首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clearest example of genomic Imprinting in humans comes fromstudies of the Angelman (AS) and Prader—Wil (PWS) syndromes.Although these are clinically distinct disorders, both typicallyresult from a loss of the same chromosomal region, 15q11 - q13.AS usually results from either a maternal deletion of this region,or paternal uniparental disomy (UPD; both chromosomes 15 Inheritedfrom the father). PWS results from paternal deletion of 15q11- q13 or maternal UPD of chromosome 15. We have recently describeda parent-specific DNA methylation imprint in a gene at the D15S9locus (new gene symbol, ZNF 127), within the 15q11 - q13 region,that identifies AS and PWS patients with either a deletion orUPD. Here we describe an AS sibship and three PWS patients inwhich chromosome 15 rearrangements alter the methylation stateat ZNF127, even though this locus is not directly involved inthe rearrangement. Parent-specific DNA methylation imprintsare also altered at ZNF127 and D15S63 (another locus with aparent-specific methylation imprint) in an AS sibship whichhave no detectable deletion or UPD of chromosome 15. These uniquepatients may provide insight into the imprinting process thatoccurs in proximal chromosome 15 in humans.  相似文献   

2.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are genetic disorders caused by a deficiency of imprinted gene expression from the paternal or maternal chromosome 15, respectively. This deficiency is due to the deletion of the 15q11-q13 region, parental uniparental disomy of the chromosome 15, or imprinting defect (ID). Mutation of the UBE3A gene causes approximately 10% of AS cases. In this present study, we describe the molecular analysis and phenotypes of two PWS patients and four AS patients with ID. One of the PWS patients has a non-familial imprinting center (IC) deletion and displayed a severe phenotype with an atypical PWS appearance, hyperactivity and psychiatric vulnerability. The other PWS and AS patients did not present genetic abnormalities in the IC, suggesting an epimutation as the genetic cause. The methylation pattern of two AS patients showed a faint maternal band corresponding to a mosaic ID. One of these mosaic patients displayed a mild AS phenotype while the other displayed a PWS-like phenotype.  相似文献   

3.
Although Angelman (AS) and Prader-Willi (PWS) syndromes are human genetic disorders with distinctly different developmental and neurobehavioural phenotypes, they both have abnormalities in inheritance of chromosome 15q11–q13. Whether AS or PWS arises depends on the parental origin of a deletion or uniparental disomy (the inheritance of 2 copies of a genetic locus from only one parent) for 15q11–q13. Normal development requires a genetic contribution for this genetic region from both a male and female parent. The dependence on parental origin implies that genes in human 15q11–q13 have distinct functions depending upon epigenetic, parent-of-origin differences, known as genomic imprinting. Here, I review the role of uniparental disomy and genomic imprinting in the pathogenesis of AS and PWS, and briefly discuss phenotype-genotype correlations using candidate genes and mouse models, in particular for hypopigmentation. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The majority of cases of the two distinct disorders Prader–Willisyndrome (PWS) and Angelman syndrome (AS) result from cytogeneticdeletions of chromosome 15q11–q13. These deletions areexclusively of maternal origin in AS but of paternal originin PWS indicating that the 15q11–q13 region is subjectto genomic imprinting. Transmission of a submicroscopic deletionin one three generation family resulted in AS only upon maternaltransmission of the deletion with no clinical phenotype associatedwith paternal transmission (1, 2). The breakpoint of this submicroscopicdeletion has been cloned and sequenced. This is the first deletionjunction from the AS/PWS region which has been so characterized.The nucleotide sequence of the deletion junction revealed a19 bp insertion of unknown origin with no evidence of repetitiveelements. A probe from the proximal deletion breakpoint, PB11,lies within the currently defined minimum region of deletionoverlap in PWS, which contains the SNRPN and D15S63 locl. Ourresults suggest that the imprinted gene(s) responsible for thePWS phenotype are proximal of pB11 in this deletion overlapregion.  相似文献   

5.
Prader-Willi syndrome (PWS) is a neurobehavioural disorder arising through a number of different genetic mechanisms. All involve loss of paternal gene expression from chromosome 15q11q13. Although the majority of cases of PWS are sporadic, precise elucidation of the causative genetic mechanism is essential for accurate genetic counselling as the recurrence risk varies according to the mechanism involved. A pair of siblings affected by PWS is described. Neither demonstrates a microscopically visible deletion in 15q11q13 or maternal disomy. Methylation studies at D15S63 and at the SNRPN locus confirm the diagnosis of PWS. Molecular studies reveal biparental inheritance in both siblings with the exception of D15S128 and D15S63 where no paternal contribution is present indicating a deletion of the imprinting centre. Family studies indicate that the father of the siblings carries the deletion which, he has inherited from his mother. The recurrence risk for PWS in his offspring is 50%.  相似文献   

6.
Six persons with the classical Angelman syndrome (AS) phenotype and de novo deletions of chromosome 15q11-q13 were studied to determine the parental origin of the chromosome deletion. Four of the 6 patients had informative cytogenetic studies and all demonstrated maternal inheritance of the deletion. These findings, together with other reported cases of the origin of the chromosome 15 deletion in AS, suggest that deletion of the maternally contributed chromosome leads to the AS phenotype. This contrasts with the Prader-Willi syndrome (PWS) in which a similar deletion of the paternally contributed chromosome 15 is observed. In deletion cases, a parental gamete effect such as genomic imprinting may be the best model to explain why apparently identical 15q11-q13 deletions may develop the different phenotypes of AS or PWS.  相似文献   

7.
Six persons with the classical Angelman syndrome (AS) phenotype and de novo deletions of chromosome 15q11-q13 were studied to determine the parental origin of the chromosome deletion. Four of the 6 patients had informative cytogenetic studies and all demonstrated maternal inheritance of the deletion. These findings, together with other reported cases of the origin of the chromosome 15 deletion in AS, suggest that deletion of the maternally contributed chromosome leads to the AS phenotype. This contrasts with the Prader-Willi syndrome (PWS) in which a similar deletion of the paternally contributed chromosome 15 is observed. In deletion cases, a parental gamete effect such as genomic imprinting may be the best model to explain why apparently identical 15q11-q13 deletions may develop the different phenotypes of AS or PWS.  相似文献   

8.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurodevelopmental disorders, each caused by several genetic and epigenetic mechanisms involving the proximal long arm of chromosome 15. Lack of a functional paternal copy of 15q11-q13 causes PWS; lack of a functional maternal copy of UBE3A, a gene within 15q11-q13, causes AS. This region of chromosome 15 contains a number of imprinted genes that are coordinately regulated by an imprinting center (PWS/AS-IC) that contains two functional elements, the PWS-SRO and the AS-SRO. A chromosome lacking the PWS-SRO has the maternal state of gene activity and epigenetic modification after either maternal or paternal transmission; a chromosome lacking the AS-SRO but containing the PWS-SRO has the paternal state of gene activity and epigenetic modification after either maternal or paternal transmission. The maternal state of chromosome 15q11-q13 is associated with methylation of the PWS-SRO, while the paternal state is associated with lack of methylation of the PWS-SRO. Although most models of PWS/AS region imprinting assume that the PWS-SRO is methylated during oogenesis and that this methylation of the maternal PWS-SRO is maintained after fertilization, several lines of evidence suggest that the maternal PWS-SRO is in fact not methylated until after fertilization. Imprinting defects affecting the PWS/AS region can arise from failure to demethylate the PWS-SRO in the male germ line, from failure to methylate the maternal PWS-SRO, or from failure to maintain PWS-SRO methylation after fertilization.  相似文献   

9.
Genomic rearrangements of chromosome 15q11-q13 cause diverse phenotypes including autism, Prader-Willi syndrome (PWS), and Angelman syndrome (AS). This region is subject to genomic imprinting and characterized by complex combinations of low copy repeat elements. Prader-Willi and Angelman syndrome are caused primarily by 15q11-13 deletions of paternal and maternal origin, respectively. Autism is seen with maternal, but not paternal, interstitial duplications. Isodicentric 15q, most often of maternal origin, is associated with a complex phenotype often including autistic features. Limitations of conventional cytogenetic tests preclude a detailed analysis in most patients with 15q rearrangements. We have developed a microarray for comparative genomic hybridization utilizing 106 genomic clones from chromosome 15q to characterize this region. The array accurately localized all breakpoints associated with gains or losses on 15q. The results confirmed the location of the common breakpoints associated with interstitial deletions and duplications. The majority of idic(15q) chromosomes are comprised of symmetrical arms with four copies of the breakpoint 1 to breakpoint 5 region. Patients with less common breakpoints that are not distinguished by routine cytogenetic methods were more accurately characterized by array analysis. This microarray provides a detailed characterization for chromosomal abnormalities involving 15q11-q14 and is useful for more precise genotype-phenotype correlations for autism, PWS, AS, and idic(15) syndrome.  相似文献   

10.
11.
Many Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients have a cytogenetic deletion of 15q11q13. While AS and PWS share a similar cytogenetic anomaly, they have very different clinical phenotypes. DNAs from 4 AS patients were examined using 5 chromosome 15q11q13-specific cloned DNA segments. With the present level of resolution, the molecular deletions between AS and those previously reported for PWS did not appear to differ. However, in contrast to the paternal inheritance of the deleted chromosome 15 observed in the majority of PWS patients, maternal inheritance of the deleted chromosome 15 was demonstrated in the AS patients by restriction fragment length polymorphisms (RFLPs).  相似文献   

12.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with a loss of function of imprinted genes in the 15q11-q13 region mostly due to deletions or uniparental disomies (UPD). These anomalies usually occur de novo with a very low recurrence risk. However, in rare cases, familial translocations are observed, giving rise to a high recurrence risk. We report on the difficulties of genetic counseling and prenatal diagnosis in a family segregating for a translocation (14;15)(q11;q13) where two consanguineous parents carry the same familial translocation in this chromosome 15 imprinting region. Both children of the couple inherited a chromosomal anomaly leading to PWS. However, a paternal 15q11-q13 deletion was responsible for PWS in the first child, whereas prenatal diagnosis demonstrated that PWS was associated with a maternal 15q11-q13 UPD in the fetus. This report demonstrates that both conventional and molecular cytogenetic parental analyses have to be performed when a deletion is responsible for PWS or AS in order not to overlook a familial translocation and to insure reliable diagnosis and genetic counseling.  相似文献   

13.
Prader-Willi (PWS) and Angelman (AS) are syndromes of developmental impairment that can result either from a 15q11-q13 deletion, paternal uniparental disomy (UPD), imprinting, or UBE3A mutations. A small cytogenetic subset of PWS and AS patients are carriers of a so-called small supernumerary marker chromosome (sSMC). Here, we report on an previously unreported PWS case with a karyotype 47,XY,+min(15)(pter->q11.1:) plus maternal heterodisomic UPD 15. A review of the literature revealed, that for both, PWS and AS patients, cases with (1) a sSMC plus microdeletion of the PWS/AS critical region, (2) inv dup(15) plus uniparental disomy (UPD) 15 and (3) cases without exclusion of a microdeletion an UBE3A mutation or UPD are described. The present case as well as the review of similar cases provides further evidence for the necessity to test UPD in prenatal cases with a de novo sSMC and in postnatal cases with otherwise unexplainable clinical phenotype.  相似文献   

14.
The Prader-Willi (PWS) and Angelman (AS) syndromes are two clinically distinct syndromes which result from lack of expression of imprinted genes within chromosome 15q11-q13. These two syndromes result from 15q11-q13 deletions, chromosome 15 uniparental disomy (UPD), imprinting centre mutations and, for AS, probable mutations in a single gene. The differential phenotype results from a paternal genetic deficiency in PWS patients and a maternal genetic deficiency in AS patients. Within 15q11-q13, four genes (SNRPN, IPW, ZNF127, FNZ127) and two expressed sequence tags (PAR1 and PAR5) have been found to be expressed only from the paternally inherited chromosome, and therefore all must be considered candidate genes involved in the pathogenesis of PWS. A candidate AS gene (UBE3A) has very recently been identified. The mechanisms of imprinted gene expression are not yet understood, but it is clear that DNA methylation is involved in both somatic cell expression and inheritance of the imprint. The presence of DNA methylation imprints that distinguish the paternally and maternally inherited alleles is a common characteristic of all known imprinted genes which have been studied extensively, including SNRPN and ZNF127. Recently, several PWS and AS patients have been found that have microdeletions in a region upstream of the SNRPN gene referred to as the imprinting centre, or IC. Paternal IC deletions in PWS patients and maternal IC deletions in AS patients result in uniparental DNA methylation and uniparental gene expression at biparentally inherited loci. The IC is a novel genetic element which controls initial resetting of the parental imprint in the germline for all imprinted gene expression over a 1.5-2.5 Mb region within chromosome 15q11-q13.   相似文献   

15.
Angelman syndrome (AS) results from a lack of maternal contribution from chromosome 15q11-13, arising from de novo deletion in most cases or rarely from uniparental disomy. These families are associated with a low recurrence risk. However, in a minority of families, more than one child is affected. No deletion has been found in these families, except one. The mode of inheritance in these families is autosomal dominant modified by imprinting. Sporadic cases, with no observable deletion, therefore pose a counselling dilemma as there could be a recurrence risk as high as 50%. We present a series of 93 AS patients, showing the relative contribution of these different genetic mechanisms. Eighty-one AS patients were sporadic cases while 12 cases came from six families. Sixty cases had deletions in 15q11-13 detected by a set of highly polymorphic (CA)n repeats markers and conventional RFLPs. Ten sporadic cases plus all 12 familial cases had no detectable deletion. In addition, two cases of de novo deletions occurred in a chromosome 15 carrying a pericentric inversion. In one of these the AS child had a cousin with Prader-Willi syndrome (PWS) arising from a de novo deletion in an inv(15) inherited from his father. One case arose from a maternal balanced t(9;15)(p24;q15) translocation. There were three cases of uniparental disomy. Five patients were monoallelic for all loci across the minimal AS critical region, but the presence of a deletion cannot be confirmed. In familial cases, all affected sibs inherited the same maternal chromosome 15 markers for the region 15q11-13. Two cases were observed with a de novo deletion starting close to the locus D15S11 (IR4-2R), providing evidence for the development of classical AS with smaller deletions. Cytogenetic analysis proved limited in its ability to detect deletions, detecting only 42 out of 60 cases. However, cytogenetic analysis is still essential to detect chromosomal abnormalities other than deletions such as inversions and balanced translocations since both have an increased risk for deletions. A staged diagnostic strategy based on the use of highly informative (CA)n repeat markers is proposed.  相似文献   

16.
Prader-Willi syndrome (PWS) is a highly variable genetic disorder affecting multiple body systems whose most consistent major manifestations include hypotonia with poor suck and poor weight gain in infancy; mild mental retardation, hypogonadism, growth hormone insufficiency causing short stature for the family, early childhood-onset hyperphagia and obesity, characteristic appearance, and behavioral and sometimes psychiatric disturbance. Many more minor characteristics can be helpful in diagnosis and important in management. PWS is an example of a genetic condition involving genomic imprinting. It can occur by three main mechanisms, which lead to absence of expression of paternally inherited genes in the 15q11.2-q13 region: paternal microdeletion, maternal uniparental disomy, and imprinting defect.  相似文献   

17.
Prader–Willi syndrome (PWS) is a complex genetic imprinting disorder characterized by childhood obesity, short stature, hypogonadism/hypogenitalism, hypotonia, cognitive impairment, and behavioral problems. Usually PWS occurs sporadically due to the loss of paternally expressed genes on chromosome 15 with the majority of individuals having the 15q11‐q13 region deleted. Examples of familial PWS have been reported but rarely. To date 13 families have been reported with more than one child with PWS and without a 15q11‐q13 deletion secondary to a chromosome 15 translocation, inversion, or uniparental maternal disomy 15. Ten of those 13 families were shown to carry microdeletions in the PWS imprinting center. The microdeletions were found to be of paternal origin in nine of the ten cases in which family studies were carried out. Using a variety of techniques, the microdeletions were identified in regions within the complex SNRPN gene locus encompassing the PWS imprinting center. Here, we report the clinical and genetic findings in three adult siblings with PWS caused by a microdeletion in the chromosome 15 imprinting center inherited from an unaffected father that controls the activity of genes in the 15q11‐q13 region and summarize the 13 reported cases in the literature.
  相似文献   

18.
Prader–Willi syndrome (PWS) is a prototypic genetic condition related to imprinting. Causative mechanisms include paternal 15q11‐q13 deletion, maternal chromosome 15 uniparental disomy (UPD15), Prader–Willi Syndrome/Angelman Syndrome (PWS/AS) critical region imprinting defects, and complex chromosomal rearrangements. Maternal UPD15‐related PWS poses risks of concomitant autosomal recessive (AR) disorders when the mother carries a pathogenic variant in one of the genes on chromosome 15 associated with autosomal recessive inherited disease. Co‐occurrence of autosomal recessive conditions in the setting of UPD leads to increased complexity of the clinical phenotype, and may delay the diagnosis of PWS. We report a patient with PWS and associated congenital ichthyosis due to maternal UPD15, and a homozygous novel pathogenic variant in ceramide synthase 3 (CERS3). We also review the literature of associated disorders reported in the setting of maternal UPD15‐related PWS and provide a summary of the previously described CERS3 variants. This represents the second case of autosomal recessive congenital ichthyosis (ARCI) in the setting of PWS and UPD15. There needs to be a high index of suspicion of this genetic mechanism when there is unexpected phenotype or evolution of the clinical course in a patient with PWS.  相似文献   

19.
We report on a 5-year-old white girl with Prader-Willi syndrome (PWS) and a submicroscopic deletion of 15q11q13 of approximately 100–200 kb in size. High resolution chromosome analysis was normal but fluorescence in situ hybridization (FISH), Southern hybridization, and microsatellite data from the 15q11q13 region demonstrated that the deletion was paternal in origin and included the SNRPN, PAR-5, and PAR-7 genes from the proximal to distal boundaries of the deletion segment. SNRPN and PW71B methylation studies showed an abnormal pattern consistent with the diagnosis of PWS and supported the presence of a paternal deletion of 15q11q13 or an imprinting mutation. Biparental (normal) inheritance of PW71B (D15S63 locus) and a deletion of the SNRPN gene were observed by microsatellite, quantitative Southern hybridization, and/or FISH analyses. Our patient met the diagnostic criteria for PWS, but has no reported behavior problems, hyperphagia, or hypopigmentation. Our patient further supports SNRPN and possibly other genomic sequences which are deleted as the cause of the phenotype recognized in PWS patients. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Prader-Willi syndrome (PWS) is one of the common neurogenetic disorders associated with intellectual disability. PWS involves a complex inheritance pattern and is caused by an absence of gene expression on the paternally inherited 15q11.2-q13 region, either due to deletion, maternal uniparental disomy or imprinting defect. The syndrome is characterized principally by severe neonatal hypotonia, a weak suck in infancy that is later followed by hyperphagia and obesity, developmental delay, intellectual disability and short stature. In the case of the chromosome 15q26-qter deletion syndrome or Drayer's syndrome, very few reports have been published. Its characteristics include intrauterine growth restriction, postnatal growth failure, varying degrees of intellectual disability, developmental delay, typical facial appearance and diaphragmatic hernia. The present paper describes a female patient in whom clinical findings were suggestive of PWS and deletion in the 15q26-qter region. Both karyotyping and methylation-specific polymerase chain reaction were shown to be normal. Nevertheless, fluorescence in situ hybridization showed a 15qter deletion that was later mapped by single nucleotide polymorphism (SNP)-array. The deleted genomic region involves the insulin-like growth factor-1 receptor (IGF1R) gene, which is related to short stature, developmental delay and intellectual disability. This case had various clinical characteristics in common with the cases of 15q26-qter deletionand characteristics compatible with PWS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号