首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ophthalmological and molecular genetic studies were performed in a consanguineous family with individuals showing either retinitis pigmentosa (RP) or cone-rod dystrophy (CRD). Assuming pseudodominant (recessive) inheritance of allelic defects, linkage analysis positioned the causal gene at 1p21-p13 (lod score 4.22), a genomic segment known to harbor the ABCR gene involved in Stargardt's disease (STGD) and age- related macular degeneration (AMD). We completed the exon-intron structure of the ABCR gene and detected a severe homozygous 5[prime] splice site mutation, IVS30+1G->T, in the four RP patients. The five CRD patients in this family are compound heterozygotes for the IVS30+1G- >T mutation and a 5[prime] splice site mutation in intron 40 (IVS40+5G- >A). Both splice site mutations were found heterozygously in two unrelated STGD patients, but not in 100 control individuals. In these patients the second mutation was either a missense mutation or unknown. Since thus far no STGD patients have been reported to carry two ABCR null alleles and taking into account that the RP phenotype is more severe than the STGD phenotype, we hypothesize that the intron 30 splice site mutation represents a true null allele. Since the intron 30 mutation is found heterozygously in the CRD patients, the IVS40+5G->A mutation probably renders the exon 40 5[prime] splice site partially functional. These results show that mutations in the ABCR gene not only result in STGD and AMD, but can also cause autosomal recessive RP and CRD. Since the heterozygote frequency for ABCR mutations is estimated at 0.02, mutations in ABCR might be an important cause of autosomal recessive and sporadic forms of RP and CRD.   相似文献   

2.
Mutations in the gene encoding fibrillin-1 (FBN1) cause Marfan syndrome (MFS) and other related connective tissue disorders. In this study we performed SSCP to analyze all 65 exons of the FBN1 gene in 76 patients presenting with classical MFS or related phenotypes. We report 7 missense mutations, 3 splice site alterations, one indel mutation, one nonsense mutation and two mutations causing frameshifts: a 16bp deletion and a single nucleotide insertion. 5 of the missense mutations (Y1101C, C1806Y, T1908I, G1919D, C2251R) occur in calcium-binding Epidermal Growth Factor-like (EGFcb) domains of exons 26, 43, 46 and 55, respectively. One missense mutation (V449I) substitutes a valine residue in the non-calcium-binding epidermal growth factor like domain (EGFncb) of exon 11. One missense mutation (G880S) affects the "hybrid" motif in exon 21 by replacing glycine to serine. The 3 splice site mutations detected are: IVS1-1G>A in intron 1, IVS38-1G>A in intron 38 and IVS46+5G>A in intron 46. C628delinsK was identified in exon 15 leading to the substitution of a conserved cysteine residue. Furthermore two frameshift mutations were found in exon 15 (1904-1919del ) and exon 63 (8025insC) leading to premature termination codons (PTCs) in exon 17 and 64 respectively. Finally we identified a nonsense mutation (R429X) located in the proline rich domain in exon 10 of the FBN1 gene. Y1101C, IVS46+5G>A and R429X have been reported before.  相似文献   

3.
Germline mutation analysis of BRCA1 gene has demonstrated significant allelic heterogeneity. These differences represent historical influences of migration, population structure and geographic or cultural isolation. To date, there have been no reports of Indian families with mutations in BRCA1. We have screened for mutations in selected coding exons of BRCA1 and their flanking intron regions in three breast or breast and ovarian cancer families with family history of three or more cases of breast cancer under age 45 and/or ovarian cancer at any age. We have also analyzed 10 female patients with sporadic breast cancer regardless of age and family history, as well as 50 unrelated normal individuals as controls. Thus a total of 90 samples were analyzed for BRCA1 mutations using polymerase chain reaction-mediated site directed mutagenesis (PSM) and single stranded conformation polymorphism (SSCP) analysis for various selected exons followed by sequencing of variant bands. Eight point mutations were identified. Two deleterious pathogenic, protein truncating non-sense mutations were detected in exon 11 (E1250X) and exon 20 (E1754X) and six novel and unique amino acid substitutions (F1734S, D1739Y, V1741G, Q1747H, P1749A, R1753K). One complex missense mutation of exon 20 [V1741G; P1749A] was seen in two out of three families and another complex combination of missense and non-sense mutations of the same exon [V1741G; E1754X] was observed in only one family. These complex mutations exist only in breast cancer families but not in control populations of women. Three splice site variants (IVS20+3A>C, IVS20+4A>T, IVS20+5A>T) and two intronic variants (IVS20+21_22insG, IVS20+21T>G) were also detected. In the group of 10 sporadic female patients no mutations were found.  相似文献   

4.
The X-linked bleeding disorder hemophilia A is caused by mutations in the coagulation factor VIII gene. A high frequency of de novo mutations and the large size of this gene complicate the molecular diagnostic of hemophilia A. Characterization of mutations, however, may help identify amino acids or regions with essential functional or structural properties and thereby clarify the mechanism of pathogenesis. In the present study, we describe the identification of 15 mutations in the factor VIII gene, of which eight are novel. Among the patients with severe hemophilia A, two splice mutations (IVS5-3 and IVS19-2), a 4-bp deletion (TACA) at codon 1215, and a missense mutation G1850V have been characterized. The missense mutations G479R, R531C, V537D, N2129S and I2190N were found for five patients with a moderate course of hemophilia A disease. A silent mutation resulting in activation of a cryptic acceptor splice site within exon 11 and four other missense mutations Y114C, R1689H, R2150H (2x), M2164V have been identified for six patients with mild hemophilia A. Hum Mutat 12:301–303, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

5.
Farber lipogranulomatosis is a rare autosomal recessive lysosomal storage disorder caused by mutations in the ASAH1 gene. In the largest ever study, we identified and characterized ASAH1 mutations from 11 independent Farber disease (FD) families. A total of 13 different mutations were identified including 1 splice, 1 polypyrimidine tract (PPT) deletion and 11 missense mutations. Eleven mutations were exclusive to the Indian population. The IVS6+4A>G splice and IVS5‐16delTTTTC PPT deletion mutations resulted in skipping of exon 6 precluding thereby the region responsible for cleavage of enzyme precursor. A missense mutation (p.V198A) resulted in skipping of exon 8 due to inactivation of an exonic splicing enhancer (ESE) element. This is the first report of mutations affecting PPT and ESE in the ASAH1 gene resulting in FD.  相似文献   

6.
Smith–Lemli–Opitz syndrome (SLOS) is caused by mutations in the DHCR7 gene leading to deficient activity of 7-dehydrocholesterol reductase (DHCR7; EC 1.3.1.21), the final enzyme of the cholesterol biosynthetic pathway, resulting in low cholesterol and high concentrations of its direct precursor 7-dehydrocholesterol in plasma and tissues. We here report mutations identified in the DHCR7 gene of 13 children diagnosed with SLOS by clinical and biochemical criteria. We found a high frequency of the previously described IVS8–1 G > C splice acceptor site mutation (two homozygotes, eight compound heterozygotes). In addition, 13 missense mutations and one splice acceptor mutation were detected in eleven patients with a mild to moderate SLOS-phenotype. The mutations include three novel missense mutations (W182L, C183Y, F255L) and one novel splice acceptor site mutation (IVS8–1 G > T).
Two patients, homozygous for the IVS8–1 G > C mutation, presented with a severe clinical phenotype and died shortly after birth. Seven patients with a mild to moderate SLOS-phenotype disclosed compound heterozygosity of the IVS8–1 G > C mutation in combination with different novel and known missense mutations.  相似文献   

7.
8.
The two porphyrias, familial porphyria cutanea tarda (fPCT) and hepatoerythropoietic porphyria (HEP), are associated with mutations in the gene encoding the enzyme uroporphyrinogen decarboxylase (UROD). Several mutations, most of which are private, have been identified in HEP and fPCT patients, confirming the heterogeneity of the underlying genetic defects of these diseases. We have established a denaturing gradient gel electrophoresis (DGGE) assay for mutation detection in the UROD gene, enabling the simultaneous screening for known and unknown mutations. The established assay has proved able to detect the underlying UROD mutation in 10 previously characterized DNA samples as well as a new mutation in each of six previously unexamined PCT patients. The six novel UROD mutations comprise three missense mutations (M01T, F229L, and M324T), two splice mutations (IVS3‐2A→T and IVS5‐2A→G) leading to exon skipping, and a 2‐bp deletion (415‐416delTA) resulting in a frameshift and the introduction of a premature stop codon. Heterologous expression and enzymatic studies of the mutant proteins demonstrate that the three mutations leading to shortening or truncation of the UROD protein have no residual catalytic activity, whereas the two missense mutants retained some residual activity. Furthermore, the missense mutants exhibited a considerable increase in thermolability. The six new mutations bring to a total of 29 the number of disease‐related mutations in the UROD gene. The DGGE assay presented greatly improves the genetic diagnosis of fPCT and HEP, thereby facilitating the detection of familial UROD deficient patients as well as the discrimination between familial and sporadic PCT cases. Hum Mutat 14:222–232, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
Germline mutations in the BRCA2 gene have been shown to be associated with familial female and male breast cancer. Mutations occur throughout the entire coding region of the gene, and there is considerable ethnic and geographical diversity in the deleterious mutations detected in different populations. No data exist on the role of the BRCA2 gene in the Cypriot population. In this study we present the results of characterizing mutations in the BRCA2 gene, in 26 Cypriot families with multiple cases of breast/ovarian cancer. The entire coding region, including splice sites, of BRCA2 were sequenced using cycle sequencing. In total 29 BRCA2 variants were detected which include 3 truncating mutations, 8 missense mutations, 6 polymorphisms and 12 intronic variants. The 3 truncating mutations are frameshift mutation 8984delG (exon 22), and two nonsense mutations, namely C1913X (exon 11) which is a novel mutation, and K3326X (exon 27). It is of interest that frameshift mutation 8984delG was the most frequent, since it was detected in 5 patients from three different families. Among the 6 polymorphisms detected, polymorphism T77T is novel and similarly 4 of the 12 intronic variants were also novel, namely IVS1+8G>A, IVS1-96insA, IVS4+36A>G and IVS11-51G>T. These results show that deleterious BRCA2 mutations, occur at the same frequency, about 20%, in Cypriot families, as that recorded in other European populations. We conclude that the BRCA2 gene plays a significant role in the familial breast cancer phenotype in the Cypriot population.  相似文献   

10.
Thymopoietin or TMPO (indicated by its alternative gene symbol, LAP2, in this work) has been proposed as a candidate disease gene for dilated cardiomyopathy (DCM), since a LAP2 product associates with nucleoplasmic lamins A/C, which are encoded by the DCM gene LMNA. We developed a study to screen for genetic mutations in LAP2 in a large collection of DCM patients and families. A total of 113 subjects from 88 families (56 with familial DCM (FDC) and 32 with sporadic DCM) were screened for LAP2 mutations using denaturing high-performance liquid chromatography and sequence analysis. We found a single putative mutation affecting the LAP2alpha isoform in one FDC pedigree. The mutation predicts an Arg690Cys substitution (c.2068C>T; p.R690C) located in the C-terminal domain of the LAP2alpha protein, a region that is known to interact with lamin A/C. RT-PCR, Western blot analyses, and immunolocalization revealed low-level LAP2alpha expression in adult cardiac muscle, and localization to a subset of nuclei. Mutated Arg690Cys LAP2alpha expressed in HeLa cells localized to the nucleoplasm like wild-type LAP2alpha, with no effect on peripheral and nucleoplasmic lamin A distribution. However, the in vitro interaction of mutated LAP2alpha with the pre-lamin A C-terminus was significantly compromised compared to the wild-type protein. LAP2 mutations may represent a rare cause of DCM. The Arg690Cys mutation altered the observed LAP2alpha interaction with A-type lamins. Our finding implicates a novel nuclear lamina-associated protein in the pathogenesis of genetic forms of dilated cardiomyopathy.  相似文献   

11.
12.
The high mutation rate at the NF1 locus results in a wide range of molecular abnormalities. The majority of these mutations are private and rare, generating elevated allelic diversity with a restricted number of recurrent mutations. In this study, we have assessed the efficacy of denaturing high-performance liquid chromatography (DHPLC), for detecting mutation in the NF1 gene. DHPLC is a fast and highly sensitive technique based on the detection of heteroduplexes in PCR products by ion pair reverse-phase HPLC under partially denaturing conditions. We established theoretical conditions for DHPLC analysis of all coding exons and splice junctions of the NF1 gene using the WAVEmaker software version 4.1.40 and screened for mutations a panel of 40 unrelated NF1 patients (25 sporadic and 15 familial), genetically uncharacterized. Disruptive mutations were identified in 29 individuals with an overall mutation detection rate of 72.5%. The mutations included eight deletions (exons 4b, 7, 10a, 14, 26, and 31), one insertion (exon 8), nine nonsense mutation (exons 10a, 13, 23.1, 27a, 29, 31, and 36), six missense mutations (exons 15, 16, 17, 24, and 31), four splice errors (exons 11, 14, 36, and 40) and a complex rearrangement within exon 16. Eighteen (62%) of the identified disruptive mutations are novel. Seven unclassified and three previously reported polymorphisms were also detected. None of the missense mutations identified in this study were found after screening of 150 controls. Our results suggest that DHPLC provides an accurate method for the rapid identification of NF1 mutations.  相似文献   

13.
长QT综合征 KCNQ1基因突变筛查方法   总被引:5,自引:0,他引:5  
目的 研究中国人长QT综合征(long QT syndrome,LQTS)与编码缓慢激活延迟整流钾通道基因(postassium voltage—gated channel,KQT—like subfamily member 1,KCNQl)突变的关系。方法 根据心电图T波的特征对31个家系进行基因分型的初步预测。对10个预测为LQTl家系的家庭成员,用聚合酶链反应-单链构像多态性(polymerase chain reaction—single strand conformation polymorphism,PCR—SSCP)方法进行KCNQ1基因16个外显子及剪接位点的筛查,SSCP异常者进行DNA测序。为避免遗漏心电图表现不典型的LQT1,同时也为了进行方法学比较,对其它21个非LQT1家系只对先证者进行16个外显子的PCR和DNA直接测序。对测序有异常者,分析其家系成员相应外显子的疾病分离情况。若异常只存在于患者,则检查该异常在50个正常对照者中的情况。结果 (1)在心电图预测分型为LQT1的家系中发现了位于第5外显子的S277L(1个家系)和G306V(1个家系)2个错义突变。另外发现了3个多态性,分别为435C→T(1145I)(7个家系)、1632C→A(S546S)(1个家系)、IVS1 9C→G(3个家系)。(2)在心电图分型预测为非LQT1的先证者中只发现了1个剪接突变IVS1 5G→A(2个家系)和1个多态性IVS1 18C→T(1个家系)。3个突变位点均位于KCNQ1基因功能区域,各突变家系内患者存在同样的异常条带或序列,而正常对照无此异常。结论 在中国人LQTS患者中发现TKCNQ1基因上的2个新错义突变、1个剪接突变和4个多态性。结合心电图分型预测,PCR-SSCP法可发现绝大部分突变,是筛查LQTS突变的简便而经济的方法。  相似文献   

14.
Cardiomyopathies are common disorders resulting in heart failure; the most frequent form is dilated cardiomyopathy (DCM), which is characterized by dilatation of the left or both ventricles and impaired systolic function. DCM causes considerable morbidity and mortality, and is one of the major causes of sudden cardiac death. Although about one-third of patients are reported to have a genetic form of DCM, reported mutations explain only a minority of familial DCM. Moreover, the recessive neonatal isolated form of DCM has rarely been associated with a mutation. In this study, we present the association of a mutation in the SDHA gene with recessive neonatal isolated DCM in 15 patients of two large consanguineous Bedouin families. The cardiomyopathy is presumably caused by the significant tissue-specific reduction in SDH enzymatic activity in the heart muscle, whereas substantial activity is retained in the skeletal muscle and lymphoblastoid cells. Notably, the same mutation was previously reported to cause a multisystemic failure leading to neonatal death and Leigh''s syndrome. This study contributes to the molecular characterization of a severe form of neonatal cardiomyopathy and highlights extreme phenotypic variability resulting from a specific missense mutation in a nuclear gene encoding a protein of the mitochondrial respiratory chain.  相似文献   

15.
Dystrophin analysis in idiopathic dilated cardiomyopathy.   总被引:3,自引:0,他引:3       下载免费PDF全文
Idiopathic dilated cardiomyopathy (DCM) is characterised by ventricular dilatation and impaired systolic function resulting in congestive heart failure and frequently death. A dilated cardiomyopathy is common in patients with symptomatic Duchenne/Becker muscular dystrophy, a disease caused by dystrophin gene defects. However, cardiomyopathy is rarely the predominant clinical feature of this form of muscular dystrophy. To determine whether dystrophin gene defects might account for a significant number of patients with apparently isolated idiopathic DCM, we performed dystrophin gene analysis in 27 DCM patients, who were ascertained as part of a prospective study on idiopathic DCM. No dystrophin gene defects were found in our patients, whose average age was 50 years. These data suggest that dystrophin defects are not a common cause of idiopathic DCM in this age group in the absence of skeletal muscle cramps or weakness.  相似文献   

16.
Desmin splice variants causing cardiac and skeletal myopathy   总被引:8,自引:0,他引:8  
Desmin myopathy is a hereditary or sporadic cardiac and skeletal myopathy characterised by intracytoplasmic accumulation of desmin reactive deposits in muscle cells. We have characterised novel splice site mutations in the gene desmin resulting in deletion of the entire exon 3 during the pre-mRNA splicing. Sequencing of cDNA and genomic DNA identified a heterozygous de novo A to G change at the +3 position of the splice donor site of intron 3 (IVS3+3A→G) in a patient with sporadic skeletal and cardiac myopathy. A G to A transition at the highly conserved -1 nucleotide position of intron 2 affecting the splice acceptor site (IVS2-1G→A) was found in an unrelated patient with a similar phenotype. Expression of genomic DNA fragments carrying the IVS3+3A→G and IVS2-1G→A mutations confirmed that these mutations cause exon 3 deletion. Aberrant splicing leads to an in frame deletion of 32 complete codons and is predicted to result in mutant desmin lacking 32 amino acids from the 1B segment of the alpha helical rod. Functional analysis of the mutant desmin in SW13 (vim-) cells showed aggregation of abnormal coarse clumps of desmin positive material dispersed throughout the cytoplasm. This is the first report on the pathogenic potentials of splice site mutations in the desmin gene.


Keywords: cardiac and skeletal myopathy; desmin splice site mutations; expression study; genotype-phenotype correlation  相似文献   

17.
X-linked dilated cardiomyopathy (XLDC) is a familial heart disease presenting in young males as a rapidly progressive congestive heart failure, without clinical signs of skeletal myopathy. This condition has recently been linked to the dystrophin gene in some families and deletions encompassing the genomic region coding for the first muscle exon have been detected. In order to identify the defect responsible for this disease at the molecular level and to understand the reasons for the selective heart involvement, a family with a severe form of XLDC was studied. In the affected members, no deletions of the dystrophin gene were observed. Analysis of the muscle promoter, first exon and intron regions revealed the presence of a single point mutation at the first exon-intron boundary, inactivating the universally conserved 5' splice site consensus sequence of the first intron. This mutation introduced a new restriction site for MseI, which cosegregates with the disease in the analyzed family. Expression of the major dystrophin mRNA isoforms (from the muscle-, brain- and Purkinje cell-promoters) was completely abolished in the myocardium, while the brain- and Purkinje cell- (but not the muscle-) isoforms were detectable in the skeletal muscle. Immunocytochemical studies with anti- dystrophin antibodies showed that the protein was reduced in quantity but normally distributed in the skeletal muscle, while it was undetectable in the cardiac muscle. These findings indicate that expression of the muscle dystrophin isoform is critical for myocardial function and suggest that selective heart involvement in dystrophin- linked dilated cardiomyopathy is related to the absence, in the heart, of a compensatory expression of dystrophin from alternative promoters.   相似文献   

18.
Dilated cardiomyopathy (DCM) results in part from genetic disorders. Recently, missense mutations of the cardiac actin gene have been reported to cause DCM. We studied 136 Japanese DCM cases to elucidate how frequently the gene mutations are involved in its pathogenesis. Genomic DNA samples were obtained from 136 DCM cases (107 males, 29 females), containing 30 familial DCM (5 confirmed and 25 suspected). All six exons of the cardiac actin gene were analyzed by polymerase chain reaction, single-strand conformation polymorphism, and sequencing. We detected no mutations of the disease causation previously reported (G867A or A1014G) but two silent mutations (G979C and C1018T) in exon 6 and one point mutation (T1080A) in the 3′-untranslated region. As a result of screening 128 healthy subjects, these novel silent mutations were found to be mere genetic polymorphisms, not responsible for the disease. Although some genetic polymorphisms exist in the cardiac actin gene, mutations of the gene are rarely responsible for DCM, at least in the Japanese patients. Am. J. Med. Genet. 86:325–327, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

19.
Van der Woude综合征家系IRF6基因突变分析   总被引:2,自引:0,他引:2  
目的研究Van der Woude综合征(Van der Woude syndrome,VWS)干扰素调节因子6(interferon regulatory factor 6,IRF6)基因突变。方法提取3个VWS家系成员基因组DNA,聚合酶链反应扩增IRF6基因9个外显子及其侧翼内含子序列,直接测序对患者IRF6基因进行突变的检测。结果在3个家系患者IRF6基因中共发现国际上尚未报道的3个突变:无义突变981(T→A)(Cys327X)和1234(C→T)(Arg412X);错义突变1214(T→C)(Met405Thr)。结论IRF6基因突变可能是VWS发病原因。  相似文献   

20.
Dilated cardiomyopathy (DCM) results in part from genetic disorders. Recently, missense mutations of the cardiac actin gene have been reported to cause DCM. We studied 136 Japanese DCM cases to elucidate how frequently the gene mutations are involved in its pathogenesis. Genomic DNA samples were obtained from 136 DCM cases (107 males, 29 females), containing 30 familial DCM (5 confirmed and 25 suspected). All six exons of the cardiac actin gene were analyzed by polymerase chain reaction, single-strand conformation polymorphism, and sequencing. We detected no mutations of the disease causation previously reported (G867A or A1014G) but two silent mutations (G979C and C1018T) in exon 6 and one point mutation (T1080A) in the 3'-untranslated region. As a result of screening 128 healthy subjects, these novel silent mutations were found to be mere genetic polymorphisms, not responsible for the disease. Although some genetic polymorphisms exist in the cardiac actin gene, mutations of the gene are rarely responsible for DCM, at least in the Japanese patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号