首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the miscibility of formulation ingredients and their crystallization during the freezing segment of the lyophilization process was studied. The thermal properties of frozen solutions containing myo-inositol and cosolutes were obtained by performing heating scans from −70°C before and after heat treatment at −20°C to −5°C. Addition of dextran 40,000 reduced and prevented crystallization of myo-inositol. In the first scan, some frozen solutions containing an inositol-rich mixture with dextran showed single broad transitions (Tg′s: transition temperatures of maximally freeze-concentrated solutes) that indicated incomplete mixing of the concentrated amorphous solutes. Heat treatment of these frozen solutions induced separation of the solutes into inositol-dominant and solute mixture phases (Tg′ splitting) following crystallization of myo-inositol (Tg′ shifting). The crystal growth involved myo-inositol molecules in the solute mixture phase. The amorphous–amorphous phase separation and resulting loss of the heteromolecular interaction in the freeze-concentrated inositol-dominant phase should allow ordered assembly of the solute molecules required for nucleation. Some dextran-rich and intermediate concentration ratio frozen solutions retained single Tg′s of the amorphous solute mixture, both before and after heat treatments. The relevance of solute miscibility on the crystallization of myo-inositol was also indicated in the systems containing glucose or recombinant human albumin.  相似文献   

2.
The effect of inorganic salts on eutectic crystallization of poly(ethylene glycol) (PEG) 1500-20,000 in frozen solution was studied to model the polymer and inorganic salt interaction in freeze-dried formulations. Thermal analysis of an aqueous PEG 3000 solution showed a eutectic PEG crystallization exotherm at approximately -47 degrees C and a subsequent PEG crystal melting endotherm at -14.9 degrees C. Addition of sodium chloride prevented the PEG crystallization in the freeze-concentrated solution surrounding ice crystals. Higher concentration NaCl was required to retain higher molecular weight PEG in the amorphous state. Various inorganic salts prevented the PEG crystallization to varying degrees depending mainly on the position of the anion in the Hofmeister's lyotropic series. Some salting-in and 'intermediate' salts (NaSCN, NaI, NaBr, NaCl, LiCl, KCl, and RbCl) inhibited the crystallization of PEG 7500 in frozen solutions. On the other hand, salting-out salts (NaH2PO4, Na2HPO4, Na2SO4, and NaF) did not show an apparent effect on the PEG crystallization. Some salting-out salts induced PEG crystallization in PEG and sucrose combination frozen solutions. The varying abilities of salts to prevent the PEG crystallization in frozen solutions strongly suggested that the solutes had different degrees of miscibility in the freeze-concentrates.  相似文献   

3.
Purpose. A low temperature X-ray powder diffractometric (XRD) technique has been developed which permits in situ characterization of the solid-state of solutes in frozen aqueous solutions. Methods. A variable temperature stage, with a working temperature range of –190 to 300°C, was attached to a wide-angle XRD. The stage was calibrated with a sodium chloride-water binary system. Results. When aqueous nafcillin sodium solution (22% w/w) was frozen, eutectic crystallization of the solute was not observed. However, annealing at –4°C, caused crystallization of the solute. With increasing annealing time, there was a progressive increase in the crystallinity of the solute. Studies were carried out with sodium nafcillin solutions ranging in concentration from 20 to 50% w/w. The solid-state of the phase crystallizing from solution was independent of the solute concentration. Next, solutions of mono- and disodium hydrogen phosphate were individually frozen. Only the latter crystallized as the dodecahydrate (Na2HPO412H2O). However when an aqueous buffer mixture of mono- and disodium hydrogen phosphate was frozen, the former inhibited the crystallization of the latter. Conclusions. Since freezing of solutions is the first step in lyophilization, the XRD technique can provide a mechanistic understanding of the alterations in solid-state that occur during freeze-drying. DSC has so far been the technique of choice to study frozen systems. The advantage of XRD is that it not only permits unambiguous identification of the crystalline solid phase(s), but it also provides information about the degree of crystallinity. While overlapping thermal events are difficult to interpret in DSC, XRD does not suffer from such a limitation.  相似文献   

4.
Purpose. To characterize the phase transitions in a multicomponent system during the various stages of the freeze-drying process and to evaluate the crystallization behavior below Tg (glass transition temperature of maximally freeze-concentrated amorphous phase) in frozen aqueous solutions and during freeze-drying. Methods. X-ray powder diffractometry (XRD) and differential scanning calorimetry (DSC) were used to study frozen aqueous solutions of mannitol with or without trehalose. By attaching a vacuum pump to the low-temperature stage of the diffractometer, it was possible to simulate the freeze-drying process in situ in the sample chamber of the XRD. This enabled real-time monitoring of the solid state of the solutes during the process. Results. In rapidly cooled aqueous solutions containing only mannitol (10% w/w), the solute was retained amorphous. Annealing of frozen solutions or primary drying, both below Tg, resulted in crystallization of mannitol hydrate. Similar effects were observed in the presence of trehalose (2% w/w). At higher concentrations (5% w/w) of this noncrystallizing sugar, annealing below Tg led to nucleation but not crystallization. However, during primary drying, crystallization of mannitol hydrate was observed. Conclusions. The combination of in situ XRD and DSC has given a unique insight into phase transitions during freeze-drying as a function of processing conditions and formulation variables. In the presence of trehalose, mannitol crystallization was inhibited in frozen solutions but not during primary drying.  相似文献   

5.
No HeadingPurpose. To study i) phase transitions in raffinose solution in the frozen state and during freeze-drying and ii) evaluate the impact of raffinose crystallization on the recovery of protein activity in reconstituted lyophiles.Methods. X-ray powder diffractometry (XRD) and differential scanning calorimetry (DSC) were used to study the frozen aqueous solutions of raffinose pentahydrate. Phase transitions during primary and secondary drying were monitored by simulating the entire freeze-drying process, in situ, in the sample chamber of the diffractometer. The activity of lactate dehydrogenase (LDH) in reconstituted lyophiles was determined spectrophotometrically.Results. Raffinose formed a kinetically stable amorphous freeze-concentrated phase when aqueous solutions were frozen at different cooling rates. When these solutions were subjected to primary drying without annealing, raffinose remained amorphous. Raffinose crystallized as the pentahydrate when the solutions were annealed at a shelf temperature of –10°C. Primary drying of these annealed systems resulted in the dehydration of raffinose pentahydrate to an amorphous phase. The phase separation of the protein from the amorphous raffinose in these two systems during freeze-drying resulted in a significant reduction in the recovery of LDH activity, even though the lyophile was amorphous.Conclusions. Annealing of frozen aqueous raffinose solutions can result in solute crystallization, possibly as the pentahydrate. The crystalline pentahydrate dehydrates during primary drying to yield an amorphous lyophile. Raffinose crystallization during freeze-drying is accompanied by a significant loss of protein activity.  相似文献   

6.
Purpose. To study the miscibility of proteins and polymer excipients in frozen solutions and freeze-dried solids as protein formulation models. Methods. Thermal profiles of frozen solutions and freeze-dried solids containing various proteins (lysozyme, ovalbumin, BSA), nonionic polymers (Ficoll, polyvinylpyrrolidone [PVP]), and salts were analyzed by differential scanning calorimetry (DSC). The polymer miscibility was determined from the glass transition temperature of maximally freeze-concentrated solute (Tg) and the glass transition temperature of freeze-dried solid (Tg). Results. Frozen Ficoll or PVP 40k solutions showed Tg at –22°C, while protein solutions did not show an apparent Tg. All the protein and nonionic polymer combinations (5% w/w, each) were miscible in frozen solutions and presented single Tgs that rose with increases in the protein ratio. Various salts concentration-dependently lowered the single Tgs of the proteins and Ficoll combinations maintaining the mixed amorphous phase. In contrast, some salts induced the separation of the proteins and PVP combinations into protein-rich and PVP-rich phases among ice crystals. The Tgs of these polymer combinations were jump-shifted to PVP's intrinsic Tg at certain salt concentrations. Freeze-dried solids showed varied polymer miscibilities identical to those in frozen solutions. Conclusions. Freeze-concentration separates some combinations of proteins and nonionic polymers into different amorphous phases in a frozen solution. Controlling the polymer miscibility is important in designing protein formulations.  相似文献   

7.
Purpose. To measure the water vapor absorption behavior of sucrose-poly(vinyl pyrrolidone) (PVP) and sucrose-poly(vinyl pyrrolidone co-vinyl acetate) (PVP/VA) mixtures, prepared as amorphous solid solutions and as physical mixtures, and the effect of absorbed water on the amorphous properties, i.e., crystallization and glass transition temperature, Tg, of these systems. Methods. Mixtures of sucrose and polymer were prepared by co-lyophilization of aqueous sucrose-polymer solutions and by physically mixing amorphous sucrose and polymer. Absorption isotherms for the individual components and their mixtures were determined gravimetrically at 30°C as a function of relative humidity. Following the absorption experiments, mixtures were analyzed for evidence of crystallization using X-ray powder diffraction. For co-lyophilized mixtures showing no evidence of crystalline sucrose, Tg was determined as a function of water content using differential scanning calorimetry. Results. The absorption of water vapor was the same for co-lyophilized and physically mixed samples under the same conditions and equal to the weighted sums of the individual isotherms where no sucrose crystallization was observed. The crystallization of sucrose in the mixtures was reduced relative to sucrose alone only when sucrose was molecularly dispersed (co-lyophilized) with the polymers. In particular, when co-lyophilized with sucrose at a concentration of 50%, PVP was able to maintain sucrose in the amorphous state for up to three months, even when the Tg was reduced well below the storage temperature by the absorbed water. Conclusions. The water vapor absorption isotherms for co-lyophilized and physically mixed amorphous sucrose-PVP and sucrose-PVP/VA mixtures at 30°C are similar despite interactions between sugar and polymer which are formed when the components are molecularly dispersed with one another. In the presence of absorbed water the crystallization of sucrose was reduced only by the formation of a solid-solution, with PVP having a much more pronounced effect than PVP/VA. The effectiveness of PVP in preventing sucrose crystallization when significant levels of absorbed water are present was attributed to the molecular interactions between sucrose, PVP and water.  相似文献   

8.
Bedu-Addo  Frank K.  Tang  P.  Xu  Y.  Huang  Leaf 《Pharmaceutical research》1996,13(5):710-717
Purpose. The purpose of this study was to investigate polyethyleneglycol(PEG)-phosphatidylethanolamine(PE) conjugate interaction with phospholipid bilayers, in an attempt to explain the dependence of liposome circulation time on formulation. Methods. Differential scanning calorimetry, electron microscopy, dynamic light scattering and NMR were the major methods used in the study. Results. Mixtures of PEG-phospholipid conjugates and phosphatidylcholine existed in three different physical states: a lamellar phase with components exhibiting some miscibility, a lamellar phase with components phase separated, and mixed micelles. Beyond 7 mol% of PEG(l,000–3,000)-dipalmitoyl phosphatidylethanolamine (DPPE), and 11 mol% PEG(5,000)-DPPE in dipalmitoyl phosphatidylcholine (DPPC), a strong tendency towards mixed micelle formation was observed. All concentrations of PEG(12,000)-DPPE and PEG(5,000)-DPPE beyond 8 mol% formed phase separated lamellae with phosphatidylcholine. Decreasing the acyl chain length from C16:0 to C14:0 caused a decrease in tendency towards micelle formation and phase separation. These tendencies increased upon increasing acyl chain length to C18:0. Phase separation was at least partly due to PEG chain-chain interaction. This was supported by an increased fraction of PEG chains exhibiting a fast NMR transverse relaxation in DPPC/PEG(5,000)-DPPE mixtures as compared to that in distearoyl phosphatidylcholine (DSPC)/PEG(5,000)-dioleoyl-PE (DOPE). Conclusions. These phenomena are discussed in relation to both bilayer and steric stabilization of liposomes, and the lack of prolonged circulation with certain formulations is discussed.  相似文献   

9.
Purpose To investigate the ability of various polymers to inhibit the crystallization of amorphous felodipine from amorphous molecular dispersions in the presence of absorbed moisture. Methods Spin coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose (HPMC) were exposed to different storage relative humidities and nucleation rates were measured using polarized light microscopy. Solid dispersions were further characterized using differential scanning calorimetry, infrared spectroscopy and gravimetric measurement of water vapor sorption. Results It was found that the polymer additive reduced nucleation rates whereas absorbed water enhanced the nucleation rate as anticipated. When both polymer and water were present, nucleation rates were reduced relative to those of the pure amorphous drug stored at the same relative humidity, despite the fact that the polymer containing systems absorbed more water. Differences between the stabilizing abilities of the various polymers were observed and these were explained by the variations in the moisture contents of the solid dispersions caused by the different hygroscopicities of the component polymers. No correlations could be drawn between nucleation rates and the glass transition temperature (T g) of the system. PVP containing solid dispersions appeared to undergo molecular level changes on exposure to moisture which may be indicative of phase separation. Conclusions In conclusion, it was found that for a given storage relative humidity, although the addition of a polymer increases the moisture content of the system relative to that of the pure amorphous drug, the crystallization tendency was still reduced.  相似文献   

10.
Purpose. To study the effect of cooling rate, the influence of phosphate buffers and polyvinylpyrrolidone (PVP) on the crystallization behavior of mannitol in frozen aqueous solutions. Methods. Low-temperature differential scanning calorimetry and powder X-ray diffractometry were used to characterize the frozen solutions. Results. Rapid cooling (20°C/min) inhibited mannitol crystallization, whereas at slower cooling rates (10°C and 5°C/min) partial crystallization was observed. The amorphous freeze-concentrate was characterized by two glass transitions at -32°C and -25°C. When the frozen solutions were heated past the two glass transition temperatures, the solute crystallized as mannitol hydrate. An increase in the concentration of PVP increased the induction time for the crystallization of mannitol hydrate. At concentrations of 100 mM, the buffer salts significantly inhibited mannitol crystallization. Conclusions. The crystallization behavior of mannitol in frozen solutions was influenced by the cooling rate and the presence of phosphate buffers and PVP.  相似文献   

11.
Purpose. The purpose of this work was to study the possibility of preventing mannitol crystallization in frozen solutions by using pharmaceutically acceptable additives. Methods. Differential scanning calorimetry (DSC) and low-temperature X-ray diffractometry (LTXRD) were used to characterize the effect of additives on mannitol crystallization. Results. DSC screening revealed that salts (sodium chloride, sodium citrate, and sodium acetate) inhibited mannitol crystallization in frozen solutions more effectively than selected surfactants, -cyclodextrin, polymers, and alditols. This finding prompted further studies of the crystallization in the mannitol-NaCl-water system. Isothermal DSC results indicated that mannitol crystallization in frozen solutions was significantly retarded in the presence of NaCl and that NaCl did not crystallize until mannitol crystallization completed. Low-temperature X-ray diffractometry data showed that when a 10% w/v mannitol solution without additive was cooled at 1°C/min, the crystalline phases emerging after ice crystallization were those of a mannitol hydrate as well as the anhydrous polymorphs. In the presence of NaCl (5% w/v), mannitol crystallization was suppressed during both cooling and warming and occurred only after annealing and rewarming. In the latter case however, mannitol did not crystallize as the hydrate, but as the anhydrous polymorph. At a lower NaCl concentration of 1% w/v, the inhibitory effect of NaCl on mannitol crystallization was evident even during annealing at temperatures close to the Tg (–40°C). A preliminary lyophilization cycle with polyvinyl pyrrolidone and NaCl as additives rendered mannitol amorphous. Conclusion. The effectiveness of additives in inhibiting mannitol crystallization in frozen solutions follows the general order: salts > alditols > polyvinyl pyrrolidone > -cyclodextrin > polysorbate 80 polyethylene glycol poloxamer. The judicious use of additives can retain mannitol amorphous during all the stages of the freeze-drying cycle.  相似文献   

12.
The aim of this study was to elucidate the effect of the molecular weight of polymers on their miscibility in frozen solutions to model the physical properties of freeze-dried pharmaceutical formulations. Thermal analysis of frozen solutions containing poly(vinylpyrrolidone) (PVP) and dextran of various molecular weights was performed at polymer concentrations below the binodal curve at room temperature. Frozen solutions containing PVP 29,000 and dextran 10,200 showed two thermal transitions (glass transition temperature of maximally freeze-concentrated solution: Tg') representing two freeze-concentrated amorphous phases, each containing predominantly one of the polymers. A combination of smaller polymers (PVP 10,000 and dextran 1,060) was freeze-concentrated into an amorphous mixture phase across a wide range of concentration ratios. Combinations of intermediate size polymers separated into two freeze-concentrated phases only at certain concentration ratios. Addition of NaCl prevented the phase separation of PVP and dextran in the aqueous and frozen solutions. Higher concentrations of NaCl were required to retain the miscibility of larger polymer combinations in the freeze-concentrate. The molecular weights of the component polymers, polymer concentration ratio, and cosolute composition are the important factors that determine component miscibility in frozen solutions.  相似文献   

13.
The effectiveness of different polymers, alone or in combination, in inhibiting the crystallization of celecoxib (CEX) from amorphous solid dispersions (ASDs) exposed to different temperatures and relative humidities was evaluated. It was found that polyvinylpyrrolidone (PVP) and PVP-vinyl acetate formed stronger or more extensive hydrogen bonding with CEX than cellulose-based polymers. This, combined with their better effectiveness in raising the glass transition temperature (Tg) of the dispersions, provided better physical stabilization of amorphous CEX against crystallization in the absence of moisture when compared with dispersions formed with cellulose derivatives. In ternary dispersions containing 2 polymers, the physical stability was minimally impaired by the presence of a cellulose-based polymer when the major polymer present was PVP. On exposure to moisture, stability of the CEX ASDs was strongly affected by both the dispersion hygroscopicity and the strength of the intermolecular interactions. Binary and ternary ASDs containing PVP appeared to undergo partial amorphous–amorphous phase separation when exposed 94% relative humidity, followed by crystallization, whereas other binary ASDs crystallized directly without amorphous–amorphous phase separation.  相似文献   

14.
Purpose. To better understand the nature of drug-excipient interactions we have studied the phase behavior of amorphous binary and ternary mixtures of citric acid, indomethacin and PVP, as model systems. Methods. We have prepared amorphous mixtures by co-melting or coprecipitation from solvents, and have measured glass transition temperatures with differential scanning calorimetry. Results. Citric acid and indomethacin in the amorphous state are miscible up to 0.25 weight fraction of citric acid, equivalent to about 2 moles of citric acid and 3 moles of indomethacin. Phase separation, as reflected by two Tg values, occurs without crystallization leading to a saturated citric acid-indomethacin amorphous phase and one essentially containing only citric acid. PVP-citric acid and PVP-indomethacin form non-ideal miscible systems at all compositions. A ternary system containing 0.3 weight fraction of PVP produces a completely miscible system at all citric acid-indomethacin compositions. The use of 0.2 weight fraction of PVP, however, only produces miscibility up to a weight fraction of 0.4 citric acid relative to indomethacin. The two phases above this point appear to contain citric acid in PVP and citric acid in indomethacin, respectively. Conclusions. Two components of an amorphous solid mixture containing citric acid and indomethacin with limited solid state miscibility can be solublized as an amorphous solid phase by the addition of moderate levels of PVP.  相似文献   

15.
Purpose. To monitor the phase transitions during freeze-drying of cefazolin sodium (I) as a function of process and formulation variables. Methods. Aqueous solutions of I were frozen under controlled conditions in the sample chamber of a variable temperature X-ray powder diffractometer (XRD). The instrument was modified so that the chamber could be evacuated and the samples dried under reduced pressures. Thus, the entire freeze-drying process was carried out in the XRD holder with real time monitoring of the phase transitions during the different stages of freeze-drying. Results. When aqueous solutions of cefazolin sodium (10% w/w) were cooled to -40°C, the XRD pattern revealed only the crystallization of ice. Annealing the frozen sample led to the crystallization of I as the pentahydrate. Differential scanning calorimetry revealed that the presence of isopropyl alcohol (IPA) (5% w/w) led to a decrease in the Tg, the glass transition temperature of the system, and lowered the temperature of crystallization. The crystallization was studied at -8 and at -15°C in the XRD, and, as expected, more rapid crystallization was observed at the higher temperature. Primary drying at -8°C led to the dehydration of the pentahydrate, resulting in a poorly crystalline product. Again, XRD permitted real time monitoring of the decrease in intensities of some characteristic peaks of the pentahydrate. The in situ XRD technique also enabled us to study the effects of processing conditions (different primary and secondary drying temperatures) and crystalline bulking agents on the solid-state of I in the lyophile. When I was lyophilized using mannitol or glycine as an additive, without an annealing step, the drug was X-ray amorphous although the additive crystallized. When annealed and freeze-dried, I remained crystalline in the presence of glycine but not in the presence of mannitol. Conclusions. The in situ XRD technique has enabled us to characterize the phase transitions during freeze-drying of cefazolin sodium in multicomponent systems.  相似文献   

16.
The purpose of this study was to evaluate sodium chloride-sucrose frozen solutions with regard to sodium chloride crystallization and vial strain. Sodium chloride-sucrose solutions were studied using Differential Scanning Calorimetry (DSC) and a strain gauge instrumented vial. The sodium chloride concentration was varied with a fixed concentration of sucrose to identify a composition where crystallization was observed during heating and this composition was examined using the strain-gauged vials. DSC heating thermograms of a 1:1 (w/w) ratio of sodium chloride-sucrose solution show a sodium chloride crystallization exotherm at approximately -45 degrees C. Examination of this composition in a strain-gauged vial shows an increase in strain, which corresponds to the temperature of the exotherm. Vial breakage is a phenomenon reported for mannitol containing solutions, which is associated with crystallization of mannitol in frozen solution. These data also suggest that vial strain and breakage is associated with the crystallization of solutes and the crystallization of water, which is released from the amorphous phase to form ice, and volume expansion. The results demonstrate the importance of understanding effect of excipient ratios, specifically in systems containing crystallizing and non-crystallizing excipients, and thermal history when developing freeze-dried formulations.  相似文献   

17.

Purpose

To correlate the polymer’s degree of precipitation inhibition of indomethacin in solution to the amorphous stabilization in solid state.

Methods

Precipitation of indomethacin (IMC) in presence of polymers was continuously monitored by a UV spectrophotometer. Precipitates were characterized by PXRD, IR and SEM. Solid dispersions with different polymer to drug ratios were prepared using solvent evaporation. Crystallization of the solid dispersion was monitored using PXRD. Modulated differential scanning calorimetry (MDSC), IR, Raman and solid state NMR were used to explore the possible interactions between IMC and polymers.

Results

PVP K90, HPMC and Eudragit E100 showed precipitation inhibitory effects in solution whereas Eudragit L100, Eudragit S100 and PEG 8000 showed no effect on IMC precipitation. The rank order of precipitation inhibitory effect on IMC was found to be PVP K90?>?Eudragit E100?>?HPMC. In the solid state, polymers showing precipitation inhibitory effect also exhibited amorphous stabilization of IMC with the same rank order of effectiveness. IR, Raman and solid state NMR studies showed that rank order of crystallization inhibition correlates with strength of molecular interaction between IMC and polymers.

Conclusions

Correlation is observed in the polymers ability to inhibit precipitation in solution and amorphous stabilization in the solid state for IMC and can be explained by the strength of drug polymer interactions.  相似文献   

18.
Purpose. The purpose of the study was to investigate the effect of freeze-thawing processes with different temperature histories on thermal transformations and on protein activity of lactate dehydrogenase (LDH) formulations. Polyethylene glycol (PEG 6000) and maltodextrin were used as cryoprotectants. Methods. The thermal characterization was made by oscillating DSC (ODSC). LDH activity assays were performed spectrophotometrically. Results. The crystallization of the solutions and the melting of the frozen samples occurred at fairly constant heat of crystallisation and heat of fusion values and temperatures. The main difference between the two investigated temperature cycles was an exothermic peak at –45°C, which might reflect the transition between the cubic and hexagonal ice structures. When PEG was added to the system an additional endothermic peak appeared at –15°C in the heating program. It was transformed into the shape of a glass transition at the same temperature when the heating rate was increased. The degree of crystallinity of the samples was evaluated as the quota between the cp component of heat of transformation and the total heat of transformation values. Only minor differences between the two temperature histories and between the samples were observed. The cp component of the melting endotherm revealed a complex melting process with two overlapping endothermic transformations. The good protein protecting ability of PEG obtained when cooling and heating rate was low, was greatly reduced with increasing rate. The addition of maltodextrin to PEG-containing solutions lowered the activity recovery. Conclusions. The endothermic transformation of a PEG-ice structure at –15°C in the heating process is strongly correlated to the protective ability of PEG 6000 in the freeze-thawing process of LDH. To obtain the highest protein activity after the freeze-thawing process, the formulation shall be transformed by a low cooling and heating rate. The crystallinity of the system melting at about 2°C is independent of temperature history. The cp component of the melting endotherm, however, shows a complex transformation, where two phases of different crystallinity and stability might be involved.  相似文献   

19.
Purpose. The aim was to investigate the influence of polymer content and molecular weight on the morphology and heat- and moisture-induced transformations, as indicators of stability, of spray-dried composite particles of amorphous lactose and poly(vinylpyrrolidone) (PVP). Methods. Amorphous lactose and composite particles of amorphous lactose with different contents and molecular weights of PVP were prepared by spray drying. The nanostructure of the particles was analyzed by x-ray powder diffractometry, the morphology by light microscopy and SEM, the glass transition temperatures (Tg), crystallization temperatures (Tc), heats of crystallization and melting temperatures by differential scanning calorimetry, and moisture-induced crystallizations gravimetrically and by microcalorimetry. Results. All the types of particles prepared were amorphous. The Tg was unchanged or only marginally increased as a result of the inclusion of PVP. However, crystallization temperature, time to moisture-induced crystallization, and particle morphology were affected by both content and molecular weight of PVP. Conclusions. Increased content and molecular weight of PVP may have the potential to increase the physical stability of amorphous lactose. However, Tg seems not to be a relevant indicator for the stability of this type of amorphous composite materials.  相似文献   

20.
The purpose of this study was to investigate the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles prepared by spray-drying an aqueous solution of crystalline lactose and sodium alginate. The temperature-induced crystallization of amorphous lactose in the composite particles was suppressed by increasing the amount of sodium alginate in the particles. The stabilizing effect of sodium alginate on amorphous lactose in the composite particles was greater than that in physical mixtures having the same formulating ratios. The improved stability of amorphous lactose in the composite particles was attributed to an increase in the glass transition temperature (Tg) of the mixture. Moisture-induced crystallization of amorphous lactose was also retarded by increasing the amount of sodium alginate in composite particles. Although the Tg of the mixture was reduced by increasing the water content of the particles, the values were higher than that of 100% amorphous lactose when particles of the same water content were compared. The change in the Tg of the composite particles with increasing water content was interpreted as involving three components of the Gordon–Taylor equation. In the amorphous lactose–sodium alginate systems, the Tg values of the composite particles containing sodium alginate were higher than the theoretical line predicted by two components of the Gordon–Taylor equation. These results suggested that there was a specific interaction between the sodium alginate and lactose molecules. This specific interaction was suggested by the fact that only very little amorphous lactose was measured in the spray-dried composite particles stored under humid conditions using differential scanning calorimetry. This molecular interaction may also be partly responsible for the suppression of both the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号