首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
X-linked dilated cardiomyopathy (XLDC) is a dystrophinopathy characterized by severe cardiomyopathy with no skeletal muscle involvement. Several XLDC patients have been described with mutations that abolish dystrophin muscle (M) isoform expression. The absence of skeletal muscle degeneration normally associated with loss of dystrophin function was shown to be due to increased expression of brain (B) and cerebellar Purkinje (CP) isoforms of the gene exclusively in the skeletal muscle of these patients. This suggested that the B and CP promoters have an inherent capacity to function in skeletal muscle or that they are up-regulated by a skeletal muscle-specific enhancer unaffected by the mutations in these patients. In this work we have analyzed the deletion breakpoints of two XLDC patients with deletions removing the M promoter and exon 1, but not affecting the B and CP promoters. Despite the presence of several muscle-specific regulatory motifs, the B and CP promoters were found to be essentially inactive in muscle cell lines and primary cultures. As dystrophin muscle enhancer 1 (DME1), the only known muscle-specific enhancer within the dystrophin gene, is preserved in these patients, we tested its ability to up-regulate the B and CP promoters in muscle cells. B and CP promoter activity was significantly increased in the presence of DME1, and more importantly, activation was observed exclusively in cells presenting a skeletal muscle phenotype. These results point to a role for DME1 in the induction of B and CP isoform expression in the skeletal muscle of XLDC patients defective for M isoform expression.  相似文献   

4.
Adenovirus-mediated gene transfer to muscle is a promising technology for gene therapy of Duchenne muscular dystrophy (DMD). However, currently available recombinant adenovirus vectors have several limitations, including a limited cloning capacity of approximately 8.5 kb, and the induction of a host immune response that leads to transient gene expression of 3-4 weeks in immunocompetent animals. Gene therapy for DMD could benefit from the development of adenoviral vectors with an increased cloning capacity to accommodate a full-length (approximately 14 kb) dystrophin cDNA. This increased capacity should also accommodate gene regulatory elements to achieve expression of transduced genes in a tissue-specific manner. Additional vector modifications that eliminate adenoviral genes, expression of which is associated with development of a host immune response, might greatly increase long-term expression of virally delivered genes in vivo. We have constructed encapsidated adenovirus minichromosomes theoretically capable of delivering up to 35 kb of non-viral exogenous DNA. These minichromosomes are derived from bacterial plasmids containing two fused inverted adenovirus origins of replication embedded in a circular genome, the adenovirus packaging signals, a beta-galactosidase reporter gene and a full-length dystrophin cDNA regulated by a muscle-specific enhancer/promoter. The encapsidated minichromosomes are propagated in vitro by trans-complementation with a replication-defective (E1 + E3 deleted) helper virus. We show that the minichromosomes can be propagated to high titer (> 10(8)/ml) and purified on CsCl gradients due to their buoyancy difference relative to helper virus. These vectors are able to transduce myogenic cell cultures and express dystrophin in myotubes. These results suggest that encapsidated adenovirus minichromosomes may be useful for gene transfer to muscle and other tissues.   相似文献   

5.
6.
7.
8.
9.
10.
Using immunocytochemical methods, the localization of dystrophin, the gene product affected in Duchenne muscular dystrophy (DMD) in aneural, differentiating human muscle cultures, was studied. Dystrophin was not demonstrable in undifferentiated myoblasts from control patients and from two patients with DMD. After myoblast fusion, the protein was found in circumscribed sarcoplasmic patches, in the perinuclear area, and along the surface of all normal multinucleate myotubes, with more mature myotubes showing predominantly sarcolemmal distribution. There was no staining in myotubes from one DMD patient and only faint diffuse fluorescence in myotubes from the second affected boy, however. These data provide further evidence that dystrophin is a sarcolemma-associated protein, that it is developmentally regulated, and that it is absent or greatly reduced in quantity in skeletal muscle cultures from patients with DMD.  相似文献   

11.
The HSS3/4 enhancer of Crlz1-IgJ locus was first characterized with regard to the activity of HSS1 IgJ promoter in the plasma cells, where both of HSS3/4 enhancer and HSS1 IgJ promoter were found to be opened simultaneously to drive the IgJ gene expression. Unexpectedly, the HSS3/4 enhancer was also found to be opened in the pre-B cells. However, this opening of HSS3/4 enhancer in the pre-B cells could not be related to the IgJ gene expression, because neither the IgJ promoter was opened nor its gene was expressed at the pre-B cell stage of B cell development. Instead, it was postulated that the opened HSS3/4 enhancer might act on some other nearby promoter in pre-B cells, which is now guessed to be the Crlz1 promoter located at 22.5 kb from it. In consistence with this pre-B cell-specific opening of the HSS3/4 enhancer, a pre-B cell-specific in vivo footprint on a sequence similar to the EBF-binding consensus was detected within the enhancer. In this paper, we show that the protein causing the pre-B cell-specific in vivo footprint on a sequence similar to the EBF-binding consensus is truly EBF as judged by EMSA using various oligo-DNA competitors and anti-EBF antibodies. Also, as expected from other previous reports, EBF was shown to be expressed highly in pre-B cells, but very little or not in immature B, mature B and plasma cells using both the cell lines and FACS-sorted normal primary cells. Convincingly, mutations within the EBF site of HSS3/4 enhancer were shown to significantly impair the HSS3/4 enhancer activity in the pre-B cells, but not in the plasma cells.  相似文献   

12.
13.
14.
A promising approach for treating Duchenne muscular dystrophy (DMD) is by autologous cell transplantation of myogenic stem cells transduced with a therapeutic expression cassette. Development of this method has been hampered by a low frequency of cellular engraftment, the difficulty of tracing transplanted cells, the rapid loss of autologous cells carrying marker genes that are unable to halt muscle necrosis and the difficulty of stable transfer of a large dystrophin gene into myogenic stem cells. We engineered a 5.7 kb miniDys-GFP fusion gene by replacing the dystrophin C-terminal domain (DeltaCT) with an eGFP coding sequence and removing much of the dystrophin central rod domain (DeltaH2-R19). In a transgenic mdx(4Cv) mouse expressing the miniDys-GFP fusion protein under the control of a skeletal muscle-specific promoter, the green fusion protein localized on the sarcolemma, where it assembled the dystrophin-glycoprotein complex and completely prevented the development of dystrophy in transgenic mdx(4Cv) muscles. When myogenic and other stem cells from these mice were transplanted into mdx(4Cv) recipients, donor cells can be readily identified in skeletal muscle by direct green fluorescence or by using antibodies against GFP or dystrophin. In mdx(4Cv) mice reconstituted with bone marrow cells from the transgenic mice, we monitored engraftment in various muscle groups and found the number of miniDys-GFP(+) fibers increased with time. We suggest that these transgenic mdx(4Cv) mice are highly useful for developing autologous cell therapies for DMD.  相似文献   

15.
16.
Matrix metalloproteinases (MMPs) are a group of extracellular proteases involved in tissue remodeling in several physiological and pathophysiological conditions. While increased expression of MMPs (especially MMP-9) has been observed in skeletal muscle in numerous conditions, their physiological significance remains less-well understood. By generating novel skeletal muscle-specific transgenic (Tg) mice expressing constitutively active mutant of MMP-9 (i.e. MMP-9G100L), in this study, we have investigated the effects of elevated levels of MMP-9 on skeletal muscle structure and function in vivo. Tg expression of enzymatically active MMP-9 protein significantly increased skeletal muscle fiber cross-section area, levels of contractile proteins and force production in isometric contractions. MMP-9 stimulated the activation of the Akt signaling pathway in Tg mice. Moreover, expression of active MMP-9 increased the proportion of fast-type fiber in soleus muscle of mice. Overexpression of MMP-9 also considerably reduced the deposition of collagens I and IV in skeletal muscle in vivo. In one-year-old mdx mice (a model for Duchenne muscular dystrophy, DMD), deletion of the Mmp9 gene reduced fiber hypertrophy and phosphorylation of Akt and p38 mitogen-activated protein kinase. Collectively, our study suggests that elevated levels of active MMP-9 protein cause hypertrophy in skeletal muscle and that the modulation of MMP-9 levels may have therapeutic value in various muscular disorders including DMD.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号