaffolds showed further increase in bone area from 4 to 12 weeks (p < 0.01). A notable difference was that the sol-gel coatings resulted in enhanced initial bone contact and distribution of bone tissue, whereas uncoated implants showed bone formation mainly in the center of the scaffolds. In conclusion, TiO(2)-based sol-gel coatings may be used in tissue engineering to gain more uniform distribution of bone throughout titanium fiber mesh scaffolds.  相似文献   

5.
6.
The concomitant influence of surface roughness and fluorhydroxyapatite (FHA) coating of titanium (Ti) implants on bone response was investigated. For this purpose, titanium screw-shaped implants with a lower degree (Y371) and a higher degree (TiPore300) of surface roughness, coated with FHA and uncoated, were transversally inserted into the diaphyses of sheep tibiae for 12 weeks. Four sheep received Y371 (group A) and Y371 + FHA (group B) screws and four sheep received TiPore300 (group C) and TiPore300 + FHA (group D) screws. For each type of material, the morphology and microstructure of implant-facing bone were evaluated. The host bone of each tibia was used as a control. In all groups the bone tissue did not reach a complete maturation. The higher degree of roughness, perhaps due to an excessive irregularity of the surface, induced the worst osteointegration: a fibrous tissue layer between screw and new bone tissue was often present. Nevertheless, as viewed by XRD, no crystallographic change of the apatite lattice was observed in any of the implants. In contrast, the microhardness value, an index of bone mineralization, was higher in the uncoated screws and decreased progressively in the following order: group C > group A > group B > group D. The association of plasma spraying with roughness treatment constitutes a complex system that seems to interfere with bone mineralization. A chemical change of the surface, perhaps with more Ti release or more coating degradation, could be responsible for such impairment. The authors emphasize the necessity for simultaneous evaluation of surface topography and chemistry as well as an improvement in plasma-spraying and post-processing techniques and in standard procedures for materials characterization.  相似文献   

7.
Osteoconductive mineral coatings represent an established technology for enhancing the integration of orthopedic implants with living bone. However, current coatings have limitations related to fabrication methods, attachment strength to metal substrates, and in vivo performance. Low temperature biomimetic growth is a coating technique wherein the device to be coated is immersed in a meta-stable saturated solution of the coating constituents and growth of the coating is then allowed to proceed on the surface of the device. This study focused on the in vivo evaluation of a biomimetic apatite coating fabricated under these conditions. The experiment was designed to specifically test the amount of bone ingrowth into the coated channels versus the uncoated channels of an established bone chamber system, with emphasis placed on the amount of bone present on the coupon surface. Three types of measurements were taken on each channel: linear ingrowth %, area ingrowth %, and continuous bone apposition %. The experiments demonstrated that under controlled conditions, the apatite coating appears to resorb in 8 weeks and did stimulate early osseointegration with the metal surface with a reduction in fibrous tissue encapsulation. This coating may, therefore, be useful in facilitating early bone ingrowth into porous surfaces without the potential for coating debris, macrophage infiltration, fibrous tissue encapsulation, and eventual coating failure as may occur with current plasma-sprayed hydroxapatite coating techniques.  相似文献   

8.
The aim of the study was to evaluate the osseointegration of Al(2)O(3) coated with a bioactive glass ceramic (BioveritI), in a load-bearing implant model in sheep in comparison to uncoated Al(2)O(3) and to a minimally loaded situation. Both types of implants were inserted into the proximal tibia (load-bearing model) and in a drill hole defect into the tibia diaphysis (minimally loaded model). Under load-bearing conditions, the coating resulted in significantly higher interfacial shear strength and a high amount of mineralized bone in direct contact to the implant surface. In contrast, the uncoated Al(2)O(3) was surrounded by a thick connective tissue layer corresponding to low interfacial shear strength. In the minimally loaded model, however, there was rather a tendency of lower interfacial shear strength in the case of the coated implants. This finding corresponds to the histological results, which showed mineralized bone in the interface of uncoated Al(2)O(3), whereas in the case of the coated implants a thin layer of osteoid was observed. It was suggested that the osseointegration of Al(2)O(3) could be improved by the coating under load-bearing conditions, under which uncoated Al(2)O(3) ceramics cannot directly bind to bone.  相似文献   

9.
The clinical use of plasma-sprayed hydroxyapatite (HA) coatings on metal implants has been widely adopted because the HA coating can achieve the firmly and directly biological fixation with the surrounding bone tissue. However, the long-term mechanical properties of HA coatings has been concern for the long-term clinical application. Previous research showed that the concept of adding ZrO2 as second phase to HA significantly increased the bonding strength of plasma-sprayed composite material. The present work aimed to explore the biological properties, including the histological responses and shear strength, between the plasma-sprayed HA and HA/ZrO2 coating, using the transcortical implant model in the femora of canines. After 6 and 12 weeks of implantation, the HA coating revealed the direct bone-to-coating contact by the backscattered electron images (BEIs) of scanning electron microscope (SEM), but the osseointegration was not observed at the surface of HA/ZrO2 coating. For new bone healing index (NBHI) and apposition index (AI), the values for HA implants were significantly higher than that for HA/ZrO2 coatings throughout all implant periods. After push-out test, the shear strength of HA-coated implants were statistically higher than HA/ZrO2 coated implants at 6- and 12-week implantation, and the failure mode of HA/ZrO2 coating was observed at the coating-bone interface by SEM. The results indicate that the firm fixation between bone and HA/ZrO2 has not been achieved even after 12-week implantation. Consequently, the addition of ZrO2 could improve the mechanical properties of coatings, while the biocompatibility was influenced by the different material characteristics of HA/ZrO2 coating compared to HA coatings.  相似文献   

10.
This study aimed to compare biological properties, including osteoconduction, osseointegration, and shear strength, between plasma-sprayed hydroxyapatite (HA) and HA/tricalcium phosphate (TCP) coatings, using a transcortical implant model in the femora of canines. After 3 and 12 weeks of implantation, the implants with surrounding bone were assessed histologically in undecalcified sections in backscattered electron images (BEIs) under a scanning electron microscope (SEM). After short-term (3 week) follow-up, both coatings conducted new bone formation and revealed direct bone-to-coating contact. The HA/TCP coating could not enhance early host-to-coating responses. At 12 weeks, serious dissolution of the HA/TCP coatings evidently occurred. By the new bone healing index (NBHI) and apposition index (AI), we found no significant difference between HA/TCP-coated implants and HA-coated implants throughout all implant periods. At 12 weeks of implantation, some particles dissociated from the HA/TCP coating were found within the remodeling canal. After push-out measurements, the shear strength and failure mode of HA/TCP-coated implants were similar to those of HA-coated implants, and no statistical differences were found between either coating. Consequently, this study indicates that HA/TCP coatings have excellent biological response and may be considered suitable bioactive ceramic coatings for short-term clinical use.  相似文献   

11.
The influence of calcium phosphate (Ca-P) coating and surface roughness on the trabecular bone response of titanium implants was investigated. Four types of titanium implants, i.e. blasted with titanium powder, sintered with titanium beads, titanium powder blasted and provided with an additional Ca-P coating, and titanium beads with Ca-P coating, were prepared. The Ca-P coating was deposited by ion beam dynamic mixing method. The Ca-P coating was rapid heat-treated with infrared radiation at 700 degrees C. The implants were inserted into the trabecular bone of the left and right femoral condyles of 16 rabbits. After implantation periods of 2, 3, 4 and 12 weeks, the bone-implant interface was evaluated histologically and histomorphometrically. Histological evaluation revealed new bone formation around different implant materials after already 3 weeks of implantation. After 12 weeks, mature trabecular bone surrounded all implants. At 3 and 4 weeks of implantation, no difference existed in bone contact to the various implant materials. On the other hand, after 12 weeks of implantation the highest percentage of bone contact was found around the Ca-P coated beads implants. Supported by the results, we concluded that the combination of surface geometry and Ca-P coating benefits the implant-bone response during the healing phase.  相似文献   

12.
The interface zone between titanium implants and bone is considered at the macroscopic, microscopic, and molecular levels. A high rate of successful dental implants of pure titanium is associated with a very close apposition of the bone to the titanium surface, called osseointegration. At the macroscopic level, osseointegration allows efficient stress transfer from the implant to the bone without abrasion or progressive movement that can take place if a fibrous layer intervenes. At the microscopic level, surface roughness and porosity provide interlocking of the implant and bone tissue which grows into direct contact with titanium. Sections studied in the electron microscope show that calcified tissue can be identified within 50 Å of the implant surface. The interface zone includes a tightly adherent titanium oxide layer on the surface of the implant which may be similar to a ceramic material in relation to tissue response. The five year success rate of 90% in 2895 implants in clinical trials since 1965 is associated with the favorable behavior of bone tissue at the interface zone with pure titanium.  相似文献   

13.
Our purpose was to evaluate the osteointegration of bilayered calcium phosphate (CaP)-coated femoral hip stems in a canine model. A first layer of hydroxyapatite (HA) 20 microm thick and a superficial layer of Biphasic Calcium Phosphate (BCP) 30 microm thick were plasma-sprayed on to the proximal region of sandblasted Ti6Al4V prostheses. Bilayered CaP-coated and non-coated canine femoral stems were implanted bilaterally under general anesthesia in 6 adult female Beagle dogs. After 6 and 12 months, a significant degradation of the bilayered coating occurred with a remainder of 33.1+/-12.4 and 23.6+/-9.2 microm in thickness, respectively. Lamellar bone apposition was observed on bilayered coated implants while fibrous tissue encapsulation was observed on non-coated femoral stems. The bone-implant contacts (BIC) were 91+/-3% and 81+/-8% for coated and 7+/-8% and 8+/-12% for non-coated implants, at 6 and 12 months, respectively. Our study supports the concept of a direct relationship between the biodegradation of CaP coating and the enhanced osteointegration of titanium prostheses. A bilayered CaP coating might therefore enhance bone apposition in the early stages because of the superior bioactivity of the BCP layer while the more stable HA layer might sustain bone bonding over long periods.  相似文献   

14.
This study was undertaken to investigate the relative importance of a hydroxyapatite (HA) coating and the macrotexture of titanium implants to the quality of bony ingrowth and fixation. Various types of titanium cylinders were implanted into the cancellous bone of the intercondylar region of the distal femur of the dog. The animals were sacrificed at intervals post-implantation and the implants were evaluated histologically for amount of bony ingrowth and mechanically by the means of a push-out test. Our results demonstrated that when grooved titanium implants are used, the addition of HA coating significantly improved the biologic fixation. In addition, a groove depth of 1 mm was found to give significantly better fixation than 2 mm. When compared to implants with traditional, beads-coated porous surfaces, HA-coated grooved titanium implants were found to show better fixation at 4 weeks after implantation, but, significantly inferior fixation at 12 weeks after implantation. We concluded that while a groove depth of 1 mm was optimal in HA-coated, grooved titanium implants, they remain inferior to beads-coated titanium implants with respect to longer-term fixation. More research needs to be addressed at improving the macrotexture environment of grooved implants to enhance long-term bony ingrowth.  相似文献   

15.
Porous titanium fiber implants for cementless skeletal fixation by bone ingrowth were treated with a calcium phosphate coating applied by a plasma flame-spray technique. In a paired experiment, treated and control implants were inserted in the humeri and olecranons of 36 adult dogs for periods of 1, 2, 4, and 6 weeks. After the animals were sacrificed, a biomechanical evaluation of the strength of skeletal fixation of the implants and a histologic evaluation of bone ingrowth was done. The mean shear strength of skeletal fixation at four weeks for the calcium phosphate-coated implants was 24% greater (P less than .01) than for paired controls. No difference in strength of fixation between treated and control implants was present at other time periods. The osteoconductive properties of the ceramic coating were demonstrated by bone forming in direct contact with the calcium phosphate coating on the metal fibers of the treated implants. No significant increase for the volume of bone ingrowth was established for treated implants compared to paired controls at any time period.  相似文献   

16.
In this article we evaluated the bone-bonding strengths of titanium and titanium alloy implants with and without alkali and heat treatments using the conventional canine femur push-out model. Four kinds of smooth cylindrical implants, made of pure titanium or three titanium alloys, were prepared with and without alkali and heat treatments. The implants were inserted hemitranscortically into canine femora. The bone-bonding shear strengths of the implants were measured using push-out test. At 4 weeks all types of the alkali- and heat-treated implants showed significantly higher bonding strength (2.4-4.5 MPa) than their untreated counterparts (0.3-0.6 MPa). At 12 weeks the bonding strengths of the treated implants showed no further increase, while those of the untreated implants had increased to 0.6-1.2MPa. Histologically, alkali- and heat-treated implants showed direct bonding to bony tissue without intervening fibrous tissue. On the other hand, untreated implants usually had intervening fibrous tissue at the interface between bone and the implant. The early and strong bonding to bone of alkali- and heat-treated titanium and its alloys without intervening fibrous tissue may be useful in establishing cementless stable fixation of orthopedic implants.  相似文献   

17.
The purpose of this study is to evaluate the bone-bonding ability of alkali- and heat-treated titanium alloys. Smoothed-surface rectangular plates of Ti6Al4V, Ti6Al2Nb1Ta, and Ti15Mo5Zr3Al were prepared. The plates were inserted transcortically into the proximal metaphyses of bilateral rabbit tibiae, with alkali- and heat-treated plates inserted on the right side, and untreated plates on the left. The tensile failure loads between the implants and the bones were measured after 8, 16, and 24 weeks by a detaching test. The untreated implants showed almost no bonding even at 16 weeks, and only weak bonding at 24 weeks. In contrast, treated implants showed bonding to bone at all time periods. Histological examination showed that alkali- and heat-treated alloys bonded directly to the bone. Conversely, the untreated implants had an intervening layer of fibrous tissue between the bone and the plate, or only partial direct contact with the bone. This study demonstrates that alkali and heat treatments enhance the bone-bonding strength of these titanium alloys. Although in this study even tentative conditions of the treatments enhance the bonding strength of the titanium alloys, further work is required to determine the optimum conditions for treatment to give the highest bonding strength. These new bioactive titanium alloys are available for weight-bearing and bone-bonding orthopedic devices.  相似文献   

18.
This study was performed with the objective of evaluating osseointegration of titanium alloy Ti6Al4V dental implants coated with hydroxylapatite (HA) deposited by a KrF laser. For this a KrF excimer laser and stainless-steel deposition chamber were used. The thickness of the HA films was approximately 1 microm. In this investigation experimental animals minipigs were used; the implants were placed vertically into the lower jaw. After 14 weeks of unloaded osseointegration, metal-ceramic crowns were inserted and, at the same time, fluorescent solution was injected into the experimental animals. Six months after insertion of crowns the animals were sacrificed. The vertical position of the implants was checked by a radiograph. Microscopic sections were cut and ground, and the sections were examined under polarized and fluorescent light using a microscope with a charge coupled device camera. The six month long osseointegration in the lower jaw has confirmed the presence of newly formed bone around all the implants. In the experimental group, which had a laser-deposited coating, the layer of fibrous connective tissue was seen only randomly. In the control group (titanium implant without a cover) the fibrous connective tissue between the implant and the newly formed bone was observed more frequently, but this difference was not significant.  相似文献   

19.
This paper evaluates the behavior of hydroxyapatite (HAP) coated and noncoated Ti6Al4V implants in dog tibia after 3 and 5 months implantation. HPA-coated implants were obtained by plasma spraying. XRD, SEM, and EPMA were employed to estimate the coating characteristics and their behavior in vivo. Investigation of material characteristics showed that the as-received coatings consisted mainly of amorphism and HAP phase. Other phases such as TCP and CaO were identified due to thermal changes of HAP particles in plasma flame. SEM micrographs showed a typical microstructure of plasma-sprayed coating. The as-received coating was formed by well-melted pancake-like splats that lead to a dense coating with a rough surface. Lamellar structure, micropores, and microcracks, observed inside the coating, are characteristic of plasma spraying. Push-out tests revealed that HAP coating had a significant promotion of interfacial shear strength. The shear strength between bone and HAP-coated implants was much higher than that between bone and noncoated implants due to the different bone-implant interfaces formed after implantation. SEM observation revealed a direct attachment between HAP coating and newly formed bone. However, noncoated implants were separated from newly formed bone by fibrous tissues. Ti ions were found to be released into the surrounding environment after long time immersion in body fluid, and thus caused low shear strength. Prolongation of implantation time had different effects on shear strength. It improved the shear strength between HAP-coated implant and newly formed bone. However, it had little effect on that between noncoated implant and surrounding tissues.  相似文献   

20.
The host response to titanium alloy (Ti–6Al–4V) is not always favorable as a fibrous layer may form at the skeletal tissue–device interface, causing aseptic loosening. Recently, sphene (CaTiSiO5) ceramics were developed by incorporating Ti in the Ca–Si system, and found to exhibit improved chemical stability. The aim of this study is to evaluate the in vitro response of human osteoblast-like cells, human osteoclasts and human microvascular endothelial cells to sphene ceramics and determine whether coating Ti–6Al–4V implants with sphene enhances anchorage to surrounding bone. The study showed that sphene ceramics support human osteoblast-like cell attachment with organized cytoskeleton structure and express increased mRNA levels of osteoblast-related genes. Sphene ceramics were able to induce the differentiation of monocytes to form functional osteoclasts with the characteristic features of f-actin and αvβ3 integrin, and express osteoclast-related genes. Human endothelial cells were also able to attach and express the endothelial cell markers ZO-1 and VE-Cadherin when cultured on sphene ceramics. Histological staining, enzyme histochemistry and immunolabelling were used for identification of mineralized bone and bone remodelling around the coated implants. Ti–6Al–4V implants coated with sphene showed new bone formation and filled the gap between the implants and existing bone in a manner comparable to that of the hydroxyapatite coatings used as control. The new bone was in direct contact with the implants, whereas fibrous tissue formed between the bone and implant with uncoated Ti–6Al–4V. The in vivo assessment of sphene-coated implants supports our in vitro observation and suggests that they have the ability to recruit osteogenic cells, and thus support bone formation around the implants and enhance osseointegration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号