共查询到20条相似文献,搜索用时 15 毫秒
1.
3.
Cyclosporin A (CsA) is thought to prevent immune reactions after organ transplantation by inhibiting calcineurin (Cn) and its substrate, the Nuclear Factor of Activated T Cells (NFAT). A dichotomy exists in describing the effects of CsA on bone formation. The concept that the suppression of Cn/NFAT signaling by CsA inhibits bone formation is not entirely supported by many clinical reports and laboratory animal studies. Gender, dosage and basal inflammatory activity have all been suggested as explanations for these seemingly contradictory reports. Here we examine the effects of varying concentrations of CsA on bone formation and osteoblast differentiation and elucidate the role of NFATc1 in this response. We show that low concentrations of CsA (< 1 μM in vitro and 35.5 nM in vivo) are anabolic as they increase bone formation, osteoblast differentiation, and bone mass, while high concentrations (> 1 μM in vitro and in vivo) elicit an opposite and catabolic response. The overexpression of constitutively active NFATc1 inhibits osteoblast differentiation, and treatment with low concentrations of CsA does not ameliorate this inhibition. Treating osteoblasts with low concentrations of CsA (< 1 μM) increases fra-2 gene expression and protein levels in a dose-dependent manner as well as AP-1 DNA-binding activity. Finally, NFATc1 silencing with siRNA increases Fra-2 expression, whereas NFATc1 overexpression inhibits Fra-2 expression. Therefore, NFATc1 negatively regulates osteoblast differentiation, and its specific inhibition may represent a viable anabolic therapy for osteoporosis. 相似文献
4.
5.
6.
Dympna Harmey Gudrun Stenbeck Catherine D Nobes Alistair J Lax Agamemnon E Grigoriadis 《Journal of bone and mineral research》2004,19(4):661-670
The role of the Rho-Rho kinase signaling pathway on osteoblast differentiation was investigated using primary mouse calvarial cells. The bacterial toxin PMT inhibited, whereas Rho-ROK inhibitors stimulated, osteoblast differentiation and bone nodule formation. These effects correlated with altered BMP-2 and -4 expression. These data show the importance of Rho-ROK signaling in osteoblast differentiation and bone formation. INTRODUCTION: The signal transduction pathways controlling osteoblast differentiation are not well understood. In this study, we used Pasteurella multocida toxin (PMT), a unique bacterial toxin that activates the small GTPase Rho, and specific Rho inhibitors to investigate the role of Rho in osteoblast differentiation and bone formation in vitro. MATERIALS AND METHODS: Primary mouse calvarial osteoblast cultures were used to investigate the effects of recombinant PMT and Rho-Rho kinase (ROK) inhibitors on osteoblast differentiation and bone nodule formation. Osteoblast gene expression was analyzed using Northern blot and RT-PCR, and actin rearrangements were visualized after phalloidin staining and confocal microscopy. RESULTS: PMT stimulated the proliferation of primary mouse calvarial cells and markedly inhibited the differentiation of osteoblast precursors to bone nodules with a concomitant inhibition of osteoblastic marker gene expression. There was no apparent causal relationship between the stimulation of proliferation and inhibition of differentiation. PMT caused cytoskeletal rearrangements because of activation of Rho, and the inhibition of bone nodules was completely reversed by the Rho inhibitor C3 transferase and partly reversed by inhibitors of the Rho effector, ROK. Interestingly, Rho and ROK inhibitors alone potently stimulated osteoblast differentiation, gene expression, and bone nodule formation. Finally, PMT inhibited, whereas ROK inhibitors stimulated, bone morphogenetic protein (BMP)-2 and -4 mRNA expression, providing a possible mechanism for their effects on bone nodule formation. CONCLUSIONS: These results show that PMT inhibits osteoblast differentiation through a mechanism involving the Rho-ROK pathway and that this pathway is an important negative regulator of osteoblast differentiation. Conversely, ROK inhibitors stimulate osteoblast differentiation and may be potentially useful as anabolic agents for bone. 相似文献
7.
Christina N Bennett Hongjiao Ouyang Yanfei L Ma Qingqiang Zeng Isabelle Gerin Kyle M Sousa Timothy F Lane Venkatesh Krishnan Kurt D Hankenson Ormond A MacDougald 《Journal of bone and mineral research》2007,22(12):1924-1932
Overexpression of Wnt10b from the osteocalcin promoter in transgenic mice increases postnatal bone mass. Increases in osteoblast perimeter, mineralizing surface, and bone formation rate without detectable changes in pre-osteoblast proliferation, osteoblast apoptosis, or osteoclast number and activity suggest that, in this animal model, Wnt10b primarily increases bone mass by stimulating osteoblastogenesis. INTRODUCTION: Wnt signaling regulates many aspects of development including postnatal accrual of bone. Potential mechanisms for how Wnt signaling increases bone mass include regulation of osteoblast and/or osteoclast number and activity. To help differentiate between these possibilities, we studied mice in which Wnt10b is expressed specifically in osteoblast lineage cells or in mice devoid of Wnt10b. MATERIALS AND METHODS: Transgenic mice, in which mouse Wnt10b is expressed from the human osteocalcin promoter (Oc-Wnt10b), were generated in C57BL/6 mice. Transgene expression was evaluated by RNase protection assay. Quantitative assessment of bone variables was done by radiography, muCT, and static and dynamic histomorphometry. Mechanisms of bone homeostasis were evaluated with assays for BrdU, TUNEL, and TRACP5b activity, as well as serum levels of C-terminal telopeptide of type I collagen (CTX). The endogenous role of Wnt10b in bone was assessed by dynamic histomorphometry in Wnt10b(-/-) mice. RESULTS: Oc-Wnt10b mice have increased mandibular bone and impaired eruption of incisors during postnatal development. Analyses of femoral distal metaphyses show significantly higher BMD, bone volume fraction, and trabecular number. Increased bone formation is caused by increases in number of osteoblasts per bone surface, rate of mineral apposition, and percent mineralizing surface. Although number of osteoclasts per bone surface is not altered, Oc-Wnt10b mice have increased total osteoclast activity because of higher bone mass. In Wnt10b(-/-) mice, changes in mineralizing variables and osteoblast perimeter in femoral distal metaphyses were not observed; however, bone formation rate is reduced because of decreased total bone volume and trabecular number. CONCLUSIONS: High bone mass in Oc-Wnt10b mice is primarily caused by increased osteoblastogenesis, with a minor contribution from elevated mineralizing activity of osteoblasts. 相似文献
8.
Bioactive glass stimulates in vitro osteoblast differentiation and creates a favorable template for bone tissue formation. 总被引:6,自引:0,他引:6
C Loty J M Sautier M T Tan M Oboeuf E Jallot H Boulekbache D Greenspan N Forest 《Journal of bone and mineral research》2001,16(2):231-239
In this study, we have investigated the behavior of fetal rat osteoblasts cultured on bioactive glasses with 55 wt% silica content (55S) and on a bioinert glass (60S) used either in the form of granules or in the form of disks. In the presence of Bioglass granules (55 wt% silica content), phase contrast microscopy permitted step-by-step visualization of the formation of bone nodules in contact with the particles. Ultrastructural observations of undecalcified sections revealed the presence of an electron-dense layer composed of needle-shaped crystals at the periphery of the material that seemed to act as a nucleating surface for biological crystals. Furthermore, energy dispersive X-ray (EDX) analysis and electron diffraction patterns showed that this interface contains calcium (Ca) and phosphorus (P) and was highly crystalline. When rat bone cells were cultured on 55S disks, scanning electron microscopic (SEM) observations revealed that cells attached, spread to all substrata, and formed multilayered nodular structures by day 10 in culture. Furthermore, cytoenzymatic localization of alkaline phosphatase (ALP) and immunolabeling with bone sialoprotein antibody revealed a positive staining for the bone nodules formed in cultures on 55S. In addition, the specific activity of ALP determined biochemically was significantly higher in 55S cultures than in the controls. SEM observations of the material surfaces after scraping off the cell layers showed that mineralized bone nodules remained attached on 55S surfaces but not on 60S. X-ray microanalysis indicated the presence of Ca and P in this bone tissue. The 55S/bone interfaces also were analyzed on transverse sections. The interfacial analysis showed a firm bone bonding to the 55S surface through an intervening apatite layer, confirmed by the X-ray mappings. All these results indicate the importance of the surface composition in supporting differentiation of osteogenic cells and the subsequent apposition of bone matrix allowing a strong bond of the bioactive materials to bone. 相似文献
9.
10.
12.
Xinxiang Wang Jian Wu Yoshihiro Shidoji Yasutoshi Muto Nobuko Ohishi Kunio Yagi Sachie Ikegami Toshimasa Shinki Nobuyuki Udagawa Tatsuo Suda Yoshiko Ishimi 《Journal of bone and mineral research》2002,17(1):91-100
Retinoids are known to be of special importance for normal bone growth and development. Recently, we reported that retinoids not only induced osteoblast differentiation, but also inhibited osteoclast formation in vitro. In this study, we examined the osteogenic effects of geranylgeranoic acid (GGA), a chemically synthesized acyclic retinoid, in bone in vitro and in vivo. GGA not only suppressed proliferation of osteoblastic MC3T3-E1 cells, but also up-regulated differentiation markers of osteoblasts such as alkaline phosphatase (ALP) activity and expression of osteopontin (OP) messenger RNA (mRNA). In contrast, GGA inhibited osteoclast formation induced by 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] in cocultures of mouse bone marrow cells and primary osteoblasts. Treatment of stromal ST2 cells with GGA restored the 1alpha,25(OH)2D3- or prostaglandin E2 (PGE2)-induced suppression of osteoprotegerin (OPG) mRNA expression. GGA inhibited osteoclast formation induced by macrophage colony-stimulating factor (M-CSF) and soluble receptor activator of nuclear factor kappaB ligand (sRANKL) in the culture of bone marrow macrophages. Thus, it is likely that GGA inhibits osteoclast formation by affecting both osteoblasts and osteoclast progenitors in the coculture system. Furthermore, in vivo, GGA increased bone mineral density (BMD) of total as well as distal femur in a P6 strain of senescence-accelerated mice (SAMP6). These results indicate that GGA increases bone mass by maintaining a positive balance of bone turnover by inducing osteoblast differentiation and suppressing osteoclast formation. 相似文献
13.
14.
The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. 总被引:11,自引:0,他引:11
A J Borton J P Frederick M B Datto X F Wang R S Weinstein 《Journal of bone and mineral research》2001,16(10):1754-1764
Smad3 is a well-characterized intracellular effector of the transforming growth factor beta (TGF-beta) signaling pathway and was implicated recently in the potentiation of vitamin D receptor (VDR)-mediated signaling. Given that both TGF-beta and vitamin D are important regulators of bone remodeling, it is expected that Smad3 plays an integral role in normal maintenance of bone. However, the exact mechanisms by which Smad3 functions in bone remodeling are unknown. Here, we show that mice with targeted deletion of Smad3 are osteopenic with less cortical and cancellous bone compared with wild-type littermates. Decreases in bone mineral density (BMD) in Smad3 null mice reflect the inability of osteoblasts to balance osteoclast activity, although osteoclast numbers are normal and vitamin D mediated serum calcium homeostasis is maintained. The osteopenia of Smad3 null mice is attributed to a decreased rate of bone formation associated with increased osteocyte number and apoptosis. These findings are supported by studies with isolated primary osteoblasts that show TGF-beta can no longer inhibit the differentiation of osteoblasts in the absence of Smad3; yet, TGF-beta-stimulated proliferation remains intact. Together these data support a model that a loss of Smad3 increases the osteocyte fate of the osteoblast and decreases the duration of osteoblast function by shortening lifespan, ultimately resulting in osteopenia. 相似文献
15.
Restricted and coordinated expression of beta3-integrin and bone sialoprotein during cultured osteoblast differentiation 总被引:1,自引:0,他引:1
In this study, the expression of beta3-integrin was examined in relationship to the restricted expression of bone sialoprotein (BSP). Immunohistochemical analysis indicated that the alpha(v)beta3-integrin was coincident and proximal to BSP expression in the fetal mandible bovine osteoblast culture model. Alpha(v)beta3-integrin expression was expressed predominantly in a region proximal to, but not including, the substrate adherent cells. In comparison, the alpha5beta1-integrin was expressed in a generalized pattern throughout the culture layers in a coordinated fashion to fibronectin. The temporal expression of beta1- and beta3-integrin was evaluated using RT-PCR and southern blot analysis. Unlike the generalized expression of beta1-integrin, beta3-integrin was restricted to days 3 and 5 of the culture period. The previous demonstration of similar restriction of BSP expression and the present colocalization of BSP suggests the potential coordinated expression of a specific extracellular matrix ligand with a select integrin. Beta3-integrin/BSP adhesion-mediated signaling may play a significant role in the process of osteoblast morphodifferentiation. 相似文献
16.
17.
18.
Regulation of interleukin-6-mediated PI3K activation and neuroendocrine differentiation by androgen signaling in prostate cancer LNCaP cells 总被引:2,自引:0,他引:2
BACKGROUND: Neuroendocrine (NE) differentiation in prostate cancer has been suggested to be one of the early events in the development of androgen independence. In the human prostate cancer LNCaP cell line, treatment with interleukin-6 (IL-6) induces NE-like differentiation, which is similar to the phenomena observed in advanced stages of prostate cancer progression. In this study, we investigate how androgen plays a role in IL-6-mediated NE differentiation in LNCaP cell line. METHODS: Western blot, co-immunoprecipitation (co-IP), and GST pull-down assays were performed to detect the protein expression and protein-protein interaction. PI3K kinase assay was used to measure PI3K activity. RESULTS: Addition of androgen blocks IL-6-mediated PI3K activation and NE differentiation in LNCaP cells. In vivo and in vitro protein interaction assays suggested that androgen receptor (AR) can directly interact with IL-6 transducer gp130. In addition, androgen treatment enhances the interaction between AR and gp130, interrupts the IL-6-induced gp130-mediated PI3K activation, which may lead to inhibition of IL-6-mediated NE differentiation in LNCaP cells. CONCLUSIONS: Our results suggest androgen and AR can regulate IL-6-mediated LNCaP cell NE differentiation via directly modulating the IL-6-PI3K pathway. 相似文献
19.
20.
Tara L Aghaloo Christopher M Amantea Catherine M Cowan Jennifer A Richardson Ben M Wu Farhad Parhami Sotirios Tetradis 《Journal of orthopaedic research》2007,25(11):1488-1497
Oxysterols, naturally occurring cholesterol oxidation products, can induce osteoblast differentiation. Here, we investigated short-term 22(S)-hydroxycholesterol + 20(S)-hydroxycholesterol (SS) exposure on osteoblastic differentiation of marrow stromal cells. We further explored oxysterol ability to promote bone healing in vivo. Osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, osteocalcin (OCN) mRNA expression, mineralization, and Runx2 DNA binding activity. To explore the effects of osteogenic oxysterols in vivo, we utilized the critical-sized rat calvarial defect model. Poly(lactic-co-glycolic acid) (PLGA) scaffolds alone or coated with 140 ng (low dose) or 1400 ng (high dose) oxysterol cocktail were implanted into the defects. Rats were sacrificed at 6 weeks and examined by three-dimensional (3D) microcomputed tomography (microCT). Bone volume (BV), total volume (TV), and BV/TV ratio were measured. Culture exposure to SS for 10 min significantly increased ALP activity after 4 days, while 2 h exposure significantly increased mineralization after 14 days. Four-hour SS treatment increased OCN mRNA measured after 8 days and nuclear protein binding to an OSE2 site measured after 4 days. The calvarial defects showed slight bone healing in the control group. However, scaffolds adsorbed with low or high-dose oxysterol cocktail significantly enhanced bone formation. Histologic examination confirmed bone formation in the defect sites grafted with oxysterol-adsorbed scaffolds, compared to mostly fibrous tissue in control sites. Our results suggest that brief exposure to osteogenic oxysterols triggered events leading to osteoblastic cell differentiation and function in vitro and bone formation in vivo. These results identify oxysterols as potential agents in local and systemic enhancement of bone formation. 相似文献