首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
J L Ezzell  L A Wilcox  N J Bernshaw  C J Parker 《Blood》1991,77(12):2764-2773
To investigate the mechanism by which treatment of normal human erythrocytes with the sulfhydryl reagent 2-aminoethylisothiouronium bromide (AET) induces susceptibility to complement mediated lysis, the effects of AET on the structural and functional integrity of decay accelerating factor (DAF), membrane inhibitor of reactive lysis (MIRL), and complement receptor type 1 (CR1) were examined. Following treatment with AET, erythrocyte MIRL and CR1 were no longer recognized in situ by antibodies, and antibody binding to DAF was diminished by approximately 50%. These studies indicated that the structural integrity of the three complement regulatory proteins was either partially (DAF) or completely (MIRL and CR1) disrupted by AET. Subsequent experiments showed that functional inactivation paralleled the structural disruption. Treatment of normal erythrocytes with AET induced susceptibility to cobra venom factor-initiated hemolysis, indicating that the functional activity of MIRL had been destroyed. The capacity of erythrocyte CR1 to serve as a cofactor for factor I-mediated cleavage of iC3b to C3c and C3dg was lost following treatment with AET. C3 convertase activity increase markedly following treatment of erythrocytes with AET, but convertase activity on AET cells was approximately 50% less than that observed when DAF function on normal cells was completely inhibited by antibody. Susceptibility of AET cells to acidified serum lysis was shown to be due primarily to inactivation of MIRL. Unexpectedly, in acidified serum the activity of the amplification C3 convertase of the APC was found to be controlled by MIRL as well as by DAF. These studies show that AET induces susceptibility to complement-mediated lysis by disrupting the structural and functional integrity of membrane constituents that regulate the activity of both the C3 convertases and the membrane attack complex of complement.  相似文献   

2.
Tomita  A; Parker  CJ 《Blood》1994,83(1):250-259
Susceptibility to hemolysis in acidified serum is a pathognomonic feature of hereditary erythroblastic multinuclearity with a positive acidified serum lysis test (HEMPAS, congenital dyserythropoietic anemia type II). The purpose of the studies reported herein was to determine if aberrant regulation of complement contributes to the susceptibility of HEMPAS erythrocytes to acidified serum lysis. The results of these experiments have demonstrated that regulation of both the C3 convertase of the alternative pathway and the membrane attack complex of complement by HEMPAS erythrocytes is aberrant. However, these abnormalities are not a consequence of quantitative or functional deficiencies of the erythrocyte complement-regulatory proteins, decay accelerating factor (DAF, CD55), or membrane inhibitor of reactive lysis (MIRL, CD59). Our recent studies have shown that glycophorin A (GPA), the major erythrocyte sialoglycoprotein is a complement regulatory protein. Analysis by radioimmunoprecipitation suggested that GPA on HEMPAS erythrocytes is abnormally glycosylated. Further analysis indicated that the abnormality involves the O-linked oligosaccharide moiety. Together, these studies show that complement regulation by HEMPAS erythrocytes is abnormal and that constituents other than DAF and MIRL participate in controlling complement activation on the erythrocyte membrane. Additionally, these studies suggest that the glycosylation defect that is characteristic of HEMPAS involves GPA.  相似文献   

3.
B R Tomasini  D F Mosher 《Blood》1986,68(3):737-742
Vitronectin (serum spreading factor), a major serum cell adhesion molecule, was compared with S-protein, the inhibitor of the C5-9 membrane attack complex. Data from the literature indicate that S-protein and vitronectin are alpha globulins with the same aminoterminal residues, amino acid compositions, and concentrations in normal plasma (150 to 250 micrograms/mL). Both proteins have been reported to interact with the thrombin-antithrombin complex. The cDNA sequences of vitronectin and S-protein were recently determined and found to be almost identical. In the present studies, rabbit-anti-S-protein and a monoclonal antibody to vitronectin both recognized 65,000- and 75,000-molecular weight (mol wt) polypeptides when plasma or serum proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose paper. The 65,000 and 75,000-mol wt polypeptides bound more avidly from serum than plasma to monoclonal anti-vitronectin or heparin coupled to agarose. The presence or absence of the polypeptides constituted a major difference between the heparin-binding proteins of serum and plasma. When complement-activated serum and unactivated serum were separated by gel filtration, vitronectin coeluted with C9 in high-mol-wt fractions of activated serum but not unactivated serum. Purified S-protein was recognized by the monoclonal antibody to vitronectin and promoted spreading of human skin fibroblasts. Both vitronectin and S-protein were degraded by thrombin. On the basis of immunological and functional, as well as biochemical, properties, therefore, S-protein and vitronectin are the same.  相似文献   

4.
Effect of C3b inactivator on monocyte-bound C3-coated human erythrocytes   总被引:2,自引:0,他引:2  
A D Schreiber  P B McDermott 《Blood》1978,52(5):896-904
As a model of IgM-induced hemolytic anemia in man, human erythrocytes were sensitized with IgM antibody and coated with complement components, including C3 and C4, using human serum as a source of complement. These coated red cells were then interacted with monolayers of human mononuclear phagocytic cells (monocytes). Complement-coated red cells so bound could be displaced from their monocyte attachment site in a dose- and time-dependent manner by serum factors, including C3b inactivator (C3bINA). These factors were more efficient in inactivating red cell-bound complement components prior to interaction of the coated cells with monocytes. With large amounts of complement per erythrocyte, measured as membrane-bound C3, the ability of the serum inactivating factor(s) to remove the complement-coated red cells from the monocyte surface was compromised and persistently bound red cells were progressively phagocytosed. These studies implicate C3bINA in the displacement of complement-coated erythrocytes, formed from the interaction of IgM antibody and serum complement, from the hepatic macrophage in IgM-induced immune hemolysis. They suggest that both the concentration of complement components, especially on the erythrocyte surface, and the level of C3bINA and perhaps other inactivators may be important features regulating hemolysis in this disorder.  相似文献   

5.
Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated intravascular hemolysis because of the lack from erythrocyte surface of the complement regulators CD55 and CD59, with subsequent uncontrolled continuous spontaneous activation of the complement alternative pathway (CAP), and at times of the complement classic pathway. Here we investigate in an in vitro model the effect on PNH erythrocytes of a novel therapeutic strategy for membrane-targeted delivery of a CAP inhibitor. TT30 is a 65 kDa recombinant human fusion protein consisting of the iC3b/C3d-binding region of complement receptor 2 (CR2) and the inhibitory domain of the CAP regulator factor H (fH). TT30 completely inhibits in a dose-dependent manner hemolysis of PNH erythrocytes in a modified extended acidified serum assay, and also prevents C3 fragment deposition on surviving PNH erythrocytes. The efficacy of TT30 derives from its direct binding to PNH erythrocytes; if binding to the erythrocytes is disrupted, only partial inhibition of hemolysis is mediated by TT30 in solution, which is similar to that produced by the fH moiety of TT30 alone, or by intact human fH. TT30 is a membrane-targeted selective CAP inhibitor that may prevent both intravascular and C3-mediated extravascular hemolysis of PNH erythrocytes and warrants consideration for the treatment of PNH patients.  相似文献   

6.
Houle  JJ; Hoffmann  EM; Esser  AF 《Blood》1988,71(2):280-286
The hemolytic efficiency and binding of C9 to homologous and heterologous erythrocytes was evaluated by using a standardized passive sensitization procedure to prepare antigen- and antibody-coated erythrocytes (EA) and human serum for lysis. Heterologous bovine EA were readily lysed by human serum, whereas human EA were quite resistant to lysis. Human EA bound as many C8 and C9 molecules per cell as bovine EA when incubated under identical conditions, but four times as much bound C9 was required to lyse an equal number of human EA compared with bovine EA. The susceptibility of human erythrocytes did not increase when increased volumes of undiluted human serum were used although C9 binding increased to as much as 100,000 molecules per cell. Sodium dodecyl sulfate-resistant polymerized C9 (poly(C9)) was detected on both lysed ghosts and unlysed EA bearing complement proteins C1 through C9 (EAC1-9) after incubation with undiluted human serum; however, the ratio of poly(C9) to monomeric C9 was higher on unlysed cells than on ghosts. Although bovine and human EA bound equal amounts of human C9 at the end point, the rate of lysis and C9 uptake was slower on homologous cells. The rate-limiting step occurred before C9 binding and lysis because the rates of lysis and C9 binding were equal on homologous and heterologous EAC1-8 targets, but the extent of lysis of homologous cells was still lower than lysis of heterologous cells. Human erythrocytes lose restriction against homologous hemolysis during storage in autologous plasma or in isotonic buffers.  相似文献   

7.
We have previously shown that sublytic heterologous complement induces large but transient increases in erythrocyte membrane permeability. We now report that when erythrocytes are bystanders in zymosan-activated autologous serum, they increase their Na+ permeability 10-fold, indicating that autologous complement can also induce transient membrane lesions. When we isolated the effect of the C5b-9 membrane attack complex of complement by using human C5b-9 assembled from purified components, we found there was minimal lysis but efficient Na+ uptake. Suspension of the sublytically damaged erythrocytes in K+ medium caused the cells to lyse, which is consistent with the cells recruiting a compensatory K+ efflux similar to that observed when human erythrocytes were exposed to heterologous complement. Sublytic C5b-9 exposure also became lytic when extracellular Ca2+ was limited and when the cells were exposed to charybdotoxin, an inhibitor of the Ca(2+)- activated K+ channel. This indicates that Ca2+ is required for the functional termination of the C5b-9 lesion. We also show that the membrane hyperpolarization resulting from activation of the Ca(2+)- dependent K+ efflux does not influence the termination of the C5b-9 lesion. Thus, the influx of Ca2+ through the complement lesion initiates at least two apparently independent adaptive responses: (1) a process that terminates the leak; and (2) a K+ efflux that has a volume regulatory function. Our data support the potential of the sublytic C5b- 9 lesion to act as a physiologic mediator for autologous erythrocytes.  相似文献   

8.
We have compared the ability of thrombin-cleaved C9 (C9n) with that of native C9 to produce tubular or ring-like poly(C9) and to express the classical complement lesion on target membranes. Three procedures were used to produce poly(C9): (i) limited proteolysis with trypsin, (ii) interaction with small unilamellar lipid vesicles, and (iii) incubation with a 2- to 4-fold molar excess of ZnCl2. In contrast to C9, which could be converted to tubular poly(C9), C9n was converted to smaller peptides by the first procedure and was aggregated into string-like poly(C9) by the other two methods. C9-depleted human serum (R-9 serum) was reconstituted with either C9 or C9n and these sera were then used to lyse sensitized sheep erythrocytes. Numerous classical complement lesions could be detected on ghost membranes obtained from cells lysed by C9-reconstituted R-9 serum but only a few on ghost membranes produced by C9n-reconstituted R-9 serum. C9n was shown to be hemolytically as active as C9 even when tested under "single-hit" conditions and it was about twice as efficient when compared with C9 in releasing sucrose and inulin from resealed ghosts. These results are interpreted to indicate that formation of the classical complement lesion is only incidental to lysis and not an obligatory event and that enlargement of the "functional pore size" of the complement lesion is not linked to formation of a circular membrane attack complex.  相似文献   

9.
BACKGROUND: Increased expression of linkage-specific 9-O-acetylated sialoglycans (9-O-AcSGs) has been demonstrated on erythrocytes from patients with visceral leishmaniasis (VL) by use of Achatinin-H. We assessed the capacity of this glycotope to influence hemolysis via activation of the alternative complement pathway in patients with VL, compared with that in healthy control subjects. METHODS: The differential expression of 9-O-AcSGs on surfaces of erythrocytes was measured, 9-O-AcSGs were affinity purified, and the molecular determinants were identified by Western blotting. The degree of alternative complement pathway-mediated hemolysis was compared with expression of 9-O-AcSGs on erythrocytes. RESULTS: Enhanced expression of linkage-specific 9-O-AcSGs was demonstrated on erythrocytes from patients with active VL. Six distinct molecular determinants present only on diseased erythrocytes were affinity purified and were absent after elimination of parasite burden. A correlation (r2=0.9) was observed between the presence of 9-O-AcSGs and the degree of alternative complement pathway-mediated hemolysis. CONCLUSION: The 9-O-AcSGs expressed on erythrocytes from patients with VL are potent complement activators, causing enhanced hemolysis via activation of the alternative complement pathway, and may account for the anemia that is a common manifestation of VL.  相似文献   

10.
Houle  JJ; Hoffmann  EM; Esser  AF 《Blood》1988,71(2):287-292
Our previous work revealed that homologous complement (C) was ineffective in lysing antibody-sensitized erythrocytes (EA) even at high concentrations. It was also shown that activation of complement on homologous EA resulted in the binding of C9 and the formation of EA bearing complement proteins C1 through C9 (EAC1-9), yet few hemolytic sites were formed. Instead, as shown here, the formation of homologous EAC1-9 caused the cells to become resistant to lysis even by heterologous complement during a second incubation. In contrast, when homologous EAC1-8 were produced by incubating EA with C9-depleted serum, such intermediates were not protected against lysis by heterologous complement during a second incubation. Furthermore, homologous C9 on EAC1-9 was able to reduce the hemolytic efficiency of heterologous complement without blocking C activation and the formation of new C5b-9 complexes. Protection was not modified when homologous EAC1-9 were produced in one step, by incubation of EA with serum, or sequentially by adding C9 to EAC1-8. The minimum number of 9-sites required to confer a protective effect on EAC1-9 was less than 200 per cell. Thus, in addition to its known effect in heterologous cell killing, homologous C9 is capable of protecting homologous cells against inadvertent complement lysis.  相似文献   

11.
Test  ST; Woolworth  VS 《Blood》1994,83(3):842-852
A prominent clinical manifestation of sickle cell disease (SCD) is hemolytic anemia. Although complement activation can lead to intravascular hemolysis, its role in the hemolysis of SCD is not known. Because normal red blood cells induced to vesiculate by treatment with calcium and ionophore become sensitive to damage by activated complement and because sickle cells release microvesicles as they circulate, we postulated that sickle cells might also be unusually sensitive to complement-dependent hemolysis. Complement activation is tightly regulated on the membrane of the normal erythrocyte; therefore, defective complement regulation by the sickle cell would be necessary for complement-dependent hemolysis to occur. These studies show a defect in the regulation of membrane attack complex (C5b-9) formation in sickle erythrocytes, particularly in the most dense cells. The defect is characterized by increased binding of C5b-7 and of C9 to denser sickle cells and results in increased susceptibility of sickle cells to C5b-9-mediated (reactive) lysis initiated by either C5b6 or activated cobra venom factor. Among the densest sickle cells, irreversibly sickled cells are especially sensitive to reactive lysis. The similarity of this defect to that previously described in a patient with paroxysmal nocturnal hemoglobinuria suggests that complement- mediated hemolysis could play a role in the anemia of SCD.  相似文献   

12.
A 47-year-old woman with paroxysmal nocturnal haemoglobinuria (PNH) was found to have an inherited deficiency in the ninth complement component (C9). In complement-sensitivity lysis tests, 80% of her erythrocytes were markedly complement-sensitive (PNH-III). Laser cytofluorimetry with a monoclonal antibody against decay-accelerating factor (DAF) revealed that 95% of her erythrocytes were DAF-negative. Surprisingly, she has suffered only mild haemolysis and has never experienced massive spontaneous haemolysis. Gross haemoglobinuria and jaundice occurred only after receiving postoperative transfusion of whole blood. In her serum, C9 was not detectable either by immunological or by functional assays. Both the Ham test and the sugar water test using normal human serum or plasma yielded marked haemolysis of the patient's erythrocytes. When the patient's serum or plasma was used, only a trace of lysis was detected. Addition of purified human C9 to her plasma fully restored haemolysis. These observations indicated that C9 may play a critical role in haemolytic attacks in patients with PNH and that characteristic haemolysis in PNH may be tempered by coexisting C9 deficiency.  相似文献   

13.
Extensively washed and ethanol-fixed colonic specimens from 10 patients with ulcerative colitis, 3 patients with Crohn's disease of the colon, and 8 histologically normal controls were examined by two-color immunohistochemistry with monoclonal antibody to a neoepitope in the terminal complement complex combined with antiserum to factor VIII-related antigen (von Willebrand's factor), C3c, C3d, or C5. An alternative combination was monoclonal antibody to S-protein and antiserum to C9. Submucosal vessel walls in both normal and diseased colon showed parallel positivity for C3d, C5, C9, terminal complement complex, and S-protein, but the staining intensity and the proportion of positive vessels were significantly higher in inflammatory bowel disease than in controls. In addition, there was significantly more C3c reactivity associated with the terminal complement complex-positive submucosal vessels of active inflammatory bowel disease lesions than in histologically normal colon. Vascular C activation may therefore be a continuous process in active inflammatory bowel disease lesions, presumably related to the degree of inflammation and immune complex formation.  相似文献   

14.
Test  ST; Mitsuyoshi  J 《Blood》1995,86(7):2799-2806
Calcium-loaded red blood cells (RBCs) previously have been shown to have an increased sensitivity to complement-mediated hemolysis and particularly to lysis mediated by the C5b-9 membrane attack complex (MAC) of complement. Because RBCs exposed to 2-aminoethylisothiouronium bromide (AET) also have been shown to be particularly sensitive to the MAC, a direct comparison of calcium-loaded and AET-treated RBCs was performed. Calcium-loaded and AET-treated RBCs shared a marked increase in sensitivity to lysis by the MAC in two different assays. However, measurements of C5b-7 and C9 binding suggested that different mechanisms were responsible. AET-treated RBCs showed an increase in C9 binding and an increased C9/C7 ratio consistent with functional loss of CD59/membrane inhibitor of reactive lysis (MIRL). In contrast, calcium- loaded RBCs had minimally increased C9 binding that resulted in C9/C7 ratios that were less than those for untreated RBCs, suggesting that CD59/MIRL inactivation had not occurred. When RBCs were incubated in acidified serum, AET-treated cells demonstrated a marked increase in C3b binding and hemolysis that was observed in neither control nor calcium-loaded RBCs. These results suggest that the underlying lesions responsible for an increase in susceptibility to complement-mediated hemolysis are different for calcium-loaded and AET-treated RBCs.  相似文献   

15.
Summary The terminal complement sequence is initiated upon cleavage of C5 with liberation of C5a anaphylatoxin, and involves the assembly of macromolecular C5b—9 complexes either on cell surfaces or in plasma. Cell-bound C5b—9 complexes generate transmembrane pores that can cause cell death, or they can elicit secondary cellular reactions triggered, for example, by passive flux of calcium ions into the cells. In vivo functions of the fluid-phase SC5b—9 complex have not yet been defined, but the identity of S-protein with vitronectin (serum spreading factor) provokes the anticipation that significant biological functions of this complex do exist. The terminal complement sequence may fulfil protective functions when it is triggered on alien cells that are marked for destruction. Dysregulation in the complement sequence may, however, result in detrimental attack by C5b—9 on autologous cells. Examples include not only autoimmune disease states, but also the activation of complement on dead or dying cells, and bystander attack on blood cells during cardiopulmonary bypass. Methods for detecting and quantifying C5b—9 are outlined, and the potential usefulness of such assays in clinical research is discussed.  相似文献   

16.
S-protein/vitronectin is a multifunctional glycoprotein interacting with both complement activation and coagulation pathways. Its presence was investigated in 5 femoral and 5 iliac atherosclerotic human arteries, obtained at surgery, by immunoelectron microscopy using an affinity purified rabbit IgG specific for human S-protein/vitronectin. The immunoelectron dense specific deposits were found in both intimal thickenings and fibrous plaques in association with elastic fibers, collagen bundles and cell debris in the vicinity of elastin. Cell debris embedded in the collagen matrix were S-protein/vitronectin negative. S-protein/vitronectin was also absent on intact cells, lipid droplets and cholesterol clefts. All cell debris, however, was positive for C5b-9 deposits suggesting that complement activation had occurred at these sites with or without S-protein/vitronectin interaction. S-protein/vitronectin may play a role in the arterial wall defence by restricting the extent of complement activation.  相似文献   

17.
Since there are no studies evaluating the participation of the complement system (CS) in Jorge Lobo's disease and its activity on the fungus Lacazia loboi, we carried out the present investigation. Fungal cells with a viability index of 48% were obtained from the footpads of BALB/c mice and incubated with a pool of inactivated serum from patients with the mycosis or with sterile saline for 30 min at 37 masculineC. Next, the tubes were incubated for 2 h with a pool of noninactivated AB+ serum, inactivated serum, serum diluted in EGTA-MgCl2, and serum diluted in EDTA. The viability of L. loboi was evaluated and the fungal suspension was cytocentrifuged. The slides were submitted to immunofluorescence staining using human anti-C3 antibody. The results revealed that 98% of the fungi activated the CS by the alternative pathway and no significant difference in L. loboi viability was observed after CS activation. In parallel, frozen histological sections from 11 patients were analyzed regarding the presence of C3 and IgG by immunofluorescence staining. C3 and IgG deposits were observed in the fungal wall of 100% and 91% of the lesions evaluated, respectively. The results suggest that the CS and immunoglobulins may contribute to the defense mechanisms of the host against L. loboi.  相似文献   

18.
G L Logue 《Blood》1977,50(2):239-247
The effect of heparin upon the binding of the third component of complement (C3) to PNH red cells in vitro and their subsequent hemolysis is described. Heparin, in increasing concentrations, progressively inhibits membrane C3 fixation and hemolysis when the classic complement pathway is activated by anti-red cell antibodies. Heparin has a biphasic effect upon membrane C3 fixation and hemolysis when complement is activated in serum at decreased ionic strength (sucrose lysis) or in serum at decreased pH (Ham test). Heparin in concentrations above 2 U/ml inhibits C3 binding and hemolysis while lower concentrations of heparin enhance the consequences of complement activation by these two procedures. This enhanced complement activation may explain the increased hemolysis sometimes reported in PNH patients treated with heparin, and suggests that heparin may aggravate the consequences of pathologic alternative pathway complement activation in other diseases.  相似文献   

19.
The interaction of terminal complement proteins (C5-C9) with normal erythrocytes and type III paroxysmal nocturnal hemoglobinuria erythrocytes (PNH-E) has been compared in terms of binding of the C5-9 complex, C9 polymerization, and C9 insertion into membranes. Complement components C5, C7, and C8 bind equally well to both types of erythrocytes, whereas the binding of C9 to PNH-E is 5-6 times greater than that to normal erythrocytes. The kinetics of C9 binding was compared with the kinetics of lysis for both types of cells under conditions leading to 100% lysis. There was a noticeable lag time between C9 binding and lysis of normal erythrocytes, but the lysis of PNH-E proceeded without a lag and the kinetics of lysis more closely paralleled C9 binding. The efficiency of C9 insertion was similar for both types of cells, but C9 polymerization was significantly enhanced on PNH-E. These data indicate that the enhanced susceptibility of type III PNH-E toward lysis by C5-9 can be correlated with abnormally high C9 binding and increased formation of poly(C9).  相似文献   

20.
Liu C  Marshall P  Schreibman I  Vu A  Gai W  Whitlow M 《Blood》1999,93(7):2297-2301
We have recently shown that C5b-6 binds to the erythrocyte membrane via an ionic interaction with sialic acid before the addition of C7 and subsequent membrane insertion. In this study we assessed the role of anionic lipids in the binding of the terminal complement proteins to the membrane and the efficiency of subsequent hemolysis. Human erythrocytes were modified by insertion of dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylserine (DPPS), dipalmitoyl phosphatidylethanolamine (DPPE), or dipalmitoyl phosphatidic acid (DPPA). Lipid incorporation and the hemolytic assays were done in the presence of 100 micromol/L sodium orthovanadate to prevent enzymatic redistribution of lipid. We found that the neutral lipids, DPPC and DPPE, did not affect C5b-7 uptake or hemolysis by C5b-9. In contrast, the two acidic phospholipids, DPPS and DPPA, caused a dose-dependent increase in both lysis and C5b-7 uptake. We conclude that the presence of anionic lipids on the exterior face of the membrane increases C5b-7 uptake and subsequent hemolysis. It is known that sickle cell erythrocytes have increased exposure of phosphatidylserine on their external face and are abnormally sensitive to lysis by C5b-9. The data presented here provide a plausible mechanism for this increased sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号