首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured neonatal rat cardiac myocytes have been used extensively to study cellular and molecular mechanisms of cardiac hypertrophy. However, there are only a few studies in cultured mouse myocytes despite the increasing use of genetically engineered mouse models of cardiac hypertrophy. Therefore, we characterized hypertrophic responses in low-density, serum-free cultures of neonatal mouse cardiac myocytes and compared them with rat myocytes. In mouse myocyte cultures, triiodothyronine (T3), norepinephrine (NE) through a beta-adrenergic receptor, and leukemia inhibitory factor induced hypertrophy by a 20% to 30% increase in [(3)H]phenylalanine-labeled protein content. T3 and NE also increased alpha-myosin heavy chain (MyHC) mRNA and reduced beta-MyHC. In contrast, hypertrophic stimuli in rat myocytes, including alpha(1)-adrenergic agonists, endothelin-1, prostaglandin F(2alpha), interleukin 1beta, and phorbol 12-myristate 13-acetate (PMA), had no effect on mouse myocyte protein content. In further contrast with the rat, none of these agents increased atrial natriuretic factor or beta-MyHC mRNAs. Acute PMA signaling was intact by extracellular signal-regulated kinase (ERK1/2) and immediate-early gene (fos/jun) activation. Remarkably, mouse but not rat myocytes had hypertrophy in the absence of added growth factors, with increases in cell area, protein content, and the mRNAs for atrial natriuretic factor and beta-MyHC. We conclude that mouse myocytes have a unique autonomous hypertrophy. On this background, T3, NE, and leukemia inhibitory factor activate hypertrophy with different mRNA phenotypes, but certain Gq- and protein kinase C-coupled agonists do not.  相似文献   

2.
Pressure overload-induced cardiac hypertrophy leads to decreased contractile performance, frequently progressing to heart failure. Cardiac hypertrophy and heart failure can be accompanied by the so-called sick thyroid syndrome, resulting in decreased serum T(3) levels along with decreased expression of thyroid hormone receptors (TRalpha1 and TRbeta1) and sarco(endo)plasmic reticulum Ca-ATPase (SERCA). Because the binding of T(3) occupied receptors to the thyroid response elements in the SERCA promotor can increase gene expression, we wanted to determine whether increasing TR expression in the hypertrophied heart could also improve SERCA expression and cardiac function. Mice subjected to aortic constriction to generate pressure overload-induced hypertrophy were also subjected to gene therapy using adeno-associated virus (AAV) expressing either TRalpha1 or TRbeta1, with LacZ expressing AAV serving as control. After 8 wk of aortic constriction, a similar degree of hypertrophy was observed in all three groups; however, mice treated with TRalpha1 or TRbeta1 showed improved contractile function. Administration of a physiological dose of T(3) increased serum T(3) levels only into the lower range of normal. This T(3) dose, with or without AAV TR treatment, did not result in any significant increase in contractile performance. Calcium transients measured in isolated myocytes also exhibited an enhanced rate of decay associated with TRalpha1 or TRbeta1 treatment. Western blot analysis showed increased SERCA expression in the TRalpha1- or TRbeta1-treated groups relative to the LacZ-treated control group. These results demonstrate that increasing TR expression in the hypertrophied heart is associated with an improvement in contractile function and increased SERCA expression.  相似文献   

3.
The present study investigated whether changes in thyroid hormone (TH) signalling can occur after acute myocardial infarction (AMI) with possible physiological consequences on myocardial performance. TH may regulate several genes encoding important structural and regulatory proteins particularly through the TR alpha 1 receptor which is predominant in the myocardium. AMI was induced in rats by ligating the left coronary artery while sham-operated animals served as controls. This resulted in impaired cardiac function in AMI animals after 2 and 13 weeks accompanied by a shift in myosin isoforms expression towards a fetal phenotype in the non-infarcted area. Cardiac hypertrophy was evident in AMI hearts after 13 weeks but not at 2 weeks. This response was associated with a differential pattern of TH changes at 2 and 13 weeks; T(3) and T(4) levels in plasma were not changed at 2 weeks but T(3) was significantly lower and T(4) remained unchanged at 13 weeks. A twofold increase in TR alpha 1 expression was observed after 13 weeks in the non-infarcted area, P<0.05 versus sham operated, while TR alpha 1 expression remained unchanged at 2 weeks. A 2.2-fold decrease in TR beta 1 expression was found in the non-infarcted area at 13 weeks, P<0.05, while no change in TR beta 1 expression was seen at 2 weeks. Parallel studies with neonatal cardiomyocytes showed that phenylephrine (PE) administration resulted in 4.5-fold increase in the expression of TR alpha 1 and 1.6-fold decrease in TR beta 1 expression versus untreated, P<0.05. In conclusion, cardiac dysfunction which occurs at late stages after AMI is associated with increased expression of TR alpha 1 receptor and lower circulating tri-iodothyronine levels. Thus, apo-TR alpha 1 receptor state may prevail contributing to cardiac fetal phenotype. Furthermore, down-regulation of TR beta 1 also contributes to fetal phenotypic changes. alpha1-adrenergic signalling is, at least in part, involved in this response.  相似文献   

4.
The genomic actions of thyroid hormones (THs) are mediated by receptors (TRs) that are encoded by two protooncogenes, c-erbA-alpha and c-erbA-beta. The precise functions of the TR isoforms are unclear and this study focuses on the potential roles of the TRalpha and TRbeta isoforms in mammalian striated muscles postnatally. The porcine TRalpha1, TRalpha2 and TRbeta1 cDNAs were first cloned, sequenced and characterised by Northern blotting. A quantitative analysis of TR isoform expression was then undertaken, using RNase protection analysis with novel riboprobes designed to detect relative expression levels of TRalpha1, TRalpha2, TRbeta1 and TRbeta2, in functionally distinct muscles from 7-week-old pigs kept under controlled conditions of nutrition and thermal environment. We found a striking muscle-specific pattern of TRalpha isoform distribution: in heart the mRNA level of TRalpha2 (non-TH binding) was markedly greater (P<0.01) than that of TRalpha1 (TH binding); in longissimus dorsi the opposite pattern of expression occurred (TRalpha1>TRalpha2, P<0.001); in soleus, diaphragm and rhomboideus there were no differences between the two isoforms. The overall abundance of TRbeta was very much lower than that of TRalpha, and TRbeta1 was expressed at a higher level than TRbeta2 in all muscles. Together with recent data from TR gene inactivation studies and the established role of TH in determining myosin heavy chain isoform expression and muscle phenotype, these results suggest a role for differential expression of TR isoforms in acquisition and maintenance of optimal cardiac and skeletal muscle function.  相似文献   

5.
To examine whether protein kinase C (PKC) activation is essential for the induction of cardiac myocyte hypertrophy caused by alpha1-adrenergic stimulation, we investigated the hypertrophic effect of phenylephrine in PKC down-regulated and non-treated cultured cardiac myocytes obtained from neonatal Sprague-Dawley rat ventricles. The treatment with 10 nmol/L 12-tetra decanoylphorbol-13-acetate (TPA) for more than 2 hours decreased PKC activity by approximately 80% without marked hypertrophy. Phenylephrine increased [14C] phenylalanine (Phe) incorporation in both TPA non-treated and treated cells, 1.54- and 1.71-fold as large as control, respectively. The cell surface area also enlarged in both groups, 1.67- and 1.74-fold, respectively. Thus, phenylephrine induced the similar grade hypertrophy in cultured cardiac myocytes even when PKC was down-regulated. These results suggest that conventional PKC activation may not be essential for mediating myocyte hypertrophy by alpha1-adrenergic stimulation.  相似文献   

6.
Increased relative expression of the slow molecular motor of the heart (beta-myosin heavy chain [MyHC]) is well known to occur in many rodent models of cardiovascular disease and in human heart failure. The direct effect of increased relative beta-MyHC expression on intact cardiac myocyte contractility, however, is unclear. To determine the direct effects of increased relative beta-MyHC expression on cardiac contractility, we used acute genetic engineering with a recombinant adenoviral vector (AdMYH7) to genetically titrate beta-MyHC protein expression in isolated rodent ventricular cardiac myocytes that predominantly expressed alpha-MyHC (fast molecular motor). AdMYH7-directed beta-MyHC protein expression and sarcomeric incorporation was observed as soon as 1 day after gene transfer. Effects of beta-MyHC expression on myocyte contractility were determined in electrically paced single myocytes (0.2 Hz, 37 degrees C) by measuring sarcomere shortening and intracellular calcium cycling. Gene transfer-based replacement of alpha-MyHC with beta-MyHC attenuated contractility in a dose-dependent manner, whereas calcium transients were unaffected. For example, when beta-MyHC expression accounted for approximately 18% of the total sarcomeric myosin, the amplitude of sarcomere-length shortening (nanometers, nm) was depressed by 42% (151.0+/-10.7 [control] versus 87.0+/-5.4 nm [AdMYH7 transduced]); and genetic titration of beta-MyHC, leading to 38% beta-MyHC content, attenuated shortening by 57% (138.9+/-13.0 versus 59.7+/-7.1 nm). Maximal isometric cross-bridge cycling rate was also slower in AdMYH7-transduced myocytes. Results indicate that small increases of beta-MyHC expression (18%) have Ca2+ transient-independent physiologically relevant effects to decrease intact cardiac myocyte function. We conclude that beta-MyHC is a negative inotrope among the cardiac myofilament proteins.  相似文献   

7.
8.
9.
Only three of the four thyroid hormone receptor (TR) isoforms, alpha1, beta1, and beta2, bind thyroid hormone (TH) and are considered to be true TRs. TRalpha2 binds to TH response elements on DNA, but its role in vivo is still unknown. We produced mice completely deficient in TRalpha (TRalpha(o/o)) that maintain normal serum thyroid-stimulating hormone (TSH) concentration despite low serum thyroxine (T(4)), suggesting increased sensitivity to TH. We therefore examined the effects of TH (L-3,3',5-triiodothyronine, L-T3) given to TH-deprived and to intact TRalpha(o/o) mice. Controls were wild-type (WT) mice of the same strain and mice resistant to TH due to deficiency in TRbeta (TRbeta(-/-)). In liver, T3 produced significantly greater responses in TRalpha(o/o) and smaller responses in TRbeta(-/-) as compared with WT mice. In contrast, cardiac responses to L-T3 were absent or reduced in TRalpha(o/o), whereas they were similar in WT and TRbeta(-/-) mice, supporting the notion that TRalpha1 is the dominant TH-dependent TR isoform in heart. 5-Triiodothyronine (L-T3) given to intact mice produced a greater suppression of serum T(4) in TRalpha(o/o) than it did in WT mice and reduced by a greater amount the TSH response to TSH-releasing hormone. This is an in vivo demonstration that a TR deficiency can enhance sensitivity to TH. This effect is likely due to the abrogation of the constitutive "silencing" effect of TRalpha2 in tissues expressing the TRbeta isoforms.  相似文献   

10.
OBJECTIVE: Phospholamban ablation or ectopic expression of SERCA1a in the heart results in significant increases in cardiac contractile parameters. The aim of the present study was to determine whether a combination of these two genetic manipulations may lead to further augmentation of cardiac function. METHODS: Transgenic mice with cardiac specific overexpression of SERCA1a were mated with phospholamban deficient mice to generate a model with SERCA1a overexpression in the phospholamban null background (SERCA1(OE)/PLB(KO)). The cardiac phenotype was characterized using quantitative immunoblotting, sarcoplasmic reticulum calcium uptake and single myocyte mechanics and calcium kinetics. RESULTS: Quantitative immunoblotting revealed an increase of 1.8-fold in total SERCA level, while SERCA2 was decreased to 50% of wild types. Isolated myocytes indicated increases in the maximal rates of contraction by 195 and 125%, the maximal rates of relaxation by 200 and 124%, while the time for 80% decay of the Ca(2+)-transient was decreased to 43 and 75%, in SERCA1(OE)/PLB(KO) hearts, compared to SERCA1a overexpressors and phospholamban knockouts, respectively. These mechanical alterations reflected parallel alterations in V(max) and EC(50) for Ca(2+) of the sarcoplasmic reticulum Ca(2+) transport system. Furthermore, there were no significant cardiac histological or pathological alterations, and the myocyte contractile parameters remained enhanced, up to 12 months of age. CONCLUSIONS: These findings suggest that a combination of SERCA1a overexpression and phospholamban ablation results in further enhancement of myocyte contractility over each individual alteration.  相似文献   

11.
Thyroid hormone (TH) is critical for cardiac development and heart function. In heart disease, TH metabolism is abnormal, and many biochemical and functional alterations mirror hypothyroidism. Although TH therapy has been advocated for treating heart disease, a clear benefit of TH has yet to be established, possibly because of peripheral actions of TH. To assess the potential efficacy of TH in treating heart disease, type 2 deiodinase (D2), which converts the prohormone thyroxine to active triiodothyronine (T3), was expressed transiently in mouse hearts by using the tetracycline transactivator system. Increased cardiac D2 activity led to elevated cardiac T3 levels and to enhanced myocardial contractility, accompanied by increased Ca(2+) transients and sarcoplasmic reticulum (SR) Ca(2+) uptake. These phenotypic changes were associated with up-regulation of sarco(endo)plasmic reticulum calcium ATPase (SERCA) 2a expression as well as decreased Na(+)/Ca(2+) exchanger, beta-myosin heavy chain, and sarcolipin (SLN) expression. In pressure overload, targeted increases in D2 activity could not block hypertrophy but could completely prevent impaired contractility and SR Ca(2+) cycling as well as altered expression patterns of SERCA2a, SLN, and other markers of pathological hypertrophy. Our results establish that elevated D2 activity in the heart increases T3 levels and enhances cardiac contractile function while preventing deterioration of cardiac function and altered gene expression after pressure overload.  相似文献   

12.
伊贝沙坦逆转高血压左心室肥厚的细胞学机制   总被引:1,自引:2,他引:1  
目的探讨伊贝沙坦(IBT)抗高血压左心室肥厚过程中,对心肌细胞凋亡和心肌肌浆网钙泵活性的影响。方法选用16周龄自发性高血压大鼠(SHR)24只,随机分为IBT组(8只)、蒸馏水(DW)组(8只)和SHR0组(8只),另选16只WKY大鼠作为正常对照,随机分为WKY0组(8只)和WKY1组(8只)。IBT组大鼠给予IBT(60 mg.kg-1.d-1)加适量蒸馏水灌胃14周。治疗前后,测量血压和左心室心肌肥厚指数(LVMI),原位末端脱氧核糖核苷酸转移酶介导的dUTP缺口末端标记法检测心肌细胞凋亡,并检测治疗后左心室心肌细胞肌浆网Ca2+-ATP酶活性。结果DW组LVMI、心肌细胞凋亡指数均显著高于WKY组,而IBT组明显低于DW组;DW组Ca2+-ATP酶活性明显低于IBT组及同龄WKY组,IBT组稍低于同龄WKY组;Ca2+-ATP酶活性与LVMI、心肌细胞凋亡指数呈显著负相关,LV-MI与心肌细胞凋亡指数呈显著正相关。结论IBT可能通过调节心肌细胞肌浆网钙泵活性以抑制高血压左心室肥厚过程中心肌细胞凋亡,从而逆转左心室肥厚。  相似文献   

13.
Cardiac hypertrophy is associated with hypertrophic growth of cardiac myocytes and increased fibrosis. Much is known of the stimuli which promote myocyte hypertrophy and the changes associated with the response, but the links between the two are largely unknown. Using subtractive hybridization, we identified three genes which are acutely (<1 h) upregulated in neonatal rat ventricular myocytes exposed to the alpha-adrenergic agonist, phenylephrine. One represented connective tissue growth factor (CTGF) which is implicated in fibrosis and promotes hypertrophy in other cells. We further examined the expression of CTGF mRNA and protein in cardiac myocytes using quantitative PCR and immunoblotting, confirming that phenylephrine increased CTGF mRNA (maximal within 1 h) and protein (increased over 4 - 24 h). Endothelin-1 promoted a greater, though transient, increase in CTGF mRNA, but the increase in CTGF protein was sustained over 8 h. Neither agonist increased CTGF mRNA in cardiac non-myocytes. By increasing the expression of CTGF in cardiac myocytes, hypertrophic agonists such as phenylephrine and endothelin-1 may promote fibrosis. CTGF may also propagate the hypertrophic response initiated by these agonists.  相似文献   

14.
The mechanism of hormonally induced cell hypertrophy is unknown. Stimulation of cardiac myocytes by alpha 1-adrenergic agents, phorbol esters, and serum induces an increase in the cell size of nondividing cardiac myocytes in primary culture. Expression of the c-myc gene, known to be increased in growth factor-induced cell division, was studied in this model of cell hypertrophy. The alpha-adrenergic agonist norepinephrine (0.002-20 microM) increased levels of c-myc-encoded mRNA to 10-fold over control levels. This increase was detectable at 30 min, peaked at 2 hr, and returned to baseline by 6 hr after stimulation. The norepinephrine response was abolished by the alpha 1-antagonist terazosin (2 microM) but was not affected by the beta-adrenergic antagonist propranolol (2 microM) and was only slightly (25%) attenuated by the alpha 2-adrenergic antagonist yohimbine (2 microM). Serum and the phorbol ester tumor promoter phorbol 12-myristate 13-acetate also enhanced c-myc expression in cardiac myocyte cultures. These findings show that the induction of cardiac myocyte hypertrophy is associated with enhanced expression of the c-myc gene and suggest that hormonally induced cell hypertrophy and cell division share common mechanistic pathways.  相似文献   

15.
16.
Numerous studies demonstrated increased expression of extracellular matrix (ECM) proteins and activation of focal adhesion (FA) signaling pathways in models of pressure overload-induced cardiac hypertrophy. However, little is known about FA signaling in response to volume overload where cardiac hypertrophy is associated with ECM loss. This study examines the role of beta1-adrenergic receptors (β(1)-ARs) in FA signaling changes and myocyte apoptosis induced during acute hemodynamic stress of volume overload. Rats with eccentric cardiac hypertrophy induced after aorto-caval fistula (ACF) develop reduced interstitial collagen content and decreased tyrosine phosphorylation of key FA signaling molecules FAK, Pyk(2) and paxillin along with an increase in cardiac myocyte apoptosis. ACF also increased activation of PTEN, a dual lipid and protein phosphatase, and its interaction with FA proteins. β(1)-AR blockade (extended-release of metoprolol succinate, 100mg QD) markedly attenuated PTEN activation, restored FA signaling and reduced myocyte apoptosis induced by ACF at 2days, but failed to reduce interstitial collagen loss and left ventricular dilatation. Treating cultured myocytes with β(1)-AR agonists or adenoviral expression of β(1)-ARs caused PTEN activation and interaction with FA proteins, thus leading to FA signaling downregulation and myocyte apoptosis. Adenoviral-mediated expression of a catalytically inactive PTEN mutant or wild-type FAK restored FA signaling downregulation and attenuated myocyte apoptosis induced by β(1)-ARs. Collectively, these data show that β(1)-AR stimulation in response to ACF induces FA signaling downregulation through an ECM-independent mechanism. This effect involves PTEN activation and may contribute to adverse cardiac remodeling and function in the course of volume overload.  相似文献   

17.
The cytoskeleton is a major regulator of cell shape. To explore potential mechanisms for maladaptation of cardiac myocyte shape in pressure overload-induced congestive heart failure, the abundance and organization of major intra- and extra-myofibrillar cytoskeleton of cardiac myocytes were examined with western blotting and confocal microscopy in guinea pigs with chronic aortic stenosis. It was found that: (1) the amount and distribution of alpha-actinin and myomesin remained unchanged at both the compensated hypertrophy and the congestive heart failure stages; (2) loss of titin was associated with myocyte lengthening in heart failure; (3) desmin protein and filaments in LV myocytes increased progressively with mechanical overload cardiac hypertrophy and subsequent heart failure; (4) a newly developed and validated quantitative confocal microscopic approach disclosed that the microtubule density in isolated LV myocytes increased by 21% at 4 weeks and by 48% 6 months after aortic constriction; (5) at the heart failure stage, microtubule density in LV myocytes showed a statistically significant inverse correlation to the LV maximum +dP/dt and a direct correlation to LV myocyte lengthening; (6) the increased microtubule density in LV myocytes in this model was not due to an increase in total tubulin; and (7) microtubule density in left atrial and right ventricular myocytes also increased when they underwent hypertrophy secondary to left heart failure. These results suggest that the down-regulation of titin and up-regulation of microtubule and desmin filaments may contribute to myocyte lengthening and malfunction in pressure overload congestive heart failure.  相似文献   

18.
Changes in hemodynamic load cause alterations in cardiac myocyte size, with regional variations in myocyte size distribution possible within the ventricular wall. We studied regional changes in cellular dimensions and their distribution in two models of cardiac hypertrophy and in cardiac atrophy in the rat. Combined volume-pressure overload was produced by 3,3',5-triiodo-L-thyronine (T3) treatment; atrophy was produced by heterotopic isotransplantation. Our previous data from long-term pressure overload after aortic constriction were used for comparison. Isolated ventricular myocytes were obtained after in vitro coronary perfusion with collagenase. Cell volume and its distribution were determined; cell length was directly measured by image analysis, and cross-sectional area was estimated from the cell volume/cell length ratio, assuming a cylindrical model. Myocyte hypertrophy resulting from hyperthyroidism and aortic constriction was primarily due to increased cross-sectional area. In both cases, the relative response was greater in the right ventricle than in the left ventricle. Within the left ventricle, epimyocardial myocytes enlarged the most. Aortic constriction and T3 treatment predominantly increased the size of smaller myocytes. Heterogeneity in myocyte size increased after constriction but remained relatively unaffected after T3 treatment. Atrophy of left ventricular myocytes was due to a proportional decrease in cell length and cross-sectional area, with the greatest decrease in the left ventricular endomyocardium. Atrophy predominantly affected larger myocytes, resulting in a more homogeneous overall population of smaller myocytes. We conclude that various alterations in load lead to diverse remodeling in the myocyte population throughout the ventricular wall. In general, smaller myocytes show the highest growth potential, whereas larger myocytes exhibit the highest potential to atrophy.  相似文献   

19.
T-type Ca(2+) channels (TTCCs) are expressed in the developing heart, are not present in the adult ventricle, and are reexpressed in cardiac diseases involving cardiac dysfunction and premature, arrhythmogenic death. The goal of this study was to determine the functional role of increased Ca(2+) influx through reexpressed TTCCs in the adult heart. A mouse line with cardiac-specific, conditional expression of the alpha1G-TTCC was used to increase Ca(2+) influx through TTCCs. alpha1G hearts had mild increases in contractility but no cardiac histopathology or premature death. This contrasts with the pathological phenotype of a previously studied mouse with increased Ca(2+) influx through the L-type Ca(2+) channel (LTCC) secondary to overexpression of its beta2a subunit. Although alpha1G and beta2a myocytes had similar increases in Ca(2+) influx, alpha1G myocytes had smaller increases in contraction magnitude, and, unlike beta2a myocytes, there were no increases in sarcoplasmic reticulum Ca(2+) loading. Ca(2+) influx through TTCCs also did not induce normal sarcoplasmic reticulum Ca(2+) release. alpha1G myocytes had changes in LTCC, SERCA2a, and phospholamban abundance, which appear to be adaptations that help maintain Ca(2+) homeostasis. Immunostaining suggested that the majority of alpha1G-TTCCs were on the surface membrane. Osmotic shock, which selectively eliminates T-tubules, induced a greater reduction in L- versus TTCC currents. These studies suggest that T- and LTCCs are in different portions of the sarcolemma (surface membrane versus T-tubules) and that Ca(2+) influx through these channels induce different effects on myocyte contractility and lead to distinct cardiac phenotypes.  相似文献   

20.
To examine whether protein kinase C (PKC) activation is essential for the induction of cardiac myocyte hypertrophy caused by α1-adrenergic stimulation, we investigated the hypertrophic effect of phenylephrine in PKC down-regulated and non-treated cultured cardiac myocytes obtained from neonatal Sprague-Dawley rat ventricles. The treatment with 10 nmol/L 12-tetra decanoylphorbol-13-acetate (TPA) for more than 2 hours decreased PKC activity by approximately 80% without marked hypertrophy. Phenylephrine increased [14C] phenylalanine (Phe) incorporation in both TPA non-treated and treated cells, 1.54- and 1.71-fold as large as control, respectively. The cell surface area also enlarged in both groups, 1.67- and 1.74-fold, respectively. Thus, phenylephrine induced the similar grade hypertrophy in cultured cardiac myocytes even when  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号