首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present study characterizes the synthesis of kynurenic acid (KYNA) from exogenously added kynurenine and its regulation by extrinsic factors, in cultured cerebral cortical neurons and, for comparison, in astrocytes incubated under identical conditions. The neuronal culture showed positive immunostaining for both kynurenic acid aminotransferase (KAT) isoforms I and II. Neurons synthesized KYNA at a rate about 2.3 times higher than astrocytes. Neuronal, but not astrocytic, KYNA synthesis was lowered approximately 30% by ionotropic glutamate receptor agonists [(R,S)-3-hydroxy-5-methoxyloxasole-4-propionic acid (AMPA; 100 microM) and N-methyl-D-aspartic acid (NMDA; 100 microM)] and depolarizing agents [KCl (50 mM) and 4-aminopyridine (4-AP; 10 microM)]. Neuronal and astrocytic synthesis alike were vulnerable to inhibition exerted by the aminotransferase inhibitor aminooxyacetic acid (AOAA), glutamate (IC50: 31 and 85 microM, respectively), substrates of the L-amino transport system [leucine (Leu); IC50: 19 and 42 microM, respectively] and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH; IC50: 19 and 28 microM, respectively). Glutamine (Gln), which is a metabolic precursor of glutamate in astrocytes and L-system substrate in both cell types, inhibited KYNA synthesis both in neurons and in astrocytes (IC50: 268 and 318 microM, respectively). alpha-Ketoisocaproic acid (KIC), a Leu transamination product that is produced mainly in astrocytes and shuttled to neurons to modulate intraneuronal concentration of glutamate, stimulated KYNA synthesis in neurons but did not affect the synthesis in astrocytes. In conclusion, this study is the first to demonstrate active, regulation-prone KYNA synthesis in neurons.  相似文献   

2.
The synthesis of kynurenic acid (KYNA) from kynurenine was measured in the cerebral cortical slices. In vitro, ammonium acetate at the subtoxic to toxic concentration range from 1 mM to 10 mM dose-dependently inhibited KYNA synthesis (IC50=2.99 mM). Ammonia treatment in vivo decreased KYNA synthesis by 30%. These results suggest that impaired neuroprotection exerted by KYNA might be a potential contributor to the glutamate receptor-mediated aspect of acute ammonia neurotoxicity.  相似文献   

3.
Summary. The purpose of the present study was to investigate the effect of glutamate agonists upon kynurenic acid (KYNA) production in bovine retinal slices. Quantitative analysis of newly synthesized KYNA was carried out using an HPLC system and detected fluorimetrically. Glutamate at the concentration of 0.01, 0.1 and 1 mM reduced KYNA synthesis in the retinal slices to 70% (p < 0.05), 35% (p < 0.01) and 23% (p < 0.001), respectively. The concentration of glutamate reducing production of KYNA by 50% (IC50) was 0.035 mM (0.02–0.06). Aspartate at the concentration of 0.01, 0.1 and 1 mM lowered KYNA synthesis in the retinal slices to 80% (p < 0.01), 57% (p < 0.001) and 43% (p < 0.001), respectively. In contrast, kainic acid (up to 5 mM), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) (up to 1 mM) and 1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD) (up to 3 mM) turned out to be ineffective in diminishing KYNA synthesis. These data demonstrate that glutamate, aspartate and N-methyl-D-aspartate (NMDA) inhibit KYNA synthesis in bovine retinal slices with different potency.  相似文献   

4.
The effect of potassium depolarization and N-methyl-D-aspartate (NMDA) on the activity of aspartate aminotransferase (AAT; EC 2.6.1.1), an enzyme suggested to be involved in neurotransmitter glutamate synthesis, was studied in cultured cerebellar granule neurons. Both KCl and NMDA increased AAT activity in a dose-dependent manner. When cells were treated 48-72 hr with 40 mM KCl or 150 microM NMDA the AAT was enhanced about 65-75%. The EC50 for NMDA and KCl were 25 microM and 17 mM, respectively. The effect of NMDA and KCl was specific for AAT without affecting the activity of other enzymes like lactate dehydrogenase or protein content and it was observed only in granule cells but not in astrocytes or cortical neurons. The effect of KCl was not mediated by an activation of excitatory amino acid receptors and was Ca(++)-dependent. The effect of NMDA was completely blocked by Mg++ and NMDA antagonists. The increase of AAT induced by AAT and KCl was blocked by cycloheximide and actinomycin D, suggesting an involvement of de novo synthesis of proteins and RNA. Kainic acid and quinolinic acid were also effective in increasing the AAT activity. The action of kainate was less effective than that of NMDA and it was observed only at relatively low concentrations (10 microM). Quinolinic acid raised the activity of AAT about 45% at a concentration of 500 microM. Other non-NMDA agonists did not modify the AAT activity. From these findings we can conclude that NMDA and KCl exert a trophic action on cerebellar granular neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Increased serum level of homocysteine, a sulfur-containing amino acid, is considered a risk factor in vascular disorders and in dementias. The effect of homocysteine and metabolically related compounds on brain production of kynurenic acid (KYNA), an endogenous antagonist of glutamate ionotropic receptors, was studied. In rat cortical slices, DL-homocysteine enhanced (0.1-0.5 mM) or inhibited (concentration inducing 50% inhibition [IC50]=6.4 [5.5-7.5] mM) KYNA production. In vivo peripheral application of DL-homocysteine (1.3 mmol/kg intraperitoneally) increased KYNA content (pmol/g tissue) from 8.47 +/- 1.57 to 13.04 +/- 2.86 (P <0.01; 15 min) and 11.4 +/- 1.72 (P <0.01; 60 min) in cortex, and from 4.11 +/- 1.54 to 10.02 +/- 3.08 (P <0.01; 15 min) in rat hippocampus. High concentrations of DL-homocysteine (20 mM) applied via microdialysis probe decreased KYNA levels in rabbit hippocampus; this effect was antagonized partially by an antagonist of group I metabotropic glutamate receptors, LY367385. In vitro, S-adenosylhomocysteine acted similar to but more potently than DL-homocysteine, augmenting KYNA production at 0.03-0.08 mM and reducing it at > or =0.5 mM. The stimulatory effect of S-adenosylhomocysteine was abolished in the presence of the L-kynurenine uptake inhibitors L-leucine and L-phenyloalanine. Neither the N-methyl-D-aspartate (NMDA) antagonist CGS 19755 nor L-glycine influenced DL-homocysteine- and S-adenosylhomocysteine-induced changes of KYNA synthesis in vitro. DL-Homocysteine inhibited the activity of both KYNA biosynthetic enzymes, kynurenine aminotransferases (KATs) I and II, whereas S-adenosylhomocysteine reduced only the activity of KAT II. L-Methionine and L-cysteine, thiol-containing compounds metabolically related to homocysteine, acted only as weak inhibitors, reducing KYNA production in vitro and inhibiting the activity of KAT II (L-cysteine) or KAT I (L-methionine). The present data suggest that DL-homocysteine biphasically modulates KYNA synthesis. This seems to result from conversion of compound to S-adenosylhomocysteine, also acting dually on KYNA formation, and in part from the direct interaction of homocysteine with metabotropic glutamate receptors and KYNA biosynthetic enzymes. It seems probable that hyperhomocystemia-associated brain dysfunction is mediated partially by changes in brain KYNA level.  相似文献   

6.
Kynurenic acid (KYNA), an endogenous antagónist of ionotropic excitatory amino acid (EAA) receptors, was tested for its ability to modulate N-methyl-D-aspartate (NMDA)- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)induced excitation of dopamine (DA)-containing neurons in the zona compacta of the rat substantia nigra (SNc). Experiments were conducted using extracellular recording techniques in conjunction with an in vitro brain slice preparation. Bath application of NMDA (1–20 μ) or AMPA (0.5–10 μ) produced a concentration-dependent increase in the firing rate of SNc DA neurons but had no effect on firing pattern. The highest concentration of both agonists produced a rapid and reversible cessation of activity that was attributed to acute induction of depolarization block. Addition of glycino (GLY) (up to 100 μ) to the bathing solution had no effect on either basal firing rate or the increase in activity produced by NMDA. KYNA (10 μ–1 mM) antagonized the excitatory effects of both NMDA (15 μ) and AMPA (3 μ) in a concentration-dependent fashion (IC50: 102 μ and 64 μ, respectively) without affecting basal firing rate. Perfusion of tissue slices with a modified Ringer's solution containing low Mg2+ (0.12 mM) increased NMDA-induced excitation but did not affect the antagonist properties of KYNA. D-serine (100 μ) reversed the ability of KYNA to block the excitatory effects of NMDA, suggesting that KYNA attenuates NMDA-induced excitation of SNc DA neurons via blockade of the GLY allosteric site on the; NMDA receptor. The ability of KYNA to modulate the excitatory effects of both NMDA and non-NMDA agonists implies that endogenous KYNA may play a physiological role it regulating DA cell excitability. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Increased ammonia is a major pathogenic factor in hepatic encephalopathy (HE), a neurologic syndrome associated with glutamatergic dysfunction. Previous studies have shown that in rat cerebral cortical slices or a glia-derived cell line, acute treatment with ammonia in vitro and in vivo inhibits the production of a broad-spectrum antagonist of excitatory amino acid receptors, kynurenic acid (KYNA). The present study analyzed KYNA synthesis in cerebral cortical slices obtained from rats with progressing HE symptoms accompanying acute liver failure induced by one, two, or three intraperitoneal administrations of thioacetamide (TAA) at 24-hr intervals. KYNA synthesis was found decreased to 83% of control 24 hr after one administration of TAA and unaffected after two TAA injections, when moderate hyperammonemia was associated by metabolic and bioelectric activation of the central nervous system, but was not accompanied by typical HE symptoms. KYNA synthesis was elevated to 155% of control after three TAA administrations, a period in which the rats showed advanced HE symptoms including stupor or coma. KYNA synthesis at the advanced HE stage was inhibited by glutamate in a degree comparable to that observed in control slices. The elevation of KYNA synthesis was associated with increased activity of a kynurenine aminotransferase (KAT) isomer, KAT-II. KYNA synthesis did not differ from control 21 days after the third TAA administration when HE symptoms receded. The results suggest that alterations of KYNA synthesis may contribute to the imbalance between neural excitation and inhibition at different stages of HE.  相似文献   

8.
Adenosine (ADO) is an important neuromodulator in brain. During pathophysiological events such as stroke or brain trauma, ADO levels can increase up to 100-fold. We tested the hypothesis that astrocytes are important for the removal of ADO produced by neurons and for the metabolism of ADO to inosine (INO) and hypoxanthine (HX). We used four different cell culture preparations: cortical neurons, cortical astrocytes, cocultures of neurons and astrocytes, and neurons transiently cocultured with astrocytes on transwell filters. These cultures were treated with N-methyl-D-aspartate (NMDA), because NMDA receptor activation is a common factor among many causes of neurotoxicity. NMDA significantly increased extracellular ADO, INO, and HX levels from cultured cortical neurons by 3-, 3.5-, and 2-fold, respectively. In cocultures, NMDA significantly increased INO, by 4.5-fold, and HX, by 3-fold, but did not increase ADO levels. There was no NMDA-evoked purine production from astrocytes. Inhibition of purine nucleoside phosphorylase (PNP) significantly decreased HX production from both neurons and cocultures to less than 30% of control levels. The transient addition of astrocytes to neurons during NMDA treatment significantly increased HX and decreased ADO levels compared with neurons alone. In addition, increasing the number of astrocytes was directly correlated with an increased capacity of ADO metabolism to INO and HX. In conclusion, NMDA evoked the production of ADO, INO, and HX from neurons. In the presence of astrocytes, there was significantly less ADO and more HX produced. Thus, ADO produced by neurons is subject to metabolism by astrocytes, a process that may limit its neuromodulatory actions.  相似文献   

9.
10.
Rat spinal cord slices produced kynurenic acid (KYNA) upon exposure to L-kynurenine. Aminooxyacetic acid, non-selective aminotransferase inhibitor, and L-glutamate, but neither N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-metyloisoxazolo-4-propionate (AMPA), nor kainate, diminished synthesis of KYNA. L-Glutamate action was less potent in spinal than in cortical slices. Metabotropic agonists, L-(+)-2-amino-4-phosphonobutyrate (L-AP4) and (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD), used in concentrations inhibiting cortical KYNA synthesis, were ineffective in spinal cord. Spinal KYNA production seems less susceptible to inhibitory modulation.  相似文献   

11.
Ketone bodies formed during ketogenic diet or non-treated diabetes mellitus may exert neuroprotective and antiepileptic effects. Here, we assessed the influence of ketone body, β-hydroxybutyrate (BHB) on the brain synthesis of kynurenic acid (KYNA), an endogenous antagonist of glutamatergic and α7-nicotinic receptors. In brain cortical slices and in primary glial cultures, BHB enhanced KYNA production. KT 5270, an inhibitor of protein kinase A, has prevented this action. At hypoglycemia, under pH 7.0 and 7.4, profound (15 mM BHB), but not mild (3 mM) ketosis increased synthesis of KYNA. In paradigm resembling diabetic ketoacidosis in vitro (30 mM glucose, pH 7.0), neither mild nor profound ketosis influenced the production of KYNA. At pH 7.4 and in 30 mM glucose though, both mild and severe ketonemia evoked an increase of KYNA production. The activity of KYNA biosynthetic enzymes, KAT I and KAT II, in cortical homogenate was not altered by BHB (0.05–10.0 mM). However, in cultured glial cells exposed to BHB (10 mM), the activity of KATs increased. This effect was reversed by the co-incubation of cells with KT 5270. Presented data reveal a novel mechanism of action of BHB. Increased synthesis of KYNA in the presence of BHB is most probably mediated by protein kinase A-dependent stimulation of KATs expression/activity leading to an increase of KYNA formation. Ensuing attenuation of the excessive excitatory glutamate-mediated neurotransmission may, at least in part, explain the neuroprotective actions of BHB.  相似文献   

12.
Primary cultures of cerebral cortical neurons were prepared from 7- to 8-day-old chick embryos. The effect of ethanol on GABA-activated membrane current was examined using whole-cell voltage-clamp recording in cells maintained for 3-25 days in vitro. In approximately 60% of neurons examined ethanol caused a potentiation of the membrane current elicited by GABA. The threshold concentration of ethanol was 1 mM, and the potentiating effect of ethanol on GABA-activated currents was maximal at 10 mM. In many cells higher concentration (40-50 mM) of ethanol inhibited GABA-activated currents. These effects of ethanol were all reversible.  相似文献   

13.
Cultures of chicken day 8 embryo retinal cells, essentially free of contaminating non-neuronal elements, were used to examine the neurotoxicity of various excitatory amino acid transmitter receptor agonists. At 7 days in vitro, N-methyl-D-aspartate (NMDA), following 24 hr exposure to 0.1-1.0 mM, destroyed 60-70% of the multipolar neurons, but apparently spared photoreceptors. The cytotoxic effect of NMDA was prevented by extracellular Mg2+ or phencyclidine, suggesting a role for the NMDA ion channel; competitive NMDA antagonists were also neuroprotective. The mixed excitatory amino acid receptor agonist glutamate (0.1-1.0 mM) was also neurotoxic (approximately 70% loss of multipolar neurons) and strongly blocked by NMDA (but weakly by non-NMDA) antagonists and Mg2+, indicating a major action at NMDA receptors. As with NMDA, glutamate did not appear to affect photoreceptors. The neurotoxic action of kainate against multipolar retinal neurons, as reported by others, was confirmed here. Kainate neuronal injury was sensitive to the quinoxalinedione non-NMDA antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyanoquinoxaline-2,3-dione (CNQX), but not to Mg2+ or phencyclidine. Ibotenate and quisqualate, even at millimolar concentrations, were not neurotoxic. The monosialoganglioside GM1 was also effective in reducing NMDA and non-NMDA agonist neurotoxicity to retinal neurons. Maximal ganglioside benefit required 1-2 hr of pretreatment with 100-200 microM GM1. The percentage of multipolar neurons remaining after the neurotoxin insult approximately doubled with GM1 treatment. Gangliosides may thus have a therapeutic potential in excitatory amino acid-initiated neuropathologies.  相似文献   

14.
The central levels of endogenous tryptophan metabolite kynurenic acid (KYNA), an antagonist of N-methyl-d-aspartate (NMDA) and α7-nicotinic receptors, affect glutamatergic and dopaminergic neurotransmission. Here, we demonstrate that selective agonists of β1-receptors (xamoterol and denopamine), β2-receptors (formoterol and albuterol), α- and β-receptors (epinephrine), 8pCPT-cAMP and 8-Br-cAMP (analogues of cAMP) increase the production of KYNA in rat brain cortical slices and in mixed glial cultures. Neither betaxolol, β1-adrenergic antagonist, nor timolol, a non-selective β1,2-adrenergic antagonist has influenced synthesis of KYNA in both paradigms. In contrast, KT5720, a selective inhibitor of protein kinase A (PKA), strongly reduced KYNA formation in cortical slices (2–10 µM) and in glial cultures (100 nM). β-adrenergic antagonists and KT5720 prevented the β-adrenoceptor agonists-induced increases of KYNA synthesis. In vivo, β-adrenergic agonist clenbuterol (0.1–1.0 mg/kg) increased the cortical endogenous level of KYNA; the effect was blocked with propranolol (10 mg/kg). β-adrenoceptors agonists, cAMP analogues and KT5720 did not affect directly the activity of KAT I or KAT II measured in partially purified cortical homogenate. In contrast, the exposure of intact cultured glial cells to pCPT-cAMP, 8-Br-cAMP and formoterol has lead to an enhanced action of KATs. These findings demonstrate that β-adrenoceptor-mediated enhancement of KYNA production is a cAMP- and PKA-dependent event. PKA activity appears to be an essential signal affecting KYNA formation. Described here novel mechanism regulating KYNA availability may be of a potential importance, considering that various stimuli, among them clinically used drugs, activate cAMP/PKA pathway, and thus could counteract the central deficits of KYNA.  相似文献   

15.
The excitatory amino acid glutamate is a potent vasodilator in the central nervous system. Glutamate-induced vasodilation is mediated primarily by N-methyl-D-aspartate (NMDA) and AMPA/kainate (KAIN) receptors. We have now tested whether two metabolites of the kynurenine pathway of tryptophan degradation acting at the NMDA receptor, the antagonist kynurenic acid (KYNA) and the agonist quinolinic acid (QUIN), are capable of modulating the dilation of pial arterioles. The closed cranial window technique was used, and changes in vessel diameter ( approximately 100 microm) were analyzed in anesthetized newborn piglets. Topical application of NMDA (10(-4) M) or KAIN (5 x 10(-5) M) resulted in marked vasodilation (44 +/- 5% and 39 +/- 4%, respectively). Neither KYNA nor QUIN (both at 10(-5) to 10(-3) M) affected the vessel diameter when applied alone. Co-application of KYNA dose-dependently reduced the vasodilation caused by 10(-4) M NMDA and also attenuated the KAIN-induced response. Ten minutes of global cerebral ischemia did not modify the interaction between KAIN and KYNA. In contrast, KYNA did not affect vasodilation to hypercapnia, elicited by the inhalation of 10% CO2. Moreover, endogenous levels of KYNA and QUIN in the cerebral cortex, hippocampus and thalamus were found to be essentially unchanged during the early reperfusion period (0.5-2 h) following an episode of cerebral ischemia. Our data are relevant for the use of drugs that target the kynurenine pathway for therapeutic interventions in cerebrovascular diseases.  相似文献   

16.
Summary. In the rodent brain, astrocytes are known to be the primary source of kynurenate (KYNA), an endogenous antagonist of both the glycineB and the α7 nicotinic acetylcholine receptor. In the present study, primary human astrocytes were used to examine the characteristics and regulation of de novo KYNA synthesis in vitro. To this end, cells were exposed to KYNA's bioprecursor L-kynurenine, and newly formed KYNA was recovered from the extracellular milieu. The production of KYNA was stereospecific and rose with increasing L-kynurenine concentrations, reaching a plateau in the high μM range. In an analogous experiment, astrocytes also readily produced and liberated the potent, specific glycineB receptor antagonist 7-chlorokynurenate from L-4-chlorokynurenine. KYNA synthesis was dose-dependently reduced by L-leucine or L-phenylalanine, two amino acids that compete with L-kynurenine for cellular uptake, and by aminooxyacetate, a non-specific aminotransferase inhibitor. In contrast, KYNA formation was stimulated by 5 mM pyruvate or oxaloacetate, which act as co-substrates of the transamination reaction. Aglycemic or depolarizing (50 mM KCl or 100 μM veratridine) conditions had no effect on KYNA synthesis. Subsequent studies using tissue homogenate showed that both known cerebral kynurenine aminotransferases (KAT I and KAT II) are present in astrocytes, but that KAT II appears to be singularly responsible for KYNA formation under physiological conditions. Taken together with previous results, these data suggest that very similar mechanisms control KYNA synthesis in the rodent and in the human brain. These regulatory events are likely to influence the neuromodulatory effects of astrocyte-derived KYNA in the normal and diseased human brain. Received January 23, 2001; accepted June 10, 2002 Published online November 22, 2002 Acknowledgements We thank S. Stilling for excellent secretarial assistance and Dr. R. Bloch for kindly providing several secondary antibodies. This work was supported by USPHS grants HD 16596 and NS 16102. Authors' address: R. Schwarcz, Ph.D., Maryland Psychiatric Research Center, P.O. Box 21247, Baltimore, Md 21228, U.S.A., e-mail: rschwarc@mprc.umaryland.edu  相似文献   

17.
The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between neurons and astrocytes. In the present study, we determined the role of N-methyl-D-aspartate (NMDA) receptors on glutamate-evoked Ca(2+) influx into neurons and astrocytes. Either a nonselective NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) or selective NR2B subunit-containing NMDA receptor antagonists ifenprodil and (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (Ro25-6981) significantly inhibited the glutamate-evoked Ca(2+) influx into neurons, but not into astrocytes. Furthermore, we investigated whether NR2B subunit-containing NMDA receptor antagonists could suppress the astrocytic activation, as detected by glial fibrillary acidic protein (GFAP; as a specific marker of astrocyte)-like immunoreactivities in mouse cortical astrocytes. Here, we demonstrated that the increases in the level of GFAP-like immunoreactivities induced by glutamate were markedly suppressed by cotreatment with ifenprodil in cortical neuron/glia cocultures, but not in purified astrocytes. These results suggest that NR2B subunit-containing NMDA receptor plays a critical role in not only glutamate-evoked Ca(2+) influx into neurons, but also glutamate-induced astrocytic activation. Thus, glutamate-mediated pathway via NR2B subunit-containing NMDA receptor may, at least in part, contribute to neuron-to-astrocyte signaling.  相似文献   

18.
Glutamine-induced free radical production in cultured astrocytes   总被引:4,自引:0,他引:4  
Ammonia is a neurotoxin implicated in the pathogenesis of hepatic encephalopathy, Reye's syndrome, inborn errors of the urea cycle, glutaric aciduria, and other metabolic encephalopathies. Brain ammonia is predominantly metabolized to glutamine in astrocytes by glutamine synthetase. While the synthesis of glutamine has generally been viewed as the principal means of ammonia detoxification, this presumed beneficial effect has been questioned as growing evidence suggest that some of the deleterious effects of ammonia may be mediated by glutamine rather than ammonia per se. Since ammonia is known to induce the production of free radicals in cultured astrocytes, we investigated whether such production might be mediated by glutamine. Treatment of astrocytes with glutamine (4.5 mM) increased free radical production at 2-3 min (95%; P < 0.05), as well as at 1 and 3 h (42% and 49%, respectively; P < 0.05). Similarly treated cultured neurons failed to generate free radicals. Free radical production by glutamine was blocked by the antioxidants deferoxamine (40 microM) and alpha-phenyl-N-tert-butyl-nitrone (250 microM), as well as by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (500 microM). Free radical production was also blocked by 6-diazo-5-oxo-L-norleucine (1 mM), an inhibitor of glutaminase, suggesting that ammonia released by glutamine hydrolysis may be responsible for the generation of free radicals. Additionally, the mitochondrial permeability transition inhibitor, cyclosporin A, blocked free radical production by glutamine. The results indicate that astrocytes, but not neurons, generate free radicals following glutamine exposure. Glutamine-induced oxidative and/or nitrosative stress may represent a key mechanism in ammonia neurotoxicity.  相似文献   

19.
Rat spinal cord slices produced kynurenic acid (KYNA) upon exposure to l-kynurenine. Aminooxyacetic acid, non-selective aminotransferase inhibitor, and l-glutamate, but neither N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-metyloisoxazolo-4-propionate (AMPA), nor kainate, diminished synthesis of KYNA. l-Glutamate action was less potent in spinal than in cortical slices. Metabotropic agonists, l-(+)-2-amino-4-phosphonobutyrate (L-AP4) and (±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD), used in concentrations inhibiting cortical KYNA synthesis, were ineffective in spinal cord. Spinal KYNA production seems less susceptible to inhibitory modulation.  相似文献   

20.
Urenjak J  Obrenovitch TP 《Neuroreport》2000,11(6):1341-1344
The aim of this study was to determine in vivo which extracellular levels of kynurenic acid (KYNA) are required to control excessive NMDA receptor activation in the rat cortex. As excitotoxicity is coupled to marked ion movements, local depolarisations induced by perfusion of NMDA or quinolinic acid (QUIN) through microdialysis probes were recorded at the site of excitotoxin application. Perfusion of KYNA through the dialysis fibre inhibited the excitotoxin responses with an IC50 of 32-66 microM (extracellular concentration corrected for microdialysis delivery), but > 10-fold lower levels of endogenous KYNA were reported to be neuroprotective. Accordingly, these results strengthen the notion that KYNA accumulation may protect the brain parenchyma by acting on different molecular target(s), besides the NMDA receptor glycine site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号