首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is concerned with numerical parameters of axonal regeneration in peripheral nerves. Our first finding is that the number of axons that regenerate into the distal stump of a somatic nerve at a particular time after transection is partially dependent on the type of lesion used to interrupt the axons. The second question concerns the proportion of axons that regenerate into the distal stump of a parent nerve compared to the proportions that regenerate into tributary nerves that arise from the parent. The proportions of regenerated myelinated axons in the nerve to the medial gastrocnemius muscle and myelinated and unmyelinated axons in the sural nerve are the same as the proportions of myelinated and unmyelinated axons that regenerate into the distal stump of the sciatic nerve for the crush, 0 and 4 mm gap transections. Proportionally fewer axons regenerate into the tributary nerves following the 8 mm gap transection, however. This implies that the length of the gap has an influence on whether or not axons in tributary nerves regenerate in concert with axons in the distal stump of the parent nerve. The unmyelinated fibers in the nerve to the medial gastrocnemius muscle are different because they do not regenerate in proportion to those in the distal stump of the sciatic nerve. We also provide evidence to indicate that myelinated axons branch whereas unmyelinated fibers end blindly when they enter the distal stump after crossing a sciatic nerve transection. Finally the normal arrangement of perineurial cells seems to be disrupted after the sciatic nerve regenerates across a gap.  相似文献   

2.
The present study is concerned with the question as to whether the size of a nerve used as a transplant to bridge a gap between the stumps of transected nerves has a bearing on the number of axons and the cytological structure of the regenerate. The paradigm is rat sciatic nerve transection with 8 mm of nerve removed with the stumps placed in a silicone tube and two strands of the smaller sural nerve used as bridging transplants. The comparisons are with previously published results where the transplant, which is the removed piece of sciatic nerve, is exactly matched in size and with no transplant in the same regeneration paradigm. One surprising finding is that the size of the transplant does not seem to determine the size of the regenerated nerve. The cytological structure of the regenerated nerve is related to the size of the transplant, however, in that the proportion of axons that regenerate inside and outside the transplanted perineurial tubes differs in relation to the size of the transplant. In addition, although there is an increase in the number of blood vessels in all of these paradigms, the greatest increase is with the sural nerve transplants. The key finding in the study, however, is the similarity in numbers of regenerated axons in the gap, distal stump and tributary nerves when regeneration after sciatic nerve transplantation is compared with regeneration after sural nerve transplantation. Thus, notwithstanding the cytologic differences of the two types of regenerate, regenerated axon numbers are approximately the same. The conclusion is that the size of the transplant determines neither the size of the regenerate nor the numbers of regenerated axons in this paradigm. On the assumption that regeneration is better when axonal numbers are closer to normal, the non-matched sural nerve transplant is approximately equal to the matched sciatic nerve transplant and both are superior to the regeneration that takes place in the absence of a transplant in this paradigm.  相似文献   

3.
The present study tests 2 hypotheses: (1) that the numbers of axons that regenerate into a tributary nerve are in part dependent on the type of lesion used to transect the axons in the parent nerve; and (2) that the numbers of axons that regenerate will be different in different tributary nerves. Axons were counted in the sural nerve and the nerve to the medial gastrocnemius muscle 8 weeks following crush, simple transection, transection with removal of 4 mm and transection with removal of 8 mm of the sciatic nerve in the rat. The counts of myelinated and unmyelinated axons are presented in the text. If axon numbers in the 2 nerves are normalized, the proportion of regenerated to normal myelinated axon numbers are approximately the same in the 2 nerves, with more regenerated axons than normal following crush, simple transection, or 4 mm gap transection and fewer following 8 mm gap transection. The unmyelinated axons behave differently. In the nerve to the medial gastrocnemius muscle, the numbers of unmyelinated axons are greater than or equal to the normal numbers following our various surgical paradigms whereas in the sural nerve there are always fewer unmyelinated axons than normal. These findings indicate that the above hypotheses are correct for the nerves tested in the rat.  相似文献   

4.
We determined blood vessel and perineurial fascicle densities as well as axonal numbers in regenerated rat sciatic nerves 8 weeks after the nerves had been transected, the proximal stumps placed into the proximal ends of silicone tubes, and isolated fragments of nerve placed into the distal ends of the same tubes. The data are compared with data from the normal nerve and from regeneration in a similar paradigm in which the distal stumps were used as the inserts into the distal end of the silicone tubes. A major difference between the two regeneration paradigms was that axons were discouraged from reaching the periphery when the distal insert was an isolated fragment and encouraged to reach the periphery when the distal insert was the distal stump. We found that fascicle and blood vessel densities were greater than normal but less than with the distal stump as the distal insert. Thus we concluded that the nature of the distal insert had a bearing on how many vessels and perineurial fascicles were formed during regeneration in these conditions. Myelinated axon numbers did not differ in the two conditions whereas there were more unmyelinated axons with the isolated distal stump as the distal insert. Thus at this regeneration time the numbers of myelinated axons were not as dependent on the nature of the distal insert as were the numbers of unmyelinated axons. Finally the length of the gap had a great influence on the numbers of axons that regenerated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Little is known about the factors involved in directing and maintaining the divergent differentiation of the 2 major Schwann cell variants, myelin and non-myelin-forming cells, in peripheral nerves. There is strong evidence that the differentiation of myelin-forming cells depends critically on cell-cell signaling through contact with appropriate axons. In this paper we ask whether this remarkable dependence of the Schwann cell on axonal contact for full differentiation is unique to those cells that form myelin or whether axonal signaling is also an important factor in the differentiation of non-myelin-forming Schwann cells. Sciatic nerves or cervical sympathetic trunks of adult rats were either transected or crushed and the axons allowed to degenerate and, in the case of crushed nerves, to regenerate into the distal stump for periods of time varying from 2 d to 9 weeks. The distal stump of the nerve was excised at specific times, the Schwann cells dissociated and immunolabeled with antibodies to galactocerebroside. In the sciatic nerve, which contains a mixture of non-myelin-forming and myelin-forming Schwann cells, transection resulted in a loss of galactocerebroside expression from the surface of all the Schwann cells in the distal stump over a 9 week period, irrespective of their original phenotype. In crushed sciatic nerves, where axons were allowed to regrow into the distal stumps, the number of Schwann cells expressing immunohistochemically detectable quantities of galactocerebroside in the stump declined over the first 3 weeks, but by 9 weeks after crush the total percentage of galactocerebroside-positive cells in the nerve had risen to control levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Autologous transplants are often used in repair of peripheral nerve injury. Quantitative evaluation of the results of such a transplant is obviously desirable. In previous study, we determined numerical and cytologic parameters of the regeneration that followed transection of rat sciatic nerve, but no transplant was used. This work now serves as a basis for evaluating the use of an autologous transplant in the same transection paradigm. Our procedure is to remove 8 mm of sciatic nerve in the thigh. The removed segment is then put into the center of a silicone tube and the proximal and distal stumps of the severed nerve are placed into the ends of the tube. The data show: (1) a high percentage of successful regenerations; (2) a relatively large nerve in the gap; (3) a typical outer perineurium underlying the epineurium; (4) a well-developed fascicular perineurium; and (5) approximately equal numbers of myelinated and unmyelinated axons in the gap and distal stump. If a transplant is not used there are: (1) a greater number of failures of regeneration; (2) a smaller nerve in the gap; (3) a less well-developed fascicular perineurium; (4) unequal numbers of axons in the gap as compared to the distal stump; and (5) no outer perineurium forms. The presence of a typical outer perineurium after a transplant and its absence if a transplant is not used is probably the most striking cytologic difference between the two paradigms. The equal numbers of axons in the gap and distal stump following regeneration after transplantation presumably indicate that all axons in the gap enter the distal stump without branching or ending blindly, a situation that is presumably beneficial and contrasts with the findings when a transplant is not used. Both paradigms show a remarkable increase in the density of blood vessels in the regenerated nerve in the gap between the two stumps. These findings will serve as a basis for further studies on the mechanisms of peripheral nerve regeneration.  相似文献   

7.
Preformed, autologous mesothelial chambers were utilized to study axonal growth following selective predegeneration of the distal nerve stump and/or preconditioning of the proximal nerve stump. The left and/or right sciatic nerve of rats was exposed and transected in the thigh. Two weeks after transection, the left proximal nerve stump was cross-anastomosed with the right distal nerve stump by using a mesothelial chamber leaving a 15-mm gap between the two nerve stumps. Previous studies have shown that axonal overgrowth normally does not occur over this gap distance to the distal stump. Three months after cross-anastomosing, regeneration across the 15-mm gap was evaluated by muscle action potential recordings and light microscopical examination. In experiments in which a distal nerve stump was selectively degenerated and the proximal segment was freshly cut, axons had bridged the 15-mm gap in six of seven rats. When a proximal preconditioned nerve stump was matched with a freshly cut distal stump, axonal overgrowth occurred in only 4 of 10 experiments. In experiments including a proximal preconditioned nerve stump and a distal predegenerated stump, axons bridged the gap in 6 of 8 experiments. We concluded that a priming lesion, including manipulation with proximal and/or distal stump, enhances axonal growth in mesothelial chambers.  相似文献   

8.
The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and thus may be able to inhibit axonal regeneration in the CNS. We have used immunohistochemistry to compare the expression of NG2 in the PNS, where axons regenerate, and the spinal cord, where regeneration fails. NG2 is expressed by satellite cells in dorsal root ganglia (DRG) and in the perineurium and endoneurium of intact sciatic nerves of adult rats. Endoneurial NG2-positive cells were S100-negative. Injury to dorsal roots, ventral rami or sciatic nerves had no effect on NG2 expression in DRG but sciatic nerve section or crush caused an upregulation of NG2 in the damaged nerve. Strongly NG2-positive cells in damaged nerves were S100-negative. The proximal stump of severed nerves was capped by dense NG2, which surrounded bundles of regenerating axons. The distal stump, into which axons regenerated, also contained many NG2-positive/S100-negative cells. Immunoelectron microscopy revealed that most NG2-positive cells in distal stumps had perineurial or fibroblast-like morphologies, with NG2 being concentrated at the poles of the cells in regions exhibiting microvillus-like protrusions or caveolae. Compression and partial transection injuries to the spinal cord also caused an upregulation of NG2, and NG2-positive cells and processes invaded the lesion sites. Transganglionically labelled ascending dorsal column fibres, stimulated to sprout by a conditioning sciatic nerve injury, ended in the borders of lesions among many NG2-positive processes. Thus, NG2 upregulation is a feature of the response to injury in peripheral nerves and in the spinal cord, but it does not appear to limit regeneration in the sciatic nerve.  相似文献   

9.
Rat sciatic nerves were bilaterally transected and repaired with an entubulation technique. The nerve interstump gap was filled with either collagen gel or collagen gel mixed with a putative neurotrophic factor (leupeptin, 4-aminopyridine, lipid angiogenic factor or glia maturation factor beta (GMF-beta]. Six weeks after nerve transection, the myelinated distal stump axons were quantified for each nerve. Only the nerves treated with GMF-beta had significantly more axons than the control side.  相似文献   

10.
After the sciatic nerve had been crushed at the level of the mid-thigh, the rate of outgrowth of the regenerating axons was measured by using the pinch test to locate the leading sensory axons. This standard crush lesion ("testing" lesion) elicited axonal outgrowth at a rate of 4.3 +/- 0.1 mm/day, with an initial delay (before the axons entered the degenerating distal stump) of 1.6 days. A "conditioning" lesion (transection of the tibial nerve at the ankle), made two weeks before the testing lesion, caused an increase of 23% in the outgrowth rat (P less than 0.02), with no appreciable change in the initial delay. Dibutyryl cyclic AMP (dbcAMP) was found to have no effect on the rate of axonal outgrowth measured by the pinch test. Histological examination of the pinch-tested nerves showed that the drug also had no effect on the numbers of regenerating silver-stained axons or fluorescent noradrenergic axons seen at various levels distal to the testing lesion.  相似文献   

11.
Different proportions of axons regenerate in cutaneous nerves compared with muscle nerves after sciatic nerve crush in the rat. The questions here are whether or not these differences reflect the proportions of axons that regenerate in the different nerves from which these nerves arise and do the differences persist. The findings indicate that the numbers of axons that regenerate in the muscle nerves do not reflect the numbers in the nerve from which the muscle nerves originate and that these differences persist. This leads to the conclusion that some factors determining numbers of axons in the muscle nerves must operate distal to the lesion. Thus when one is considering mechanisms that control regenerated axon numbers after neonatal nerve crush, one must consider not only the lesion site but also branching and axon diversion far distally, presumably at the origin of the muscle nerves.  相似文献   

12.
We examined whether the short-term beneficial effects of nerve growth factor (NGF) upon regeneration are sustained over a prolonged period of time across 8-mm gaps within silicone chambers. Rat sciatic nerve regeneration both with and without NGF was examined after 10 weeks. Myelinated counts from the regenerated sciatic and distal tributary nerves were correlated to the numbers of motor and sensory neurons retrogradely labeled with horseradish peroxidase (HRP) applied distal to the regenerated segment. Regenerated sciatic and sural nerves were examined ultrastructurally for morphological analysis. Both regenerated groups by 10 weeks achieved essentially complete counts of myelinated axons in the distal tributary nerves and the regenerated segment of the sciatic nerve compared to the uninjured controls. There were similar numbers of retrogradely labeled sensory and motor neurons in the dorsal root ganglia (DRG) and lumbar spinal cord of both groups and, surprisingly, of the uninjured normal control group. Ultrastructural analysis demonstrated no difference in the distribution of axonal diameters or myelin thickness between the regenerated groups. In evaluating regeneration in experimental silicone chamber models, it is important to determine such parameters as the percentage of neurons that grow across the gap and the incidence of axonal sprouting. One can then make accurate assessments of experimental perturbations and predict whether they improve the naturally occurring regeneration through chambers. These results must ultimately be compared with equivalent determinations in the uninjured nerve. At 10 weeks there was essentially complete regeneration of both the NGF and control regenerative groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling system for regeneration of adult peripheral nerves is not known. To test the hypothesis that neuropilin-2 facilitates peripheral-nerve axonal regeneration, we crushed sciatic nerves of adult neuropilin-2-deficient and littermate control mice. Axonal regeneration through the crush site and into the distal nerve segment, repression by the regenerating axons of Schwann cell p75 neurotrophin receptor expression, remyelination of the regenerating axons, and recovery of normal gait were all significantly slower in the neuropilin-2-deficient mice than in the control mice. Thus, neuropilin-2 facilitates peripheral-nerve axonal regeneration.  相似文献   

14.
The depolarizing action of gamma-aminobutyric acid (GABA), or the GABAA receptor agonist muscimol, on rat dorsal root (L4 and L5) fibers is attenuated following transection, but not crush, of the sciatic nerve. Following discrete nerve crush, axons actively regenerate and contact both the distal nerve segment and the peripheral target tissues. The aim of the present study was to distinguish between these two regions as possible sources of trophic support for retrograde maintenance of dorsal root GABA receptor sensitivity. A surgical procedure was employed to permit a delimited segment of axonal regeneration while prohibiting reestablishment of end organ innervation; the sciatic nerve was crushed and a ligature was placed 3 cm distal to the crush site. Under these conditions, the injury-induced decrement in the dorsal root GABA response, observed between 12 and 21 postoperative days, was significantly attenuated relative to that of ligated nerves, in which regeneration into the distal stump does not occur. The data suggest that nerve transection by ligation restricts trophic support for maintenance of GABA receptor expression in dorsal root ganglion (DRG) neurons. Furthermore, during regeneration the denervated distal nerve segment assumes a neurotrophic role in the maintenance of dorsal root GABA sensitivity, consistent with the hypothesis that growth factors derived from reactive Schwann cells may positively regulate the expression of receptors on axotomized sensory neurons.  相似文献   

15.
The depolarizing action of γ-aminobutyric acid (GABA), or the GABAA receptor agonist muscimol, on rat dorsal root (L4 and L5) fibers is attenuated following transection, but not crush, of the sciatic nerve (15). Following discrete nerve crush, axons actively regenerate and contact both the distal nerve segment and the peripheral target tissues. The aim of the present study was to distinguish between these two regions as possible sources of trophic support for retrograde maintenance of dorsal root GABA receptor sensitivity. A surgical procedure was employed to permit a delimited segment of axonal regeneration while prohibiting reestablishment of end organ innervation; the sciatic nerve was crushed and a ligature was placed 3 cm distal to the crush site. Under these conditions, the injury-induced decrement in the dorsal root GABA response, observed between 12 and 21 postoperative days, was significantly attenuated relative to that of ligated nerves, in which regeneration into the distal stump does not occur. The data suggest that nerve transection by ligation restricts trophic support for maintenance of GABA receptor expression in dorsal root ganglion (DRG) neurons. Furthermore, during regeneration the denervated distal nerve segment assumes a neurotrophic role in the maintenance of dorsal root GABA sensitivity, consistent with the hypothesis that growth factors derived from reactive Schwann cells may positively regulate the expression of receptors on axotomized sensory neurons.  相似文献   

16.
Nerve lesions modify regenerative responses to subsequent lesions. Some of the modifications might be useful. To increase our understanding of these modifications, the present study determines myelinated and unmyelinated axon numbers in the distal part of rat sciatic nerve and in 2 smaller branches, the nerve to the medial gastrocnemius muscle and the sural nerve, 8 weeks and 9 months following either single or the last of 3 crushes to the rat sciatic nerve. For myelinated axons, there is a significant and proportional increase distal to the crush in the sciatic nerve and in its smaller tributaries following both single and triple crushes. These increased axons persist. We interpret these data to indicate that some of the regenerating myelinated axons branch at the site of lesion, pass without branching into the tributary nerves, and then presumably find attachments at the periphery. If true, single or multiple crushes might be useful in conditions where it would be desirable to increase numbers of processes from surviving neurons. The major differences between single and triple crushes are that myelinated axons are increased more after triple crush and increase significantly between 8 weeks and 9 months after triple crush but not after single crush. Thus not only myelinated axon numbers, but the timing of the myelination process seems to change if regeneration following single crush is compared to similar regeneration following multiple crushes. Unmyelinated axons do not regenerate in the same way as the myelinated axons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Our past work indicates that growth-inhibiting chondroitin sulfate proteoglycan (CSPG) is abundant in the peripheral nerve sheaths and interstitium. In this study we tested if degradation of CSPG by chondroitinase enhances axonal regeneration through the site of injury after (a) nerve crush and (b) nerve transection and coaptation. Adult rats received the same injury bilaterally to the sciatic nerves and then chondroitinase ABC was injected near the injury site on one side, and the contralateral nerve was injected with vehicle alone. Nerves were examined 2 days after injury in the nerve crush model and 4 days after injury in the nerve transection model. Chondroitinase-dependent neoepitope immunolabeling showed that CSPG was thoroughly degraded around the injury site in the chondroitinase-treated nerves. Axonal regeneration through the injury site and into the distal nerve was assessed by GAP-43 immunolabeling. Axonal regeneration after crush injury was similar in chondroitinase-treated and control nerves. In contrast, axonal regrowth through the coaptation of transected nerves was markedly accelerated and the ingress of axons into the distal segment was increased severalfold in nerves injected with chondroitinase. On the basis of these results we concluded that growth inhibition by CSPG contributes critically to the poor regenerative growth of axons in nerve transection repair. In addition, degradation of CSPG by injection of chondroitinase ABC at the site of nerve repair increased the ingress of axonal sprouts into basal laminae of the distal nerve segment, presumably by enabling more latitude in growth at the interface of coapted nerve. This suggests that chondroitinase application may be used clinically to improve the outcome of primary peripheral nerve repair.  相似文献   

19.
Summary Long-term endoneurial changes in the distal stump of transected rat sciatic nerve were examined from 8 to 50 weeks after nerve transection. The morphological alterations were followed both in nerves which were allowed to regenerate and in nerves in which regeneration was prevented by suturing. The nerves prevented from regenerating showed markedly atrophied Schwann cell columns after 20 weeks and a disappearance of some Schwann cell columns after 30 weeks. The surrounding endoneurial fibroblast-like cells gradually lost their delicate cytoplasmic extensions and formed rough fascicles around numerous shrunken Schwann cell columns or around areas from which Schwann cells had apparently disappeared. Inside the fascicles, the Schwann cell loss was replaced by collagen fibrils or occasionally, by a dense accumulation of microfibrils. The loss of endoneurial cytoplasmic processes continued up to 50 weeks, leaving behind patches of thin fibrils around numerous shrunken Schwann cell columns or around collagenous areas where Schwann cells were lost. The endoneurial matrix showed presence of thin 25- to 30-nm collagen fibrils close to shrunken Schwann cell columns up to 50 weeks but in areas with advanced degeneration a shift towards regular 50- to 60-nm collagen fibrils occurred. The degenerated areas resembled those described in Renaut bodies and neurofibromas. Despite suturing of transected nerves to prevent sprouting, occasional regenerating sprouts were noted in the Schwann cell columns. These axons were surrounded in a sheath-like fashion by pre-existing endoneurial cell fascicles covered by a basal lamina. In the reinnervating nerves the endoneurial space gradually lost its compartmentized structures consisting of collagen fibrils and endoneurial fibroblast-like cells. After 20 weeks the endoneurial cells were inconspicuous and the extracelluar matrix consisted mainly of 50- to 60-nm collagen fibrils. During axonal growth and maturation, Schwann cells containing unmyelinated axons surrounded large, myelinated axons in a collar-like fashion. Close to these collars of Schwann cells, thin 25- to 30-nm collagen fibrils were noted in focal areas, even after 50 weeks. Occasionally, numerous clusters of regenerating axonal sprouts were noted in the perineurium. These were surrounded by multiple layers of cells possessing basal lamina. The present results show that after nerve transection the distal stump of the severed nerve shows dynamic changes in the endoneurial space, especially in nerves where reinnervation is prevented. The endoneurial fascicles around occasional axonal sprouts in sutured nerves, representing possibly a delayed type of regeneration, show that axons have a strong ability to grow but on the other hand endoneurial structures are unable to respond normally to axonal growth after advanced degeneration.  相似文献   

20.
Reactions of unmyelinated nerve fibers to injury. An ultrastructural study   总被引:2,自引:0,他引:2  
Reactions of unmyelinated nerves to injury were studied in the distal stumps of rabbit anterior mesenteric nerves following transection. These nerves, chosen because they are almost exclusively unmyelinated, were examined by phase contrast and electron microscopy at intervals from 12 h to 2 weeks after transection. Swollen axons containing mitochondria and other organelles were prominent in the proximal few mm of the distal stump of anterior mesenteric nerve trunks during the first 4 days after transection. As early as 6 days after injury, regenerative changes consisting of numerous small axons with an increased axon-Schwann cell ratio were observed; there was little trace of degenerating axons, or their debris. Thus the capacity of unmyelinated nerve fibers for rapid regeneration has been demonstrated. It is anticipated that this delineation of reactions in unmyelinated nerves will contribute to a greater understanding of functional and morphologic abnormalities in disorders of peripheral nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号