共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Weiya Ma Wen-Hua Zheng Kelly Powell Khem Jhamandas Remi Quirion 《The European journal of neuroscience》2001,14(7):1091-1104
Tolerance to opiates reduces their effectiveness in the treatment of severe pain. Although the mechanisms are unclear, overactivity of pro-nociceptive systems has been proposed to contribute to this phenomenon. We have reported that the development of morphine tolerance significantly increased calcitonin-gene-related-peptide-like immunoreactivity (CGRP-IR) in primary sensory afferents of the spinal dorsal horn, suggesting that changes in pain-related neuropeptides in the dorsal root ganglion (DRG) neurons may be involved (Menard et al., 1996, J. Neurosci., 16, 2342-2351). Recently, we have shown that repeated morphine treatments induced increases in CGRP- and substance P (SP)-IR in cultured DRG, mimicking the in vivo effects (Ma et al., 2000, Neuroscience, 99, 529-539). In this study, we investigated the intracellular signal transduction pathways possibly involved in morphine-induced increases in CGRP- and SP-IR in DRG neurons. Repeated morphine exposure (10-20 microm) for 6 days increased the number of neurons expressing phosphorylated (p) mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated kinase (pERK), c-jun N-terminal kinase (pJNK) and P38 (pP38 MAPK). The number of neurons expressing phosphorylated cAMP responsive element binding protein (pCREB) was also markedly increased in morphine-exposed cultured DRG neurons. pERK-, pP38-, pJNK- and pCREB-IR were colocalized with CGRP-IR in cultured DRG neurons. Naloxone effectively blocked these actions of morphine, whereas a selective MEK1 inhibitor, PD98059, inhibited the morphine-induced increase in the phosphorylation of ERK and CREB, and the expression of CGRP and SP. Moreover, in morphine-tolerant rats, the number of pCREB-, CGRP- and SP-IR neurons in the lumbar DRG was also significantly increased. These in vitro and in vivo data suggest that the phosphorylation of MAP kinases and CREB plays a role in the morphine-induced increase in spinal CGRP and SP levels in primary sensory afferents, contributing to the development of tolerance to opioid-induced analgesia. 相似文献
4.
5.
Although opioids inhibit action potential (AP) conduction in primary-afferent fibers, this has not yet been fully examined. We investigated by using the sharp glass microelectrode technique how opioids (morphine, codeine, and ethylmorphine) affect APs recorded from adult rat dorsal root ganglion (DRG) neurons in response to sciatic nerve stimulation. The DRG neurons were classified into three types, Aα/β, Aδ, and C, according to AP characteristics, including the fiber conduction velocity (CV) of the neuron. AP of the Aα/β neuron was reduced in peak amplitude by each of the opioids in a reversible and concentration-dependent manner. The potency sequence was ethylmorphine > codeine = morphine (IC(50) = 0.70, 2.5, and 2.9 mM, respectively), indicating that this AP inhibition is related to the chemical structure of the opioid. Each of the Aδ and C neuron APs was also inhibited by the opioids; ethylmorphine had a tendency to inhibit APs more effectively than codeine and morphine. This inhibition was variable in extent among neurons and was either comparable to or greater than that of the Aα/β neuron AP. The opioid-induced AP inhibitions were unaffected by nonspecific opioid-receptor antagonist naloxone; opioid-receptor agonists did not affect APs. In conclusion, the opioids inhibited APs in DRG neurons without opioid-receptor activation; this inhibition was different among neurons having different primary-afferent fiber CVs and also among the three kinds of opioid. The inhibition by opioid of primary-afferent fiber AP conduction is suggested to be distinct in extent among fibers conveying distinct types of nociceptive information. 相似文献
6.
Experiments were undertaken to examine anatomical correlates of physiological effects of rabbit sera raised against nerve growth factor (anti-NGF) on nociceptive afferents. This antiserum has been shown to deplete the population of A-δ high threshold mechanoreceptors and to reduce neurogenic vasodilatation. Because numerous studies implicate calcitonin gene related peptide (CGRP)- containing sensory neurons in these effects, immunocytochemical and anatomical techniques were used to examine the normal development of CGRP-immunoreactive (-IR) neurons in the dorsal root ganglion (DRG) of rats from 13 days to 19 weeks of age, and to compare this to the development in rats treated neonatally (postnatal days 2-14) with anti-NGF. In controls the rate of increase in the mean diameter of CGRP-IR cells was substantially greater between 13 days and 5 weeks of age than it was between 5 weeks and 19 weeks, in contrast to CGRP-negative neurons whose rate of growth remained relatively constant. Anti-NGF had no significant effect on growth rate, but rats treated with anti-NGF exhibited a reduced proportion of CGRP-IR neurons at 5 weeks. This deficit was reversed by 19 weeks unlike the physiological changes. These results indicate independent regulation of CGRP expression and nociceptor physiology by NGF. J. Comp. Neurol. 392: 489–498, 1998. © 1998 Wiley-Liss, Inc. 相似文献
7.
目的观察神经生长因子(nerve growth factor, NGF)对原代培养的背根神经节(dorsal root ganglion, DRG)神经元中P物质(substance P, SP)的基础释放量和辣椒素诱发释放量的调节效应。方法将15 天胚龄的Wistar大鼠DRG神经元培养于含有不同浓度NGF的DMEM/F12培养液中,不含NGF的培养液培养的神经元作为对照。72小时后,用RT-PCR检测神经元中SP mRNA和辣椒素受体(vanilloid receptor 1, VR1)mRNA的表达,用放射免疫分析(radioimmunoassay,RIA)法检测SP的基础释放量和辣椒素(100 nmol/L)刺激10 min后的诱发释放量。结果SPmRNA和VR1 mRNA在NGF孵育的标本中表达增加,并与孵育液中NGF的浓度呈剂量依赖关系。SP的基础释放量和辣椒素诱发释放量在NGF孵育的标本中均增加,而且诱发释放量与NGF的浓度呈剂量依赖关系。结论NGF使DRG神经元SP的基础释放量和诱发释放量增加,表明NGF能增加初级传入神经元感受伤害刺激的敏感性,该效应可能与SP和VR1的mRNA表达增加有关。 相似文献
8.
神经生长因子对培养的大鼠背根神经节神经元P物质释放的调节作用(英文) 总被引:1,自引:0,他引:1
目的观察神经生长因子(nerve growth factor, NGF)对原代培养的背根神经节(dorsal root ganglion, DRG)神经元中P物质(substance P, SP)的基础释放量和辣椒素诱发释放量的调节效应。方法将15 天胚龄的Wistar大鼠DRG神经元培养于含有不同浓度NGF的DMEM/F12培养液中,不含NGF的培养液培养的神经元作为对照。72小时后,用RT-PCR检测神经元中SP mRNA和辣椒素受体(vanilloid receptor 1, VR1)mRNA的表达,用放射免疫分析(radioimmunoassay,RIA)法检测SP的基础释放量和辣椒素(100 nmol/L)刺激10 min后的诱发释放量。结果SPmRNA和VR1 mRNA在NGF孵育的标本中表达增加,并与孵育液中NGF的浓度呈剂量依赖关系。SP的基础释放量和辣椒素诱发释放量在NGF孵育的标本中均增加,而且诱发释放量与NGF的浓度呈剂量依赖关系。结论NGF使DRG神经元SP的基础释放量和诱发释放量增加,表明NGF能增加初级传入神经元感受伤害刺激的敏感性,该效应可能与SP和VR1的mRNA表达增加有关。 相似文献
9.
The actions of nerve growth factor (NGF) are mediated by two receptor proteins, trk and p75. Recent evidence indicates that NGF upregulates the expression of both trk and p75 in responsive neurons including rat dorsal root ganglion (DRG) neurons. Axotomy by disconnecting the neuron from its source of target-derived NGF is predicted to lead to the downregulation of trk and p75 expression. However, previous studies of the effects of axotomy on trk and p75 mRNA expression in rat DRG have yielded discrepant results. We report that following sciatic nerve crush, trk and p75 mRNA levels in L4-L6 DRG decrease to ~50% of control levels at 4–14 days, return to control levels by 30 days, and are increased by ~30% at 60 days. Similar changes are observed following nerve transection although mRNA levels are slower in returning to normal and do not exceed control levels at later timepoints. Thus, trk and p75 expression decline early following target disconnection and later recover irrespective of target reinnervation. These observations indicate that target derived NGF is required for the maintenance of NGF receptor expression in adult rat DRG neurons and that non-target derived factors can appropriate this function following peripheral nerve injury. © 1996 Wiley-Liss, Inc. 相似文献
10.
Effects of substance P and calcitonin gene-related peptide on axonal transport in isolated and cultured adult mouse dorsal root ganglion neurons 总被引:4,自引:0,他引:4
Hiruma H Saito A Ichikawa T Kiriyama Y Hoka S Kusakabe T Kobayashi H Kawakami T 《Brain research》2000,883(2):184-191
Substance P and calcitonin gene-related peptide (CGRP) released from primary sensory neurons are known to play important roles in nociception and nociceptive transmission. In the present study, we attempted to clarify the roles of these neuropeptides in the regulation of axonal transport in sensory neurons. Cells were isolated from adult mouse dorsal root ganglia and cultured in F-12 medium containing fetal bovine serum for 48 h until their neurites were grown. These isolated and cultured DRG cells were mostly (>98%) small (diameter <25 microm) and medium (diameter, 25-40 microm) in size, and were immunoreactive for substance P and CGRP (85.9 and 66. 0% of total cells, respectively). Video-enhanced microscopy was applied to observe particles transported within neurites. Application of substance P (100 nM) decreased the number of particles transported in both anterograde and retrograde directions in each of DRG neurons tested (n=5). The instantaneous velocities of individual particles transported in anterograde and retrograde directions were also reduced by substance P. In contrast, alpha-CGRP (100 nM) increased the number of particles transported in both directions in each of DRG neurons tested (n=5), and also increased the instantaneous velocities of particles transported bidirectionally. Application of beta-CGRP (100-1000 nM) did not elicit any effect on axonal transport. Therefore, axonal transport in sensory neurons seems to be modulated by substance P and alpha-CGRP, both of which can be derived from its own and adjacent sensory neurons. 相似文献
11.
Maria Lioudyno Ylva Skoglsa Nobuyuki Takei Dan Lindholm 《Journal of neuroscience research》1998,51(2):243-256
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a recently discovered neuropeptide which is present both in the central and peripheral nervous system of adult rats. Here we show that PACAP is also expressed by dorsal root ganglion sensory neurons of embryonic and newborn rats. To characterize the effects of PACAP on dorsal root ganglion (DRG) neurons, dissociated cultures were established and incubated in the absence or presence of this neuropeptide. The results show that PACAP increases the survival of cultured DRG neurons, and the effect was comparable to that of nerve growth factor (NGF). In DRG explants, PACAP induces the immunoreactivity for the neuropeptide calcitonin gene-related peptide (CGRP). PACAP also promoted the outgrowth of neurites in the DRG cultures. The present results show that PACAP acts as a trophic factor for DRG neurons and that it is able to modulate the expression of another neuropeptide in the ganglia. The presence of PACAP in normal DRG and after nerve lesions suggests that PACAP acts in a autocrine/paracrine manner possibly in conjunction with other neurotrophic factors such as nerve growth factor. J. Neurosci. Res. 51:243-256, 1998. © 1998 Wiley-Liss, Inc. 相似文献
12.
The present study was performed to explore the involvement of opioid receptors in the calcitonin gene-related peptide 8-37 (CGRP8-37, an antagonist of CGRP receptor)-induced inhibition of the activity of wide-dynamic-range (WDR) neurons in the spinal dorsal horn of rats. Extracellular recording was performed with a multibarrelled glass micropipette, and the chemicals were delivered by micro-iontophoresis. The discharge frequency of WDR neurons was evoked by subcutaneous electrical stimulation applied to the ipsilateral hindpaw. Iontophoretic application of CGRP8-37 by an ejection current of 160 nA induced significant inhibition of the discharge frequency of WDR neurons. The inhibitory effect of CGRP8-37 on the activity of WDR neurons was attenuated by later iontophoretic application of the opioid antagonist naloxone. Furthermore, the effect of CGRP8-37 was attenuated by either iontophoretic application of the kappa-receptor antagonist nor-binaltorphimine (nor-BNI) or the mu-receptor antagonist beta-funaltrexamine (beta-FNA) but not by the delta-receptor antagonist naltrindole. The results indicate that kappa- and mu-opioid receptors on the membrane of WDR neurons are involved in the modulation of CGRP8-37-induced antinociception in dorsal horn of the spinal cord in rats. 相似文献
13.
14.
15.
Xu C Xu W Xu H Xiong W Gao Y Li G Liu S Xie J Tu G Peng H Qiu S Liang S 《Brain research bulletin》2012,87(1):37-43
Tissue injury or inflammation of the nervous system may result in chronic neuropathic pain characterized by sensitivity to painful stimuli. P2X3 receptors play a crucial role in facilitating pain transmission. Puerarin is an active compound of a traditional Chinese medicine Ge-gen, and Ge-gen soup has anti-inflammatory effects. The present research investigated the role of puerarin in the signalling of chronic neuropathic pain mediated by P2X3 receptors of rat dorsal root ganglion neurons. Chronic constriction injury (CCI) rat model was adopted. Sprague-Dawley rats were randomly divided into blank control group (Ctrl), sham group (Sham), puerarin-treated control group (Ctrl + PUE), chronic constriction injury (CCI) group and puerarin-treated CCI group (CCI + PUE). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured by the von-Frey test and the Hargreaves’ test respectively. The stain values of P2X3 protein and mRNA in L4/L5 dorsal root ganglion (DRG) were detected by immunohistochemistry, western blot and in situ hybridization. At day 4-7 after the operation of CCI rats, MWT and TWL in group CCI and CCI + PUE were lower than those in group Ctrl, Sham and Ctrl + PUE, while there was no difference among group Ctrl, Sham and Ctrl + PUE. At day 7-10 after operation, MWT and TWL in group CCI + PUE was higher than those in group CCI, but there was no significant difference between group CCI + PUE and group Ctrl (p > 0.05). At day 14 after operation, the stain values of P2X3 proteins and mRNAs in L4/L5 DRG of group CCI were higher than those in group Ctrl, Sham, Ctrl + PUE and CCI + PUE, while the stain values of P2X3 proteins and mRNAs in group CCI + PUE were significantly decreased compared with those in group CCI. Therefore, puerarin may alleviate neuropathic pain mediated by P2X3 receptors in dorsal root ganglion neurons. 相似文献
16.
Differential expression patterns of mRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat 总被引:5,自引:0,他引:5
Kobayashi K Fukuoka T Yamanaka H Dai Y Obata K Tokunaga A Noguchi K 《The Journal of comparative neurology》2005,481(4):377-390
The ionotropic purine receptors, P2X receptors, are composed of an assembly of multiple P2X subunits. At present, seven subunits have been cloned and named "P2X1-7." We examined the precise distribution of mRNAs for these subunits in the rat lumbar dorsal root ganglion (DRG) by in situ hybridization histochemistry (ISHH) using riboprobes and characterized their expression among some neuronal subpopulations by ISHH and immunohistochemistry. P2X1 was not expressed by DRG neurons. P2X2 mRNA was preferentially expressed by neurofilament (NF)-200 negative small-sized neurons expressing Ret, but not TrkA or TrkC mRNAs. P2X3 mRNA was mainly expressed by NF-200-negative neurons. Most P2X3-positive neurons had Ret mRNA, and about a half of them coexpressed TrkA and TRPV1 mRNAs. P2X4 was the most ubiquitous subunit, evenly distributing among all examined neuronal subpopulations. P2X5 and P2X6 were expressed by about half of the neurons, and most of these neurons were NF-200-positive. P2X7 mRNA-expressing neurons were quite rare. We further examined the coexpression of all pairs of P2X2-P2X6 mRNAs in DRG neurons and found that: 1) P2X4 was always present in combination with the other subunits. 2) All TrkC neurons had three subunits, P2X4, P2X5, and P2X6, and made up 32% of the total neurons. 3) 12.5% of the total neurons had both P2X2 and P2X3. 4) 12.9% of the neurons had both P2X3 and P2X5. We determined the neuronal subpopulation-specific distribution of P2X subunits in the DRG. These findings suggest possible combinations of subunits of native P2X receptor in DRG neurons. 相似文献
17.
Increase of preprotachykinin mRNA and substance P immunoreactivity in spared dorsal root ganglion neurons following partial sciatic nerve injury 总被引:5,自引:0,他引:5
Complete sciatic nerve injury reduces substance P (SP) expression in primary sensory neurons of the L4 and L5 dorsal root ganglia (DRG), due to loss of target-derived nerve growth factor (NGF). Partial nerve injury spares a proportion of DRG neurons, whose axons lie in the partially degenerating nerve, and are exposed to elevated NGF levels from Schwann and other endoneurial cells involved in Wallerian degeneration. To test the hypothesis that SP is elevated in spared DRG neurons following partial nerve injury, we compared the effects of complete sciatic nerve transection (CSNT) with those of two types of partial injury, partial sciatic nerve transection (PSNT) and chronic constriction injury (CCI). As expected, a CSNT profoundly decreased SP expression at 4 and 14 days postinjury, but after PSNT and CCI the levels of preprotachykinin (PPT) mRNA, assessed by in situ hybridization, and the SP immunoreactivity (SP-IR) of the L4 and L5 DRGs did not decrease, nor did dorsal horn SP-IR decrease. Using retrograde labelling with fluorogold to identify spared DRG neurons, we found that the proportion of these neurons expressing SP-IR 14 days after injury was much higher than in neurons of normal DRGs. Further, the highest levels of SP-IR in individual neurons were detected in ipsilateral L4 and L5 DRG neurons after PSNT and CCI. We conclude that partial sciatic nerve injury elevates SP levels in spared DRG neurons. This phenomenon might be involved in the development of neuropathic pain, which commonly follows partial nerve injury. 相似文献
18.
Objective
The aim of the present study is to verify the ATP-induced varied responses in isolated dorsal root ganglion (DRG) neurons of the adult rat, and investigate the modulatory effects of specific P2X receptor agonist β, γ-me-ATP and protein kinase C (PKC) on P2X receptor-mediated inward current in DRG neurons.Methods
Whole cell patch-clamp was employed to record the currents on acutely isolated DRG neurons in the adult rats.Results
β, γ-me-ATP, similar as ATP, evoked 2 distinct subtypes of P2X receptor-mediated inward currents in a dose-dependent manner in DRG neurons. Activation of PKC by phorbol 12,13-dibutyrate (PDBu) significantly inhibited both subtypes of inward currents mediated by P2X receptors in a dose-dependent manner.Conclusion
Activation of PKC negatively modulated the P2X receptor-mediated currents in rat DRG neurons, which may be of benefit to preventing the over-excitation of nociceptor under inflammatory or neuropathic conditions. 相似文献19.
20.
Dynamic changes in glypican-1 expression in dorsal root ganglion neurons after peripheral and central axonal injury 总被引:2,自引:0,他引:2
Glypican-1, a glycosyl phosphatidyl inositol (GPI)-anchored heparan sulphate proteoglycan expressed in the developing and mature cells of the central nervous system, acts as a coreceptor for diverse ligands, including slit axonal guidance proteins, fibroblast growth factors and laminin. We have examined its expression in primary sensory dorsal root ganglion (DRG) neurons and spinal cord after axonal injury. In noninjured rats, glypican-1 mRNA and protein are constitutively expressed at low levels in lumbar DRGs. Sciatic nerve transection results in a two-fold increase in mRNA and protein expression. High glypican-1 expression persists until the injured axons reinnervate their peripheral targets, as in the case of a crushed nerve. Injury to the central axons of DRG neurons by either a dorsal column injury or a dorsal root transection also up-regulates glypican-1, a feature that differs from most DRG axonal injury-induced genes, whose regulation changes only after peripheral and not central axonal injury. After axonal injury, the cellular localization of glypican-1 changes from a nuclear pattern restricted to neurons in noninjured DRGs, to the cytoplasm and membrane of injured neurons, as well as neighbouring non-neuronal cells. Sciatic nerve transection also leads to an accumulation of glypican-1 in the proximal nerve segment of injured axons. Glypican-1 is coexpressed with robo 2 and its up-regulation after axonal injury may contribute to an altered sensitivity to axonal growth or guidance cues. 相似文献