首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The influence of extracellular Ca2+ and nifedipine on contractile responses to 10 μM noradrenaline (NA) was investigated in isolated rat and cat middle cerebral (RCA, CCA) and mesenteric (RMA, CMA) arteries. In the CCA (containing predominantly α2-adrenoceptors), the NA-induced contractions developed considerably more slowly than in the RCA, RMA (containing mainly α1-adrenoceptors) and CMA (sensitive to both at,- and α2-adrenoceptor selective antagonists). The tonic component of the NA-induced contraction in the four types of artery was substantially suppressed after only short periods in Ca2+-free solution. In each type of artery, excluding the CCA, the contractile response to 124 mM K+ was more sensitive to Ca2+ deprivation than that to NA. This suggests that NA, besides mobilizing extracellular Ca2+, can also release Ca2+ from an intracellular pool in the RCA, RMA and CMA, but not in the CCA. Thus, α1-adrenoceptor-mediated contractions in the RCA and RMA seem to depend on both Ca2+ influx and intracellular Ca2+ release, whereas α2-adrenoceptor-mediated contractile responses in the CCA appear to rely almost entirely on Ca2+ influx. Both the maximum response and the tonic component of the NA-induced contraction were significantly more sensitive to nifedipine in the CCA than in the RCA. In comparison with the NA-induced contractions in these arteries, those in the RMA and CMA were relatively resistant to nifedipine. In the CCA exposed to NA in Ca2+-free medium, nifedipine almost abolished the contraction induced by re-addition of Ca2+, whereas in the other types of artery, Ca2+ re-application evoked a significant contraction also in the presence of the drug. The differential effects of nifedipine presumably reflect differences between the arteries, not only in the relative contribution of Ca2+ influx and intracellular Ca2+ release to the contractile activation, but also in the nifedipine sensitivity of the Ca2+ entry pathways utilized by NA. It is concluded that the mechanisms through which NA induces contraction seem to be related both to the subtype of α-adrenoceptor stimulated by NA and to the type of vessel studied.  相似文献   

2.
The effects of nimodipine, Bay K 8644 and pinacidil, three drugs interfering with transmembrane Ca2+ fluxes in different ways, were investigated in isolated human hand veins. Their ability to influence the concentration-response relationship for noradrenaline (NA) was assessed in the absence and presence of prazosin or rauwolscine. The contractile response to NA was almost abolished in Ca2+ -free medium. Nimodipine and pinacidil depressed the NA concentration-response curve both in the absence and presence of alpha-adrenoceptor blockers. The NA response was only partially inhibited by nimodipine, indicating that NA may activate nimodipine-insensitive influx pathways, presumably receptor-operated calcium channels. Pinacidil inhibited the contractile response to 124 mM K+ and reduced the NA-induced contraction in the presence of nimodipine, suggesting that pinacidil has actions other than the opening of potassium channels and subsequent membrane hyperpolarization. Bay K 8644 increased the NA potency fourfold in the presence of rauwolscine, whereas it had no effect on the NA response in the presence of prazosin and in the absence of alpha-adrenoceptor blockade. Such an action of Bay K 8644 can be reconciled with alpha 1-adrenoceptor activation causing membrane depolarization and opening of potential-operated calcium channels. It may be concluded that both alpha 1- and alpha 2-adrenoceptor-mediated contractions in human hand veins are highly dependent on Ca2+ influx, although the mechanisms utilized to bring about this influx partly differ between the two receptor subtypes.  相似文献   

3.
The effects of Ca2+ removal, nifedipine, and La3+ on contractions induced by 124 mM K+ and 10 microM noradrenaline (NA) were investigated in small mesenteric arteries from rat. Ring segments of the arteries were suspended between two steel wires in a 2.5 ml muscle bath, and the mechanical activity recorded "isometrically". The tonic components of the contractile responses to both K+ and NA were critically dependent on the presence of Ca2+ in the bath solution. Nifedipine effectively relaxed K+-contracted arteries, whereas those activated by NA were considerably less affected by the drug. Application of NA to arteries depolarized by K+ in the presence of nifedipine induced a sustained tonic contraction, which was only approximately 20% smaller than that elicited by NA in "standard" Krebs solution, implicating pharmacomechanical coupling. Unlike nifedipine, La3+ inhibited K+- and NA-induced contractions to approximately the same extent. Re-application of Ca2+ to "Ca2+-depleted" preparations exposed to K+ and/or NA induced concentration-dependent contractions. The experimental results suggested that the effects of K+ and NA on the membrane permeability to Ca2+ were additive. The Ca2+-induced contractions were more inhibited by nifedipine in K+-depolarized than in NA-exposed arteries. It is concluded that K+ and NA utilize partly different Ca2+ entry pathways to increase the myoplasmic Ca2+ concentration in rat mesenteric arteries. Whereas K+ seems to promote the influx Ca2+ by activation of CA2+ channels sensitive to the membrane potential, the nature of the receptor-operated Ca2+ entry pathway remains to be established.  相似文献   

4.
The relaxation effects of forskolin and methylxanthines on noradrenaline (NA)-induced contractions were investigated by measuring isotonic contraction and intracellular calcium concentration ([Ca2+]i) in the epididymal side of guinea-pig vas deferens. NA (100 microM) and high K+ (55 mM) induced a biphasic contraction; fast, transient (phasic) and slow, sustained (tonic) phases. Both phases in either NA or high K+ stimulation were abolished in Ca2+-free solution. Pretreatment with 10 microM nifedipine, an L-type Ca2+ channel blocker, reduced both phasic and tonic contractions induced by high K+. In the case of NA-induced contraction, however, nifedipine reduced the phasic contraction but not the tonic contraction. The nifedipine-insensitive tonic contraction was relaxed by the application of polyvalent cations (Mn2+, Co2+, Cd2+ and La3+). These findings indicate that NA-induced biphasic contraction is mainly due to nifedipine-insensitive Ca2+ influx, especially in the tonic phase. Cyclic AMP-increasing agents such as forskolin (0.5-10 microM), IBMX (5-500 microM) and caffeine (1-20 mM) relaxed the NA-induced contraction extensively in a concentration-dependent manner. However, these agents only partially relaxed the high K+-induced contraction. Forskolin (10 microM) and IBMX (100 microM) reduced the [Ca2+]i response to NA, but had no effect on the [Ca2+]i response to high K+. These results suggest that an increase in intracellular cAMP may relax the NA-induced contraction by attenuating a nifedipine-insensitive Ca2+ influx and by a mechanism independent of a reduction in [Ca2+]i.  相似文献   

5.
The effects of porcine neuropeptide Y (NPY) regarding sympathetic vascular control were studied in vitro on isolated rat blood vessels. The 10(-9)M NPY enhanced (about two-fold) the contractile responses to transmural nerve stimulation (TNS), noradrenaline (NA) and adrenaline (about two-fold) in the femoral artery. Higher concentrations of NPY (greater than 10(-8)M) caused an adrenoceptor-resistant contraction per se. The TNS-evoked [3H]NA efflux was significantly reduced by NPY in a concentration-dependent manner (threshold 10(-9)M). The calcium antagonist, nifedipine, abolished the contractile effects of NPY and the NPY-induced enhancement of NA contractions but did not influence the prejunctional inhibition of [3H]NA release. Receptor-binding studies showed that the ratio of alpha 1-to alpha 2-adrenoceptors in the femoral artery was 30:1. The NPY did not cause any detectable change in the number of alpha 1-or alpha 2-adrenoceptor binding sites or in the affinity of alpha 2-binding sites, as revealed by prazosin- and clonidine-binding, respectively. The NPY also inhibited the TNS-evoked [3H]NA release (by 42-86%) in the superior mesenteric and basilar arteries and in femoral and portal veins. The NPY still depressed TNS-evoked [3H]NA secretion from the portal vein in the presence of phentolamine. The NPY caused a clear-cut contraction in the basilar artery, increased the contractile force of spontaneous contractions in the portal vein, while only weak responses were observed in the superior mesenteric artery and femoral vein. The NA-induced contraction was markedly enhanced by NPY in the superior mesenteric artery, only slightly enhanced in the portal vein and uninfluenced in the femoral vein. In conclusion, in all blood vessels tested, NPY depresses the TNS-evoked [3H]NA secretion via a nifedipine-resistant action. Furthermore, NPY exerts a variable, Ca2+-dependent vasoconstrictor effect and enhancement of NA and TNS contractions.  相似文献   

6.
The roles of extra- and intracellular calcium for the contractile effects of PGF2 alpha in the feline basilar artery (BA) were investigated. Comparisons were made with contractions induced by K+ and noradrenaline (NA). Addition of nifedipine to PGF2 alpha- or K+ (124 mM)-contracted arteries resulted in an incomplete relaxation, whereas NA-contracted vessels were completely relaxed. Incubation of the preparations in a calcium-free medium containing 10(-5) M EGTA for 5-10 min almost abolished contractions induced by K+ and NA. In contrast, 63% of the response to PGF2 alpha remained after pretreatment of the arteries in a calcium-free solution for 40 min; PGF2 alpha produced a biphasic contraction in 17 out of 20 preparations consisting of a rapidly developing initial phase followed by a second increase in tension after 1-6 min. The second phase was absent if the EGTA-concentration was increased to 10(-4) M, or if the arteries were pre-treated with nifedipine. After incubation of the arteries in a calcium-free medium for 40-120 min and K+-depolarization, re-addition of calcium elicited contractions at lower concentrations in the presence of PGF2 alpha than in controls. The results suggest that PGF2 alpha-induced contractions in the feline BA are considerably less dependent on extracellular calcium than contractions evoked by K+ or NA. PGF2 alpha appears to be able to release calcium from two cellular stores, and may also promote calcium influx through the cell membrane.  相似文献   

7.
We investigated the effects of five different calcium-channel blockers (CCBs), verapamil, nifedipine, diltiazem, flunarizine and lidoflazine, on contractions evoked in vitro by noradrenaline (NA) in small human arteries and veins from the epigastric region. Vessels were obtained from patients without obvious vascular diseases undergoing surgery because of inguinal hernias. The human superficial epigastric artery has previously been shown to contain mainly alpha 1-adrenoceptors, whereas in the vein alpha 2-adrenoceptors predominate. In experiments where NA (10(-5) M) was added non-cumulatively, it was found that nifedipine was the most potent relaxant agent in both arteries and veins, but that this drug showed no preference for any type of vessel. In contrast verapamil (10(-6) M) and (10(-5) M) diltiazem, flunarizine and lidoflazine inhibited the NA-induced contractions to a significantly greater extent in the arteries than in the veins. Comparison between diltiazem and nifedipine on contractions induced by cumulative addition to NA showed that both drugs had significantly more depressive effects on arteries than on veins if the vessels were contracted by relatively high concentrations of NA (10(-6) and 10(-5) M). The results thus confirm the clinical finding that CCBs have more pronounced effects on the arterial than on the venous side of the circulation. They do not support the view that CCBs are more effective inhibitors of alpha 2- than alpha 1-adrenoceptor mediated contraction in isolated human blood vessels.  相似文献   

8.
The effects of nimodipine, Bay K 8644 and pinacidil, three drugs interfering with transmembrane Ca2+ fluxes in different ways, were investigated in isolated human hand veins. Their ability to influence the concentration-response relationship for noradrenaline (NA) was assessed in the absence and presence of prazosin or rauwolscine. The contractile response to NA was almost abolished in Ca2+-free medium. Nimodipine and pinacidil depressed the NA concentration-response curve both in the absence and presence of α-adrenoceptor blockers. The NA response was only partially inhibited by nimodipine, indicating that NA may activate nimodipine-insensitive influx pathways, presumably receptor-operated calcium channels. Pinacidil inhibited the contractile response to 124 mM K+ and reduced the NA-induced contraction in the presence of nimodipine, suggesting that pinacidil has actions other than the opening of potassium channels and subsequent membrane hyperpolarization. Bay K 8644 increased the NA potency fourfold in the presence of rauwolscine, whereas it had no effect on the NA response in the presence of prazosin and in the absence of α-adrenoceptor blockade. Such an action of Bay K 8644 can be reconciled with α-adrenoceptor activation causing membrane depolarization and opening of potential-operated calcium channels. It may be concluded that both α1- and α2-adrenoceptor-mediated contractions in human hand veins are highly dependent on Ca2+ influx, although the mechanisms utilized to bring about this influx partly differ between the two receptor subtypes.  相似文献   

9.
The contractile and relaxant effects of various prostanoids were studied on isolated human pial arteries. Contractions were elicited with the following order of potency: U46619 approximately equal to U44069 greater than PGB2 greater than PGF2 alpha greater than PGE2 approximately equal to PGD2 approximately equal to PGF1 alpha greater than or equal to TXB2, indicating that prostanoid-induced contractions probably are mediated by a thromboxane-sensitive receptor. Relaxation of PGF2 alpha-contracted arteries was induced with the order of potency: PGE2 greater than PGE1 greater than PGD2 approximately equal to PGD1. Vessels contrated by K+ were relaxed only by PGE1. Since PGI2 was previously found to be more potent than all the prostanoids tested in the present study, relaxant responses are probably mediated via a PGI2-sensitive receptor. The role of free extracellular and cellularly bound calcium for the contractile effects of PGF2 alpha and K+ were estimated by incubating the arteries for various times in calcium-free medium containing 10(-5) M EGTA. Incubation for 5-10 min abolished K+-induced contractions, whereas after 40 min of incubation PGF2 alpha still induced contractions that reached 70% of control. The PGF2 alpha-induced contraction was biphasic in 8 out of 10 preparations. The second phase could be eliminated by increasing the EGTA-concentration to 10(-4) M, as well as by nifedipine pretreatment. In calcium-free, high K+ medium calcium-induced contractions were elicited at lower concentrations in the presence of PGF2 alpha. The results suggest that PGF2 alpha-induced contractions in human pial arteries are relatively independent of free extracellular calcium. PGF2 alpha may promote trans-membrane influx of calcium, as well as release calcium from seemingly superficially located cellular stores.  相似文献   

10.
The present study was designed to evaluate the effects of the calcium antagonist nifedipine on potassium-evoked contractions and release of noradrenaline from sympathetic nerves in rabbit basilar and facial arteries. Contractions were measured isometrically in a small volume organ bath. While noradrenaline (NA) produced strong contractions in facial arteries, the majority of the basilar arteries responded only to the highest concentrations of NA employed (greater than 10 microM) with weak contraction. Prazosin (1 microM) and phentolamine (1-10 microM) effectively antagonized the responses to NA in both types of vessel. In contrast, contractions evoked by potassium (K+, 124 mM) were only slightly reduced by the alpha-adrenoceptor blocking agents, indicating that the participation of endogenous NA in maintaining the contractile response to K+ is either small or negligible in the vessel types studied. Nifedipine concentration-dependently inhibited K+-induced contractions in basilar and facial arteries, the former being significantly more affected as evidenced by the maximum inhibitions (approximately 80% compared to approximately 60%) and IC50 values (approximately 10 nM vs. approximately 30 nM). A combination of nifedipine (0.3 microM) and prazosin (1 microM) or phentolamine (1 microM) further suppressed the K+-evoked contractile response in facial arteries, but failed to do so in basilar arteries, when compared with the effect of nifedipine alone. The depressant effect of the alpha-adrenoceptor blockers was, however, still obtainable after reserpine treatment of the facial artery in vitro. Fluorescence histochemical demonstration of noradrenaline revealed a dense network of adrenergic nerve fibres in the walls of the basilar and facial artery. The vessels were also shown to accumulate 3H-NA and release it upon depolarization with K+. The uptake and subsequent release of 3H-NA were significantly reduced by desipramine (10 microM). Nifedipine (0.3-3.0 microM) failed to alter the K+-evoked 3H-NA efflux from sympathetic nerves in neither of the two vessel types. It may be concluded that nifedipine effectively inhibits K+-evoked contractions in isolated basilar and facial arteries from rabbit without interfering with nerve-mediated NA release. Possible explanations for this selective effect of nifedipine on muscle contraction are discussed.  相似文献   

11.
Electrophysiological, electrochemical and mechanical recordings were employed to study the kinetics of the release and clearance of adenosine 5′-triphosphate (ATP) and noradrenaline (NA) as sympathetic co-transmitters and of the neurogenic and non-neurogenic contractions in rat isolated tail artery. The life-time of ATP and NA released by a single pulse or 10 pulses at 50 Hz was brief (< 100 ms, or < 3 s, respectively); the neurogenic contractile responses occurred largely after the transmitters had been removed from the extracellular space. The ATP-induced neurogenic contractile responses to a single pulse or 10 pulses at 50 Hz were similar in time-course to the responses to direct muscle stimulation at low voltage; both seemed to be caused by activation of nifedipine-sensitive voltage-gated L-type Ca2+ channels. The a,- and a2-adrenoceptor-mediated components of the NA-induced neurogenic contractile response to 10 pulses at 50 Hz were more delayed and prolonged and determined by properties of the post-receptor mechanisms. The per pulse release of both ATP and NA faded rapidly during long high-frequency trains. So did the ATP level at the receptors and the ATP-induced neurogenic contraction. The NA levels and the contractile responses induced via a,- and ^-adrenoceptors were much better maintained during ongoing stimulation at 20 Hz but relaxed rapidly afterwards, suggesting that nerve activity suppressed, and ce'ssation of nerve activity reactivated NA clearance.  相似文献   

12.
The roles of extra-and intracellular calcium for the contractile effects of PGF in the feline basilar artery (BA) were investigated. Comparisons were made with contractions induced by K+ and noradrenaline (NA). Addition of nifedipine to PGF-or K+ (124 mM)-contracted arteries resulted in an incomplete relaxation, whereas NA-contracted vessels were completely relaxed. Incubation of the preparations in a calcium-free medium containing 10-5 M EGTA for 5–10 min almost abolished contractions induced by K+ and NA. In contrast, 63 % of the response to PGF remained after pretreatment of the arteries in a calcium-free solution for 40 min; PGF produced a biphasic contraction in 17 out of 20 preparations consisting of a rapidly developing initial phase followed by a second increase in tension after 1–6 min. The second phase was absent if the EGTA-concentration was increased to 10-4 M, or if the arteries were pre-treated with nifedipine. After incubation of the arteries in a calcium-free medium for 40–120 min and K+-depolarization, re-addition of calcium elicited contractions at lower concentrations in the presence of PGF than in controls. The results suggest that PGF-induced contractions in the feline BA are considerably less dependent on extracellular calcium than contractions evoked by K+ or NA. PGF appears to be able to release calcium from two cellular stores, and may also promote calcium influx through the cell membrane.  相似文献   

13.
In rings of rat iliac artery, contractions were evoked by noradrenaline (NA), the selective alpha(1) adrenoceptor agonist phenylephrine (PE), and K(+), which causes depolarisation-induced contraction. There was no evidence of alpha(2) adrenoceptor-evoked contraction. Hypoxia, induced by reducing P(O(2)) in the bath from 100 mmHg to 70, 55 or 40 mmHg, had similar effects on rings with (E+) and without (E-) endothelium. In E- rings, the NA concentration-response curve was biphasic, whereas that for PE was monophasic. Hypoxia reduced maximum contractions in response to NA and PE (NA(max) and PE(max), respectively) without affecting the concentrations that evoked 50 % of maximum contraction (EC(50)). At P(O(2)) of 70 mmHg, NA(max) of the high affinity alpha(1) receptor for NA (NA(maxh)) and PE(max) were reduced by approximately 15 %, but at P(O(2)) of 55 and 40 mmHg, NA(maxh) was severely attenuated while PE(max) fell by 45 and 75 %, respectively. Similarly, the Ca(2+) channel blocker nicardipine depressed NA(maxh) and PE(max), but P(O(2)) of 55 mmHg further reduced NA(max) and PE(max). Hypoxia also reduced contractions evoked by NA, PE or K(+) at the concentrations required to produce 80 % of the maximum contraction (EC(80)), receptor-mediated contractions being more affected. Ca(2+)-free conditions reduced the contractions evoked by NA and PE, at the EC(80), to approximately 10 % of control. The K(+) channel inhibitors glibenclamide and tetraethylammonium did not prevent hypoxia-induced depression of PE-evoked contraction. Thus, contractions evoked in iliac artery by the high affinity subtype of alpha(1) adrenoceptor for NA, which may respond to circulating levels of NA, and by the single alpha(1) adrenoceptor subtype for PE, are especially vulnerable to P(O(2)) levels less-than-or-equal 55 mmHg. We propose that this reflects hypoxia-induced inhibition of Ca(2+) influx through L-type and receptor-operated Ca(2+) channels; K(+) channel opening makes little contribution.  相似文献   

14.
The effects of absent or low Ca2+ (0.5 mM), verapamil, nifedipine, Na nitroprusside, theophylline, La2+, and ethanol on basal active tension (tone), "off" contractions, and carbachol contractions were studied in opossum lower esophageal sphincter strips. Incubation in Ca2+-free Ringer (0.1 mM EGTA) abolished tone and contractions. Low Ca2+, verapamil, nifedipine, and theophylline depressed tone more rapidly than "off" contractions. Only verapamil and nifedipine depressed carbachol contractions. Na nitroprusside rapidly depressed tone but left contractions unchanged. La3+ at 1 X 10(-3) M behaved like Ca2+-free incubation but produced sustained contractions with muscle stimulation. Ethanol depressed "off" contractions more than tone and did not affect carbachol-induced contractions. These results suggest that tone probably results from inward leak of Ca2+, whereas "off" contractions depend on release of Ca2+ sequestered in the cell by a mechanism not immediately dependent on increased Ca2+ influx. Carbachol may increase Ca2+ influx as well as utilize sequestered Ca2+. Nifedipine and verapamil may act to block both resting and stimulated Ca2+ influx. Na nitroprusside may act by increasing Ca2+ efflux. Ethanol may act by decreasing the availability of sequestered Ca2+ or by inhibiting the function of a mediator responsible for "off" contractions.  相似文献   

15.
Actions of endothelin on isolated corpus cavernosum from rabbit and man   总被引:4,自引:0,他引:4  
The effects of endothelin, a vasoconstrictor peptide produced by vascular endothelial cells, were investigated in isolated rabbit and human corpus cavernosum (CC). Preparations from both rabbit and man were potently contracted by endothelin in a concentration-dependent manner. The contractions developed slowly, could not be reversed despite frequent washings, and were only partly inhibited by the Ca2+ channel blocker nimodipine. Even in Ca2(+)-free medium containing the chelator EGTA a small contractile component persisted. In rabbit CC, the contractions in Ca2(+)-free medium were not affected by nimodipine, the Ca2(-)-channel agonist BAY K 86(44), or by depletion of intracellular Ca2(+) stores sensitive to noradrenaline (NA) and caffeine, but were almost abolished by the protein kinase C inhibitor H7. In both rabbit and man, carbachol and vasoactive intestinal polypeptide concentration-dependently relaxed preparations contracted by endothelin. The relaxations induced by carbachol were antagonized by atropine. Endothelin enhanced concentration-dependently the contractions induced by exogenously applied NA in rabbit CC. The enhancement was more pronounced at low concentrations of NA. This study shows that endothelin potently contracts isolated penile erectile tissue. The contraction seems to be mediated mainly by influx of Ca2+ through the cell membrane, which partly occurs through a pathway other than voltage-operated calcium channels. However, involvement of other mechanisms cannot be excluded. The results suggest that endothelin can play a role in penile erectile mechanisms.  相似文献   

16.
Microsurgical renal denervation of the rat has been reported to increase blood loss and bleeding time after a standardized kidney resection. To investigate the vascular effects of denervation, isolated intrarenal arteries were studied using sensitive 'isometric' recording equipment. Four pieces of evidence were obtained to indicate an effective functional denervation I week after renal nerve transection: (i) Phentolamine reduced the K+-induced contraction in controls but not in denervated arteries. (ii) The K+-induced contraction was significantly smaller in denervated than in control arteries. (iii) Noradrenaline (NA) was a significantly more potent vasoconstrictor (4 x) in denervated than in control arteries. (iv) Cocaine increased the NA sensitivity in control arteries (3 x), whereas it failed to do so in denervated vessels. Vasopressin, 5-hydroxytryptamine (5-HT), NA (in the presence of cocaine), prostaglandin F2 alpha (PGF2 alpha) and dopamine (DA) produced concentration-dependent contractions in the mentioned order of potency. Denervated arteries were found to be about two to three times more sensitive to the vasoconstrictors than control arteries. Angiotensin I and II had no contractile effect in any of the vessel segments examined. Indomethacin-pretreated arteries also failed to respond to angiotensin II. Neuropeptide Y produced only weak contractions and failed to influence the NA concentration-response relationship in either control or denervated arteries. In conclusion, renal denervation caused a general supersensitivity of the vascular smooth muscle cells to both circulating and non-circulating vasoconstrictors. Our results cannot explain the increased blood loss and bleeding time seen after denervation, but rather support the view that the enhanced bleeding was caused by an interrupted vasoconstrictor influence of the sympathetic nerves.  相似文献   

17.
The action of neuropeptide Y (NPY), which coexists with noradrenaline (NA) in perivascular sympathetic nerves, has been examined on feline cerebrovascular smooth muscle using a sensitive in vitro system. The direct cerebrovascular responses of peptides with structural similarities with NPY, peptide YY (PYY), avian (APP), and bovine (BPP) and human (HPP) pancreatic polypeptides, have been compared with that of NPY on isolated feline cerebral arteries. The relative potency for contractions induced by the peptides is: NPY, PYY greater than APP greater than BPP, HPP. The alpha-adrenoceptor antagonist rauwolscine, which blocked the response to noradrenaline (NA), had no effect on NPY-induced contractions. Neuropeptide Y significantly potentiated contractions induced by 10(-6) M NA, but not by 10(-5) M. Withdrawal of Ca2+ from the extracellular medium for 30 min reduced the contractile response to NPY in cerebral vessels by about 80%. Subsequent readdition of Ca2+ caused reproducible contractions which were inhibited by the calcium entry blocker nimodipine. Nimodipine also relaxed isolated middle cerebral artery segments contracted by NPY and NA in a concentration-dependent manner. The data suggest that NPY mediates contraction of cerebrovascular smooth muscle via a mechanism that is dependent on the concentration of extracellular calcium.  相似文献   

18.
The contribution of different receptor subtypes in the contractile response during cooling in human hand vessels is of considerable interest in the understanding of cold-induced peripheral vasospasm as it appears in Raynaud's phenomenon. Subcutaneous vein segments from 50 patients undergoing hand operations not related to vascular disorders were examined in vitro. The temperature in the organ bath was initially 37 degrees C and was either continuously lowered to 10 degrees C or kept constant at 37 degrees C, 29 degrees C or 20 degrees C. The characteristics of the alpha-adrenoceptor-mediated motor response were elucidated with the use of the alpha 1-antagonist, prazosin, and the alpha 2-antagonist, yohimbine. A great variability between individuals in the proportions of alpha 1- and alpha 2-adrenoceptors was found. In the majority of the vessels continuous cooling to 25 degrees C augmented a noradrenaline-induced contraction. This augmentation was unaltered in the presence of prazosin but abolished by yohimbine, suggesting that it was mediated via the alpha 2-adrenoceptor. In the remaining vessels with a predominating alpha 1-adrenoceptor-mediated response a cold-induced relaxation was registered. This could be the result of a reduced alpha 1-adrenoceptor-mediated contraction at this low temperature. These varying reactions to cooling were unaffected by the beta-antagonist, propranolol, and by endothelial denudation. The results obtained in corresponding experiments with the alpha 1-agonist methoxamine and alpha 2-agonist, oxymetazoline, were conflicting, probably due to the poor selectivity of these agonists in human tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The alpha 1-receptor agonist phenylephrine relaxed longitudinal rabbit jejunal muscle contracted in vitro by low concentrations of barium ions (1 mM). When the Ba2+ concentration was increased to 10-15 mM the response to phenylephrine was a contraction, and at Ba2+ concentrations in between the high and low range this response was biphasic--a relaxation followed by a contractile phase. The alpha 2-receptor agonist clonidine did not affect the tone of the Ba2+ contracted preparation. When the muscle preparation was contracted by Sr2+ (1-20 mM) in the presence of Ca2+ (2.5 mM), phenylephrine relaxed it, and no contractile response to phenylephrine was observed. In the absence of extracellular Ca2+, 5 mM Ba2+ caused a contraction. Under these conditions phenylephrine had no effect on the tissue tone. When Ca2+ was added in a low concentration (0.2-2 mM), phenylephrine elicited a gradually increasing contractile response. At 5 mM Ca2+ the contractile response was replaced by the normal relaxation. The contractile response to phenylephrine in the presence of 5 mM Ba2+ and 2.5 mM Ca2+ was partially blocked by low concentrations of verapamil. In higher concentrations verapamil abolished the tissue tonus completely. The contractile response to phenylephrine in the presence of 5 mM Ba2+ and 2.5 mM Ca2+ could be reverted to the normal relaxation by the addition of 20 mM Mg2+. Increasing the K+ concentration from the normal 5.9 to 62.9 mM blocked the phenylephrine-induced relaxation. No contractile response to phenylephrine occurred. It is concluded that Ba2+ could reverse the response of alpha 1 receptor stimulation in rabbit jejunum from a relaxation to a contraction and that this contractile response was dependent on the presence of Ca2+.  相似文献   

20.
The alpha-adrenoceptors in human omental arteries and veins were characterized and compared. In the arteries both prazosin (pA2 9.48) and rauwolscine (pA2 7.19) displaced the noradrenaline (NA) concentration-response (cr) curve towards higher concentrations without reduction of maximum. Neither clonidine, nor oxymetazoline had any consistent contractile effects. Phenylephrine had a lower potency than NA, but a similar intrinsic activity. In the veins, both prazosin (pA2 9.72) and rauwolscine (pA2 8.11) displaced the NA cr-curve towards higher concentrations, but also significantly depressed maximum. Clonidine and oxymetazoline contracted veins from 3 out of 7 and 4 out of 6 patients, respectively. Their pD2-values were similar to that of NA, but their intrinsic activities were significantly lower. NA was more potent than phenylephrine in these vessels, and there was no significant difference in intrinsic activity. The results suggest that in human omental arteries, the postjunctional alpha-adrenoceptors are mainly of the alpha 1-type, even if a small population of alpha 2-adrenoceptors cannot be excluded. In omental veins, there seems to be a functionally important population of postjunctional alpha 2-adrenoceptors occurring together with a population of alpha 1-adrenoceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号