首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To better understand the organization and evolution of the dorsal thalamus, we have made a first approach to analyze the possible histogenetic compartments of the mammalian dorsal thalamus using mouse embryos. For that, we have analyzed the expression of the proneural gene Math4a and the protein calretinin. Our results suggest the existence of rostrodorsal, caudoventral, and ventral compartments in the embryonic dorsal thalamus of the mouse, which partly parallel the dorsoventral histogenetic tiers postulated in the dorsal thalamus of sauropsids. The rostrodorsal compartment of the mouse dorsal thalamus is characterized by expression of Math4a, and it appears to include sensory and motor thalamic nuclei projecting to the dorsal pallium (isocortex). This compartment appears equivalent to the lemnothalamus proposed by Butler in tetrapods based on hodological grounds. The caudoventral and ventral compartments of the mouse dorsal thalamus lack expression of Math4a in the mantle, but they are characterized by several populations of calretinin-immunorective neurons that show projections to the claustroamygdaloid region in the ventrolateral pallium. More studies will be needed to analyze if the compartments proposed in this study represent true histogenetic units, and to find homologous developmental fields in all vertebrates.  相似文献   

2.
Expression of the calcium binding protein (CaBP) calretinin (CR) was studied with immunohistochemistry in the pineal complex and habenular nuclei (HN) of the developing and adult frog Rana esculenta. The frog pineal complex is a medial structure formed by two interconnected components, the frontal organ and the pineal organ or epiphysis; the habenular nuclei are bilateral and are asymmetric due to subdivision of the left dorsal nucleus into medial and lateral components. In the pineal complex, calretinin immunostaining of cells and fibers was consistently observed in developing and adult frogs. In the habenulae, calretinin immunoreactivity exhibited instead marked variations during development, and was expressed only in cells of the medial subnucleus of the left dorsal habenula. In particular, calretinin was detected at larval stages, peaked during metamorphosis, was markedly downregulated at the end of metamorphosis, and was evident again in adulthood. This sequence of calretinin expression was confirmed by quantitative analysis of immunoreactive cells in the left habenula. In tadpoles, calretinin-positive cells exhibited a dorsoventral gradient of density, while in adulthood, they were distributed throughout the dorsoventral extent of the medial subnucleus. The study demonstrates a peculiar developmental pattern, with transient downregulation, of asymmetric calretinin expression in the frog epithalamus. The findings indicate that calcium and calcium buffering systems may play critical roles in neurogenetic and neuronal migration processes implicated in the formation of the asymmetric habenular portion in amphibians. In addition, the reappearance of calretinin expression in the adult frog supports a distinct functional role of the asymmetric habenular component in amphibians.  相似文献   

3.
4.
In many systems, including ascending auditory pathways, calcium-binding proteins are markers of specific neuronal circuits. Previous studies suggest that calretinin immunostaining may be a specific marker for circuits in the inferior colliculus (IC) that code timing information. We undertook experiments to determine the changes in calretinin immunostaining in the IC that take place in response to cochlear ablation. Cochlear ablation was performed unilaterally in ferrets just after hearing onset. Animals survived for 2-3 months after ablation and brains were then processed for calretinin immunocytochemistry. The mean optical density and stained area of the calretinin immunopositive plexus in the IC were determined for five coronal sections through the right and left IC. In controls (n = 3), measurements of these parameters in the central nucleus of the IC showed symmetry between the two sides. In experimental animals (n = 8) the calretinin immunopositive plexus contralateral to the cochlear ablation was denser and larger than that in either the ipsilateral IC or in the IC of control animals. The calretinin plexus in the ipsilateral IC was slightly less dense and smaller than in controls but the differences did not reach statistical significance. IC volume measurements and synaptophysin immunostaining analysis in the central nucleus of the IC revealed no statistical differences between ablated and control animals or between the two sides in ablated animals. The significant increase in both mean optical density and immunostained area of the calretinin plexus in the IC contralateral to the cochlear ablation may reflect an upregulation in calretinin expression in the nuclei that contribute to this plexus.  相似文献   

5.
This paper re-examines a previously published segmental map of the frog diencephalon (Puelles et al. [1996] Brain Behav.Evol. 47:279-310) by means of immunocytochemical mapping of calretinin, calbindin, and tyrosine hydroxylase. The distribution of neuronal populations, axon tracts, and neuropils immunoreactive for these markers was studied in adult specimens of Rana perezi and Xenopus laevis sectioned sagittally or horizontally. Emphasis was placed on study of the relationship of observed chemoarchitectural boundaries with the postulated overall prosomeric organization and the schema of nuclear subdivisions we reported previously, based on acetylcholinesterase histochemistry and Nissl pattern in Rana. The data reveal a large-scale correspondence with the segmental map in both species, although some differences were noted between Rana and Xenopus. Notably, retinorecipient neuropils were generally immunoreactive for calretinin only in Rana. Importantly, calretinin immunostaining underlines particularly well the transverse prosomeric boundaries of the dorsal thalamus. A number of nuclear subdivisions noted before with AChE were corroborated, and some novel subdivisions became apparent, particularly in the anterior nucleus of the dorsal thalamus and in the habenular complex. The mapping of tyrosine hydroxylase clarified the segmental distribution of the catecholaminergic cell groups in the frog forebrain, which is comparable to that observed in other vertebrates.  相似文献   

6.
Tottering mice are a spontaneously occurring animal model of human absence epilepsy. They carry a mutation in the P/Q-type calcium channel alpha1A subunit gene which is highly expressed by cerebellar Purkinje cells. In this study, we investigated the role of calretinin and ryanodine receptor type 1 (RyR1) gene expression in the cerebellum of tottering mice. Cerebellar tissue specimens from four experimental groups were processed for in situ hybridization histochemistry (ISHH): (1) wild-type (+/+); (2) heterozygous (tg/+) and two homozygous groups; either (3) without occurrence of an episode of paroxysmal dyskinesia (tg/tg-N); or (4) after an episode of paroxysmal dyskinesia (tg/tg-P) that lasted about 45 min on average. Quantitative analysis showed a statistically significant decrease (p = 0.0001, ANOVA) of calretinin gene expression at the level of the simple lobule of the cerebellum in both homozygous groups compared to the wild-type and heterozygous groups. RyR1 was decreased in the flocculus of the cerebellum in both the tg/tg-N and tg/tg-P groups compared to wild type (p = 0.0174, ANOVA). These results suggest that calretinin gene expression, as well as other genes involved in regulation of calcium homeostasis, such as RyR1, may play a role in the biochemical functional alterations present in tottering mice.  相似文献   

7.
8.
The genes encoding pituitary adenylyl cyclase-activating peptide (PACAP) and its selective type I receptor (PAC1) are expressed in the embryonic mouse neural tube, where they may be involved in neurogenesis and neural tube development. We examined here the early expression and potential actions of PACAP and PAC1 in the vertebrate developmental model Xenopus laevis. PACAP and PAC1 mRNAs were first detected by RT-PCR in stage 16-18 embryos (18 hours after fertilization). Two distinct PACAP precursor mRNAs were identified. One encoded both growth hormone-releasing hormone and PACAP, whereas the other encoded only full-length PACAP. Unlike that in the adult, the latter represented the predominant embryonic PACAP mRNA species. In situ hybridization revealed that PACAP and PAC1 mRNAs were restricted to neural cells. PAC1 gene expression was observed mainly in the ventricular zone in the ventral parts of the prosencephalon, mensencephalon, rhombencephalon, and anterior spinal cord. In contrast, PACAP mRNA was localized exclusively in postmitotic cells in the dorsolateral parts of the rhombencephalon and entire spinal cord. Most PACAP mRNA-containing cells were characterized as Rohon-Beard neurons. Exposure of early embryos to UV irradiation, which ventralizes embryos and inhibits neural induction, reduced the expression of PACAP and PAC1 genes. These results suggest that PACAP may be involved in the early development of the embryonic Xenopus neural tube.  相似文献   

9.
Some gray matter regions of the vertebrate brain, e.g., the mammalian striatum, are organized into clusters of functionally similar neurons ("patches") that are surrounded by a gray matter matrix. A similar type of compartmentation recently has been found also in the avian telencephalon, based on two sorts of evidence. First, a birth dating study showed that, in some telencephalic areas, cells born at the same time form "isochronic" cell clusters, which differ in their birth dating pattern from their surrounding tissue. Second, patchy expression was found for different members of the cadherin family of adhesion molecules (R-cadherin, N-cadherin, and/or cadherin-7). The relation between these two findings has remained unclear. Here, we demonstrate a general spatial coincidence between the birth dating patterns and the heterogeneities in cadherin expression. This coincidence is found in areas of the avian ventral and lateral pallium (ventral hyperstriatum, neostriatum, and ectostriatum) and in a part of the archistriatum, which is of pallial origin. For example, in the neostriatum, a part of the ventral pallium, both the cadherin-7-positive patches and their R-cadherin-positive surroundings are born between embryonic day 5 and 7, but the cadherin-7-positive cells are born during a shorter time period than the R-cadherin-positive cells. We propose that the patchy gray matter architecture observed in the mammalian striatum and avian pallium are regulated by a common type of morphogenetic mechanism. This mechanism possibly involves the differential expression of adhesive factors, such as cadherins.  相似文献   

10.
The amygdala controls emotional and social behavior and regulates instinctive reflexes such as defense and reproduction by way of descending projections to the hypothalamus and brainstem. The descending amygdalar projections are suggested to show a cortico-striato-pallidal organization similar to that of the basal ganglia (Swanson [2000] Brain Res 886:113-164). To test this model we investigated the embryological origin and molecular properties of the mouse centromedial and extended amygdalar subdivisions, which constitute major sources of descending projections. We analyzed the distribution of key regulatory genes that show restricted expression patterns within the subpallium (Dlx5, Nkx2.1, Lhx6, Lhx7/8, Lhx9, Shh, and Gbx1), as well as genes considered markers for specific subpallial neuronal subpopulations. Our results indicate that most of the centromedial and extended amygdala is formed by cells derived from multiple subpallial subdivisions. Contrary to a previous suggestion, only the central--but not the medial--amygdala derives from the lateral ganglionic eminence and has striatal-like features. The medial amygdala and a large part of the extended amygdala (including the bed nucleus of the stria terminalis) consist of subdivisions or cell groups that derive from subpallial, pallial (ventral pallium), or extratelencephalic progenitor domains. The subpallial part includes derivatives from the medial ganglionic eminence, the anterior peduncular area, and possibly a novel subdivision, called here commissural preoptic area, located at the base of the septum and related to the anterior commissure. Our study provides a molecular and morphological foundation for understanding the complex embryonic origins and adult organization of the centromedial and extended amygdala.  相似文献   

11.
In this study, we review data on the existence of comparable divisions and subdivisions in the telencephalon of different groups of tetrapods based on expression of some developmental regulatory genes, having a particular focus in the comparison of the anuran amphibian Xenopus and the mouse. The available data on Xenopus, mouse, chick and turtle indicate that apparently all tetrapod groups possess the same molecularly distinct divisions and subdivisions in the telencephalon. This basic organization was likely present in the telencephalon of stem tetrapods. Each division/subdivision is characterized by expression of a unique combination of developmental regulatory genes, and appears to represent a self-regulated and topologically constant histogenetic brain compartment that gives rise to specific groups of cells. This interpretation has an important consequence for searching homologies, since a basic condition for cell groups in different vertebrates to be considered homologous is that they originate in the same compartment. However, evolution may allow individual cell groups derived from comparable (field homologous) subdivisions to be either similar or dissimilar across the vertebrate groups, giving rise to several possible scenarios of evolution, which include both the evolutionary conservation of similar (homologous) cells or the production of novel cell groups. Finally, available data in the lamprey, a jawless fish, suggest that not all telencephalic subdivisions were present at the origin of vertebrates, raising important questions about their evolution.  相似文献   

12.
Immunohistochemical techniques were used to investigate the distribution and morphology of neurons containing the calcium-binding proteins calbindin-D28k (CB) and calretinin (CR) in the spinal cord of Xenopus laevis and determine the extent to which this organization is comparable to that of mammals. Most CB- and CR-containing neurons were located in the superficial dorsal gray field, but with distinct topography. The lateral, ventrolateral, and ventromedial fields also possessed abundant neurons labeled for either CB or CR. Double immunohistofluorescence demonstrated that a subpopulation of dorsal root ganglion cells and neurons in the dorsal and ventrolateral fields contained CB and CR. By means of a similar technique, a cell population in the dorsal field was doubly labeled only for CB and nitric oxide synthase (NOS), whereas in the ventrolateral field colocalization of NOS with CB and CR was found. Choline acetyltransferase immunohistochemistry revealed that a subpopulation of ventral horn neurons, including motoneurons, colocalized CB and CR. The involvement of CB- and CR-containing neurons in ascending spinal projections was demonstrated combining the retrograde transport of dextran amines and immunohistochemistry. Cells colocalizing the tracer and CB or CR were quite numerous, primarily in the dorsal and ventrolateral fields. Similar experiments demonstrated supraspinal projections from CB- and CR-containing cells in the brainstem and diencephalon. The distribution, projections, and colocalization with neurotransmitters of the neuronal systems containing CB and CR in Xenopus suggest that CB and CR are important neuromodulator substances with functions conserved in the spinal cord from amphibians through mammals.  相似文献   

13.
14.
15.
16.
17.
The present study determines the effects of sciatic nerve stimulation at intensities that activate A-fibers alone or both A- and C-fibers on immunostaining for substance P (SP), cholecystokinin-octapeptide (CCK-8), galanin (GAL), dynorphin (DYN) and vasoactive intestinal polypeptide (VIP) in the superficial dorsal horn of the rat spinal cord. The goal of this study is to provide a more precise spatial localization of the sites or release or accumulation of these compounds in relation to specific types of stimuli. Following A-fiber stimulation, there was no significant change in immunostaining for any of these compounds. However, A- and C-fiber stimulation resulted in major changes. For SP, CCK-8, GAL and DYN there was a large and significant loss of immunostaining in medial regions of the dorsal horn. This is the area where sciatic nerve primary afferent fibers terminate and the depletion is probably correlated with activity in these fibers. By contrast, VIP immunostaining is increased in the lateral part of the supeficial cord, which is outside of the central sciatic afferent fiber terminations. This indicates that the increase is not in the fine sciatic sensory axons that are directly stimulated. As a final point, the fact that C-fiber but not A-fiber stimulation causes marked changes in the immunocytochemical distribution of all these compounds is further evidence, albeit indirect, that they are involved in nociceptive information processing.  相似文献   

18.
Calretinin and calbindin staining were compared in the vestibular periphery of old (35-48 months) and young (4-12 months) animals. Both stain calyx-only afferents; calbindin stains additional terminals in the apex [Brain Res. 928 (2002) 8-17]. In six of seven pairs of animals, calretinin and calbindin staining was diminished or absent in the old animals. These changes suggest that a reduction in certain calcium-binding proteins may be a characteristic of aging animals.  相似文献   

19.
Eph/ephrin expression was studied in Rana utricularia larvae and adults with in situ receptor and ligand affinity probes. From stages TK-II (early limb bud) to VI (early foot paddle larva), tectal EphB expression is highest in a band extending transversely across the posterior optic tectum and grades off anteriorly and posteriorly. The ephrin-A expression gradient is parallel to the EphB gradient rather than being orthogonal to it. However, its high point occupies the posterior pole, and it runs from high-posteriorly to low-anteriorly. Tectal EphA expression is high anteriorly and low posteriorly, while ephrin-Bs are expressed only in a thin line at the dorsal midline. At later stages and in adults, tectal EphB expression becomes uniform.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号