首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considerable evidence has accumulated suggesting that the antigen receptor(s) on T cells is coded for by genes for the variable (V) region of the immunoglobulin heavy (H) chains. In B cells, a complete gene for the immunoglobulin VH region is formed by somatic recombination of VH and joining region heavy chain (JH) gene segments [through an intermediate diversity(D) region gene segment]. In an attempt to determine whether a complete immunoglobulin VH region is expressed on T cells that bear an antigen receptor, we analyzed the restriction map of the JH-C mu locus in genomic DNA from two cloned murine cytotoxic T-lymphocyte (CTL) lines specific for the x-ray-induced leukemia RL male 1. We found no rearrangement of the JH C mu locus in the CTL lines, indicating that the T-cell antigen receptor(s) in these CTLs is not coded for by a complete immunoglobulin VH gene formed by joining of VH, (DH), and JH genes. In addition, we determined that C mu genes on both chromosomes were present and that there was no rearrangement of the C alpha, C kappa, or lambda chain genes in these CTL cells.  相似文献   

2.
We have cloned an active gene for an immunoglobulin mu heavy (H) chain, bearing the variable (VH), joining (JH), and constant (C mu) sequences expressed in the IgM-secreting mouse plasmacytoma HPC-76. The mu gene was formed by somatic recombination between a VH gene and one of several JH genes, which are located about 7.7 kilobase pairs from the C mu gene in embryo DNA. The JH-C mu intervening sequence has suffered a deletion of about 2.7 kilobase pairs in HPC-76. Because the delection encompasses sequences required to switch an expressed VH-JH gene from C mu to another CH gene, it may represent a mechanism for "freezing" a lymphocyte clone at the stage of IgM expression. For the second (inactive) C mu allele in HPC-76, the entire joining and switch regions have been deleted; functional inactivation of one allele may thus represent one mechanism by which a lymphocyte clone restricts expression to a single allele (allelic exclusion). Probes generated from the cloned mu gene allowed examination of the JH locus in B, Abelson "pre-B," and T lymphoma cell lines and a myeloid line, all of which cotain RNA species bearing C mu sequences. The B and pre-B lines exhibited recombination within both alleles of the JH locus, suggesting that both alleles may be expressed in some cells. The absence of the JH gene 5' to the recombination sites favors a deletion mechanism for VH-JH joining. Recombination within the JH locus was also detected in two out of four T lymphoma lines, but not in the myeloid line. This indicates that the mechanism by which B cells generate immunoglobulin diversity is operational in some T cells. Lines that synthesize mu RNA without JH rearrangement may have activated the C mu gene directly or have undergone recombination at a more distant locus.  相似文献   

3.
Rearranged IGH genes were detected by Southern blotting in 22% of 118 cases of T-cell acute lymphoblastic leukemia (ALL) and involved monoallelic and biallelic rearrangements in 69% (18/26) and 31% (8/26) of these cases, respectively. IGH gene rearrangements were found in 19% (13/69) of CD3(-) T-ALL and in 50% of TCRgammadelta+ T-ALL (12/24), whereas only a single TCRalpha beta+ T-ALL (1/25) displayed a monoallelic IGH gene rearrangement. The association with the T-cell receptor (TCR) phenotype was further supported by the striking relationship between IGH and TCR delta (TCRD) gene rearrangements, ie, 32% of T-ALL (23/72) with monoallelic or biallelic TCRD gene rearrangements had IGH gene rearrangements, whereas only 1 of 26 T-ALL with biallelic TCRD gene deletions contained a monoallelic IGH gene rearrangement. Heteroduplex polymerase chain reaction (PCR) analysis with VH and DH family-specific primers in combination with a JH consensus primer showed a total of 39 clonal products, representing 7 (18%) VH-(DH-)JH joinings and 32 (82%) DH-JH rearrangements. Whereas the usage of VH gene segments was seemingly random, preferential usage of DH6-19 (45%) and DH7-27 (21%) gene segments was observed. Although the JH4 and JH6 gene segments were used most frequently (33% and 21%, respectively), a significant proportion of joinings (28%) used the most upstream JH1 and JH2 gene segments, which are rarely used in precursor-B-ALL and normal B cells (1% to 4%). In conclusion, the high frequency of incomplete DH-JH rearrangements, the frequent usage of the more downstream DH6-19 and DH7-27 gene segments, and the most upstream JH1 and JH2 gene segments suggests a predominance of immature IGH rearrangements in immature (non-TCRalpha beta+) T-ALL as a result of continuing V(D)J recombinase activity. More mature alpha beta-lineage T-ALL with biallelic TCRD gene deletions apparently have switched off their recombination machinery and are less prone to cross-lineage IGH gene rearrangements. The combined results indicate that IGH gene rearrangements in T-ALL are postoncogenic processes, which are absent in T-ALL with deleted TCRD genes and completed TCR alpha (TCRA) gene rearrangements.  相似文献   

4.
We hybridized neoplastic cells from a patient with chromic lymphocytic leukemia of the B-cell type, which carried a reciprocal chromosomal translocation between chromosomes 11 (q13) and 14 (q32) with mouse plasmacytoma cells. The hybrid cells were studied for the presence, rearrangement, and expression of the human immunoglobulin mu chain locus. The results indicate that the expressed mu chain gene is located on the normal chromosome 14, whereas the 14q+ translocation chromosome carries the excluded immunoglobulin constant (C) region mu chain allele (C mu) but does not contain variable (V) region heavy chain genes (VH). Since we found that the heavy chain joining region DNA (JH) of the excluded mu chain gene is on the 14q+ chromosome, we can conclude that the chromosomal break observed in the leukemic cells occurred in a chromosomal region within or 5' of the JH region. With these results, it is logical to postulate that a gene, for which we suggest the name bcl-1, is located on band q13 of chromosome 11 and is activated by its translocation into close proximity with the rearranged heavy chain locus on chromosome 14q+, contributing to the neoplastic transformation of the B cells with the t(11;14) chromosomal translocation.  相似文献   

5.
Antibody genes are assembled from a series of germ-line gene segments that are juxtaposed during the maturation of B lymphocytes. Although diversification of the adult antibody repertoire results in large part from the combinatorial joining of these gene segments, a restricted set of antibody heavy chain variable (VH), diversity (DH), and joining (JH) region gene segments appears preferentially in the human fetal repertoire. We report here that one of these early-expressed VH elements (termed VH6) is the most 3' VH gene segment, positioned 77 kilobases on the 5' side of the JH locus and immediately adjacent to a set of previously described DH sequences. In addition to providing a physical map linking human VH, DH, and JH elements, these results support the view that the programmed development of the antibody VH repertoire is determined in part by the chromosomal position of these gene segments.  相似文献   

6.
Clonal rearrangements of the Ig heavy chain (IGH) locus occur in nearly all cases of B-cell precursor acute leukemia (BCP-ALL). Some of these rearrangements may be detected by polymerase chain reaction (PCR) using VH gene framework III (FRIII) and JH consensus primers. However, about 20% of BCP-ALLs fail to amplify with this technique. To determine the causes of these PCR failures and to investigate any possible association with specific subgroups of disease, we analyzed 72 acute leukemias of defined immunophenotype and cytogenetics, comparing FRIII with VH-family leader-specific PCR methods and Southern blotting. Of 37 BCP-ALL cases, 6 (16.2%) failed totally to amplify with FRIII and JH primers. None of these cases amplified with VH leader primers. Additionally, all cases retained germline VH6 genes and 5 of 11 rearranged alleles amplified with a consensus DH primer, indicating that these rearrangements represented biallelic DH-JH recombinations. Among the 6 FRIII and VH leader PCR-negative BCP-ALL cases, there was no common immunophenotype or consistent cytogenetic abnormality, although all showed structural chromosomal abnormalities and 3 of 5 successfully karyotyped had abnormalities of chromosome 12p. 13 cases with t(9;22)(q34;q11) Philadelphia chromosome-positive [Ph+]) and IGH rearrangements (9 BCP-ALL and 4 biphenotypic cases) were also analyzed. Of 23 rearranged IGH alleles, 19 (82%) were positive by FRIII PCR, and all 4 remaining alleles were amplified by VH leader primers. Use of the leader primers in these Ph+ cases also detected 3 additional clonal rearrangements that were not anticipated from Southern blotting; such unexpected bands were not observed in 21 other Ph- cases. The additional bands represented "new" and unrelated VH rearrangements rather than VH-VH replacement events. We conclude that biallelic DHJH rearrangements occur in a subgroup of BCP-ALL; in these cases, the activation of the full VHDHJH recombination mechanism had not occurred. Therefore, these cases of BCP-ALL were arrested at an early stage of B- cell differentiation. In contrast, all Ph+ BCP-ALLs and biphenotypic acute leukemias, which may represent the transformation of multipotent hemopoietic stem cells, had undergone VHDHJH recombination. Of 9 Ph+ BCP-ALL cases, 3 also showed ongoing VHDHJH rearrangement, reflecting the persistent expression of the VHDHJH recombinase. Finally, sequence analysis of 33 rearranged VHDHJH genes showed that only 3 including 2 Ph+ BCP-ALL maintained an intact open-reading frame. Loss of the open- reading frame occurred not only because of out-of-frame VHDH and DHJH joining, but also because of VH gene mutation and deletion. These data show that most BCP-ALLs may represent the neoplastic transformation of BCPs destined to die in the bone marrow.  相似文献   

7.
To investigate the mechanism of recombination of immunoglobulin heavy chain variable and constant region genes, we have determined the nucleotide sequence of a large portion of the recombination region between an active C mu gene and its associated VH gene, isolated from an IgM-secreting mouse plasmacytoma, HPC76. By comparison with the sequence of the mu mRNA, we determined the exact boundaries of the intervening sequence between the VH76 and C mu genes. The rearranged VH76 gene encodes up to amino acid 116 without interruption, the 3' 39 nucleotides (the JH76 region) being derived from an embryonic JH segment (JH315) whose sequence was recently determined [Early, P., Huang, H., Davis, M., Calame, K. & Hood, L. (1980) Cell 195, 981-992]. The active JH76 does not use the first two codons of the embryonic JH315 from which it is derived. This indicates that V-J recombination is important in generating diversity within the third hypervariable region of heavy chains. We have identified another JH segment (JHA4), located 336 nucleotides 3' to the rearranged JH76 segment. This JH segment is expressed in the heavy chains of anti-levan myeloma proteins, which have truncated third hypervariable regions. We propose that the nucleotide sequence 5' to JHA4 is important for generating V region genes with shortened third hypervariable regions.  相似文献   

8.
9.
During differentiation B lymphocytes may switch from the expression of surface IgM to the synthesis of IgG, IgA, or IgE isotypes by using a different heavy chain constant region (CH) gene. The molecular mechanisms by which switching occurs remain controversial. Rearrangements and deletions of CH genes 5' to the expressed gene have often been observed in the mouse and, more recently, in human cells that have switched isotypes. We have used human JH, C micro, C gamma, and C alpha probes to examine the extent of the deletions and rearrangements in clones of Epstein-Barr virus-transformed human cells that produce IgG1, IgG3, IgG4, or IgA1. Though deletions of CH genes 5' to the expressed CH gene were consistently observed, the rearrangement process appeared to be highly variable for the nonproductive CH gene locus: deletion or persistence of 5' CH genes, combinations of deletion and duplication of 5' genes, and deletions extending to 3' CH genes. Our results reveal an unexpected lack of specificity in the DNA deletions in cells that have undergone isotype switching.  相似文献   

10.
In most human follicular lymphomas, the chromosome translocation t(14;18) occurs within two breakpoint clustering regions on chromosome 18, the major one at the 3' untranslated region of the bcl-2 gene and the minor one at 3' of the gene. Analysis of a panel of follicular lymphoma DNAs using probes for the first exon of the bcl-2 gene indicates that DNA rearrangements may also occur 5' to the involved bcl-2 gene. In this case the IgH locus and the bcl-2 gene are found in the order 3' C gamma S gamma/mu JH 5'::5' bcl-2 3' (where C = constant, S = switch, and JH = joining segment of the heavy chain locus), suggesting that an inversion also occurred during the translocation process. The coding regions of the bcl-2 gene, however, are left intact in all cases of follicular lymphoma studied to date.  相似文献   

11.
We have cloned two rearranged heavy chain variable region (VH) genes from the IgG-producing human cell line CESS. The VH gene, which is linked to the mu chain constant region (C mu) gene, has two deletions at residues 45-62 and 82A-90, the former of which corresponds closely to the second complementarity-determining region (CDR2). These results could indicate that translocation of CDR2 occurred and could give support to the argument that reassortment of the V mini-genes is involved in the generation of hypervariability during evolution. However, the rearranged pseudogene could have also arisen by fortuitous deletion. The other VH gene of CESS is an expressed form and is probably linked to the C gamma gene. The diversity region (D) segments used in these rearranged V genes are less than 38% homologous to known human germline D segments, indicating the presence of more unknown germline D segments.  相似文献   

12.
We studied the arrangement of the immunoglobulin heavy chain genes by Southern blot analysis of DNA freshly obtained from marrow blast cells of 14 children with T cell acute lymphoblastic leukemia (T-ALL) using probes to the C mu and JH gene segments: At least one of the C mu-gene alleles was rearranged in three cases. In two of these, one C mu gene had the germ-line configuration and one was rearranged, whereas both alleles were rearranged in the third case. In one case, a rearranged heavy chain gene hybridized to the C mu-region probe, but not to the JH probe, indicating that the entire JH region had been deleted. These results demonstrate that immunoglobulin heavy chain gene rearrangements are not restricted to B lineage lymphoproliferative diseases in humans.  相似文献   

13.
The adult repertoire of antibody specificities is acquired in a developmentally programmed fashion that, in mouse and man, parallels the ordered rearrangement of a limited number of germ-line heavy chain variable region (VH) gene segments during development. It has been hypothesized that this developmental bias is a consequence of gene organization. In the mouse, rearrangement of VH gene segments proximal to the heavy chain joining region (JH) locus precedes rearrangement of genes located more distal to the JH locus. Similarly, in man, two VH elements located proximal to JH are expressed during fetal development. To test further this hypothesis in man, we have determined in a single individual the positions of an additional eight distinct VH elements known to comprise a significant fraction of the human developmental repertoire. These developmentally expressed VH elements were found to be dispersed over a region of 890 kilobases of the VH locus and were interspersed with other VH elements that are not known to be developmentally expressed. Thus, the ordered developmental expression of VH gene segments in man must involve mechanisms beyond physical proximity to the JH locus. Further, these results support the notion that fetal expression of VH gene segments is a regulated process and suggest that this regulation is important in the acquisition of immunocompetence.  相似文献   

14.
We have mapped 12 diversity (D) gene segments of mouse Ig heavy chains between 80 and 1 kilobases 5' to the four joining (JH) gene segments by molecular analysis of DNA clones isolated from recombinant phage and cosmid libraries. All identified D and JH segments are in the same 5'-3' orientation. The significance of these findings with respect to the joining mechanism for Ig gene segments is discussed.  相似文献   

15.
16.
We have established a cell line, which we named 380, from a young male with acute lymphoblastic leukemia (FAB type L2). Karyologic analysis of this cell line indicates that it carries an 8;14 and a 14;18 chromosome translocation, which are characteristic of Burkitt lymphoma and of follicular lymphoma, respectively. This cell line is Epstein-Barr virus antigen-negative, reacts with monoclonal antibodies specific for B cells, and contains rearranged immunoglobulin heavy and light chain genes, but does not express human immunoglobulins. In this cell line, both mu heavy chain constant (C mu) loci are rearranged within the joining (JH) DNA segment. One of the JH segments on one of the 14q+ chromosomes is rearranged with a segment of chromosome 8, where the c-myc oncogene resides, while the other is rearranged with a segment of chromosome 18 where a putative oncogene, which we have called bcl-2, is located. The c-myc oncogene, which is translocated to one of the 14q+ chromosomes, is in its germ-line configuration more than 14 kilobases away from both the JH segment and the heavy chain enhancer that is located between the JH and mu switch region. Based on these findings, we propose a model of some aspects of B-cell oncogenesis according to which B-cell neoplasms carrying translocations involving the heavy chain loci on both human chromosomes 14 are the result of a multiple step process.  相似文献   

17.
18.
Somatic rearrangements and deletions of immunoglobulin gene segments have been demonstrated in several types of murine B cells. In addition, rearrangements of the JH, C mu, and light chain immunoglobulin gene segments have been reported in human pre-B-cell leukemias and B-cell lymphomas. We have used recombinant DNA probes for the human JH, C mu, and C gamma immunoglobulin gene loci to analyze the genetic events associated with heavy chain gene expression in human B cells clonally transformed by Epstein-Barr virus. Southern hybridization analysis of BamHI-digested cell clone DNAs shows that these human B-cell clones often have bi-allelic JH rearrangements and that heavy chain isotype switching is associated with bichromosomal C mu and C gamma gene rearrangements. Deletions of germ line C mu and C gamma segments were observed that were sometimes bi-allelic. Overall, the observed rearrangements and deletions of heavy chain constant region genes suggest that human heavy chain class switching proceeds in a general order consistent with the proposed order of the heavy chain gene classes along chromosome 14.  相似文献   

19.
We have analyzed the molecular genetics of the breakpoints involved in the t(8;14) and t(14;18) translocations of an acute pre-B-cell leukemia from a patient with a history of follicular lymphoma. In this patient's leukemic cells, the breakpoint of the t(14;18) translocation occurred in the major breakpoint-cluster region of the BCL2 gene and became linked to the JH4 joining-region gene segment of the immunoglobulin heavy-chain locus on the 14q+ chromosome as previously observed in follicular lymphoma. An N region and heptamer and nonamer signal sequences indicated that this translocation occurred as a mistake in VH-DH-JH joining (where VH and DH are the variable and diversity segments). In the t(8;14) translocation, the breakpoint was located immediately 5' of the first exon of the MYC protooncogene, which was juxtaposed with the C gamma 2 constant gene segment of the second 14q+ chromosome. The finding of repeated sequences typical of switch regions suggested that this translocation occurred during heavy-chain isotype switching, resulting in progression to pre-B-cell leukemia with both the t(8;14) and the t(14;18) translocations. The terminal deoxynucleotidyltransferase-positive phenotype of the patient's leukemic cells further suggests that the pre-B-cell leukemia was derived from a pre-B cell carrying a t(14;18) translocation in the original follicular lymphoma. The polymerase chain reaction method was then used to identify cancer cells in the bone marrow of the patient.  相似文献   

20.
The complete amino acid sequence of th variable (V) region of the mu heavy chain of a human IgM immunoglobulin (Cam) has been determined. The strategy for sequence determination involved sequenator analysis of the CNBr cleavage products of the succinylated carboxymethylated Fab mu fragment, and of tryptic peptides of the CNBr polypeptides and thermolytic subpeptides. The variable region of this heavy chain (VH) belongs to the VHIII subgroup; it has greater than 70% homology with other VHIII sequences and contains the VHIII marker peptide, Phe-Thr-Ile-Ser-Arg (residues 67-71). As more sequences have been published, the number of subgroup-specific residues has diminished to the point that no position is absolutely subgroup specific. An analysis of the available human VH sequences in the V/C switch region showed the likelihood of a human JH segment (residues 101-113) analogous to the J segments in mouse light chains. The JH region is highly conserved, has striking homology to proposed mouse JH regions, and has significant homology to known mouse J lambda and J kappa segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号