首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is no commercially available real-time dosimeter that can accurately measure output factors for field sizes down to 4 mm without the use of correction factors. Silicon diode detectors are commonly used but are not dosimetrically water equivalent, resulting in energy dependence and fluence perturbation. In contrast, plastic scintillators are nearly dosimetrically water equivalent. A fibre optic dosimeter (FOD) with a 0.8 mm(3) plastic scintillator coupled to an air core light guide was used to measure the output factors for Novalis/BrainLab stereotactic cones of diameter 4-30 mm and Novalis MLC fields of width 5-100 mm. The FOD data matched the output factors measured by a 0.125 cm(3) Semiflex ion chamber for the MLC fields above 30 mm and those measured with the EBT2 radiochromic film for the cones and MLC fields below 30 mm. Relative detector readings were obtained with four diode types (IBA SFD, EFD, PFD, PTW 60012) for the same fields. Empirical diode correction factors were determined by taking the ratio of FOD output factors to diode relative detector readings. The diodes were found to over-respond by 3%-16% for the smallest field. There was good agreement between different diodes of the same model number.  相似文献   

2.
A dedicated, efficient Monte Carlo (MC) accelerator head model for intensity modulated stereotactic radiosurgery treatment planning is needed to afford a highly accurate simulation of tiny IMRT fields. A virtual source model (VSM) of a mini multi-leaf collimator (MLC) (the Elekta Beam Modulator (EBM)) is presented, allowing efficient generation of particles even for small fields. The VSM of the EBM is based on a previously published virtual photon energy fluence model (VEF) (Fippel et al 2003 Med. Phys. 30 301) commissioned with large field measurements in air and in water. The original commissioning procedure of the VEF, based on large field measurements only, leads to inaccuracies for small fields. In order to improve the VSM, it was necessary to change the VEF model by developing (1) a method to determine the primary photon source diameter, relevant for output factor calculations, (2) a model of the influence of the flattening filter on the secondary photon spectrum and (3) a more realistic primary photon spectrum. The VSM model is used to generate the source phase space data above the mini-MLC. Later the particles are transmitted through the mini-MLC by a passive filter function which significantly speeds up the time of generation of the phase space data after the mini-MLC, used for calculation of the dose distribution in the patient. The improved VSM model was commissioned for 6 and 15 MV beams. The results of MC simulation are in very good agreement with measurements. Less than 2% of local difference between the MC simulation and the diamond detector measurement of the output factors in water was achieved. The X, Y and Z profiles measured in water with an ion chamber (V = 0.125 cm(3)) and a diamond detector were used to validate the models. An overall agreement of 2%/2 mm for high dose regions and 3%/2 mm in low dose regions between measurement and MC simulation for field sizes from 0.8 x 0.8 cm(2) to 16 x 21 cm(2) was achieved. An IMRT plan film verification was performed for two cases: 6 MV head&neck and 15 MV prostate. The simulation is in agreement with film measurements within 2%/2 mm in the high dose regions (> or = 0.1 Gy = 5% D(max)) and 5%/2 mm in low dose regions (<0.1 Gy).  相似文献   

3.
Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm grids, and still further by the use of 4 x 2.5 mm grids, as would be expected. This was also achieved with a small or negligible broadening of the beam penumbra as measured at Dmax.  相似文献   

4.
Kung JH  Chen GT 《Medical physics》2000,27(7):1617-1622
In Intensity Modulated Radiotherapy (IMRT), irradiation is delivered in a number of small aperture subfields. The fluences shaped by these small apertures are highly sensitive to inaccuracies in multileaf collimator (MLC) calibration. The Radiation Field Offset (RFO) is the difference between a radiation and a light field at the Source to Axis Distance (SAD) for a MLC. An Intensity Modulated Radiotherapy (IMRT) system must incorporate a RFO by closing in all leaf openings. In IMRT, RFO inaccuracy will result in a dose error to the interior of a target volume. We analyze dosimetric consequences of incorporating a wrong RFO into the CORVUS, 1 cm x 1 cm, step and shoot, IMRT system. The following method was employed. First an IMRT plan is generated for a target volume in a phantom, which produces a set of dynamic MLC (DMLC) files with the correct RFO value. To simulate delivery with a wrong RFO value, we wrote a computer code that reads in the DMLC file with the correct RFO value and produces another DMLC with an incorrect RFO specified by a user. Finally the phantom was irradiated with the correct and the incorrect RFO valued DMLC files, and the doses were measured with an ionization chamber. The method was applied to 9 fields, 6 MV, IMRT plans. We measured Dose Error Sensitivity Factor (DESF) for each plan, which ranged from (0-8)% mm(-1). The DESF(x) is defined as a fractional dose error to a point (x) in a target volume per mm of the RFO error, i.e., DESF(x) is equivalent to ?deltaD(x)/D(x)deltaRFO?. Therefore, we concluded that for CORVUS, 6 MV, 1 cm x 1 cm, step and shoot IMRT, RFO must be determined within an accuracy of 0.5 mm if a fractional dose error to a target volume is to be less than 4%. We propose an analytic framework to understand the measured DESF's. From the analysis we conclude that a large DESF was associated with an DMLC file with small average leaf openings. For 1 cm x 1 cm, step and shoot IMRT, the largest possible DESF is predicted to be 20% mm(-1). In addition, we wrote computer code that can calculate a DESF of a DMLC file. The code was written in Mathematica 3.0. The code can be used to screen patient IMRT plans that are highly sensitive to a RFO error.  相似文献   

5.
目的:设计一款高位移精度的国产外置式医学用自动多叶准直器(Multi Leaf Collimator,简称MLC),同时验证和测试该MLC在放射治疗临床使用中的辐射野精度、半影、漏射率、适形度等重要指标数据。方法:控制设计方面,采用直流电机模糊控制算法、位移精度控制、漏射优化等关键方案实现MLC的核心功能。测试方面采用柏co治疗机作为放射源,国产MLC形成射野,使用三维水箱系统和二维剂量探测器对剂量分布进行测量,并根据测量结果计算MLC性能指标数据。结果:射野数字指示与辐射野精度误差测试中,在叶片运动方向上位移误差在0.2mm~1.6mm之间;漏射率测试中,最大漏射率小于2%;半影测试中,半影随射野增大而增大,在10cm~10Clll射野时,叶片运动方向半影为8.6mm适形度测试中,MLC形成射野和TPS定制适形度值在99.7%以上。结论:国产外置式MLC各项指标符合食药总局检验标准,完全满足临床治疗需求。  相似文献   

6.
The COMPASS system (IBA Dosimetry) is a quality assurance (QA) tool which reconstructs 3D doses inside a phantom or a patient CT. The dose is predicted according to the RT plan with a correction derived from 2D measurements of a matrix detector. This correction method is necessary since a direct reconstruction of the fluence with a high resolution is not possible because of the limited resolution of the matrix used, but it comes with a blurring of the dose which creates inaccuracies in the dose reconstruction. This paper describes the method and verifies its capability to detect errors in the positioning of a MLC with 10 mm leaf width in a phantom geometry. Dose reconstruction was performed for MLC position errors of various sizes at various locations for both rectangular and intensity-modulated radiotherapy (IMRT) fields and compared to a reference dose. It was found that the accuracy with which an error in MLC position is detected depends on the location of the error relative to the detectors in the matrix. The reconstructed dose in an individual rectangular field for leaf positioning errors up to 5 mm was correct within 5% in 50% of the locations. At the remaining locations, the reconstruction of leaf position errors larger than 3 mm can show inaccuracies, even though these errors were detectable in the dose reconstruction. Errors larger than 9 mm created inaccuracies up to 17% in a small area close to the penumbra. The QA capability of the system was tested through gamma evaluation. Our results indicate that the mean gamma provided by the system is slightly increased and that the number of points above gamma 1 ensures error detection for QA purposes. Overall, the correction kernel method used by the COMPASS system is adequate to perform QA of IMRT treatment plans with a regular MLC, despite local inaccuracies in the dose reconstruction.  相似文献   

7.
Siebers JV  Kim JO  Ko L  Keall PJ  Mohan R 《Medical physics》2004,31(7):2135-2146
This study develops and tests a method to compute dosimetric images for an amorphous silicon (a-Si) flat-panel detector so that an accurate quantitative comparison between measured and computed portal images may be made. An EGS4-based Monte Carlo (MC) algorithm is developed to efficiently tally the energy deposition through the use of a virtual detector dose-scoring methodology. The complete geometry of the a-Si imager is utilized in the MC calculation up to the imager rear housing, which is replaced with a uniform thickness material slab. The detector-mounting hardware is modeled as a uniform backscattering material. The amount of backscatter material required to reproduce the measured backscatter is 0.98 g/cm2 of water. A flood-field irradiation, performed in the measurement imaging session, is used to cross-calibrate the computed images with the measured images. Calibrated MC-computed images reproduce measured field-size dependencies of the electronic portal imaging device (EPID) response to within <1%, without the need for optical glare or other empirical corrections. A 10% dose difference between measured and computed images was observed outside the field edge for a 10 x 10 cm2 field that was entirely blocked by the multileaf collimator (MLC). However, this error corresponded with less than 0.15% of the open-field dose. For 10 x 10 cm2 fields produced by 5 and 20 mm dynamically sweeping MLC gaps, more than 98% of the points were found to have a gamma less than one with a 2%, 2 mm criteria. For an intensity modulated radiation therapy (IMRT) patient test field, over 99% of the points were found to have a gamma less than one with a 2%, 2 mm criteria. This study demonstrates that MC can be an effective tool for predicting measured a-Si portal images and may be useful for IMRT EPID-based dosimetry.  相似文献   

8.
Yan G  Fox C  Liu C  Li JG 《Medical physics》2008,35(8):3661-3670
The aim of this work is to investigate the clinical impact of detector size effect on patient specific intensity-modulated radiation therapy (IMRT) quality assurance (QA). Two photon beam models, BM6 and BM4, were commissioned using photon beam profiles measured with a 6 mm diameter and a 4 mm diameter ion chambers, respectively. A method was developed to extract the "true" cross beam profiles, free of volume averaging effect, using analytic fitting/deconvolution. The method was validated using beam profiles measured with a small (0.8 mm) diode detector for small (< or = 10 x 10 cm2) field sizes. These profiles were used to commission a third beam model (BM08). Planar dose distributions for eight IMRT plans (total of 53 fields) were calculated using the three beam models and measured with a two-dimensional detector array. Analysis using percent dose difference and distance-to-agreement criteria between the calculation and measurement was done to benchmark the performance of each beam model. The average passing rates between calculation and measurement were 93.8%, 98.9%, and 99.4% for BM6, BM4, and BM08, respectively, when 3%/3 mm criteria were used. A gradual increase in passing rates was noticed with the decrease in the size of the detector used to collect commissioning data. When 2%/2 mm criteria were used, the average passing rates increased significantly from 81.6% (BM6) to 92.6% (BM4) and 96.8% (BM08). These results quantify the enhancement of IMRT dose calculation accuracy with the reduction in detector size used for photon beam profiles measurement. Our study indicates that volume averaging effect can significantly affect the results of IMRT patient specific QA. By removing the detector size effect in beam commissioning, excellent passing rates can be achieved with more stringent criteria such as 2%/2 mm. The use of more stringent criteria for IMRT patient specific QA would likely result in higher chances of detecting any dosimetric errors arising from the treatment planning or delivery system.  相似文献   

9.
Lee HR  Pankuch M  Chu JC  Spokas JJ 《Medical physics》2002,29(11):2489-2496
A parallel plate microchamber (PPMC) has been designed to specifically address the problems of small beam dosimetry. The chamber's extremely small volume and tissue equivalency theoretically make it possible for the chamber to perform an ideal measurement for small field dosimetry. Results show the PPMC to be a simple and reproducible detector for the measurements of total scattering factors, percentage depth doses, and off-axis ratios. Even with its unique geometry, the PPMC requires a correction factor when measuring total scatter factors of fields smaller than 2.5 cm in diameter. Results obtained with the PPMC for fields greater than 2.5 cm diameter closely match those of alternative measurement modalities. The exceptionally small volume of the chamber increases the effect of radiation-induced cable currents. With careful experimental technique, this problem can be resolved. Monte Carlo simulations of a Sun Nuclear QED low build-up diode were done to show that no correction factor is needed for the diode in measuring total scatter factors of small fields. However, the scattering factors measured with the PPMC should be corrected for cone fields smaller than 2.5 cm in diameter. With the correction factor, the scattering factor obtained with the PPMC matches that with the QED diode within 0.7%. The percent depth dose data taken with the PPMC for a 40 x 40 cm2 field closely matches that taken with the PTW chamber with the largest deviation being approximately 1.2% at a depth of 30 cm. For a measurement of the off-axis ratio with stereotactic cones of diameter 1.25 and 4.0 cm, the data obtained with the PPMC have a good agreement (less than 0.5% difference) with the film measurement.  相似文献   

10.
Dosimetric parameters of a dedicated stereotactic linear accelerator have been investigated using measurements and Monte Carlo simulations. This linac has a unique built in multileaf collimation (MLC) system with the maximum opening of 16 x 21 cm2 and 4 mm leaf width at the isocenter and has successfully been modeled for the first time using the Monte Carlo simulation. The high resolution MLC, combined with its relatively large maximum field size, opens up a new opportunity for expanding stereotactic radiation treatment techniques from traditionally treating smaller targets to larger ones for both cranial and extracranial lesions. Dosimetric parameters of this linac such as accuracy of leaf positioning and field shaping, leakage and transmission, percentage depth doses, off-axes dose profiles, and dose penumbras were measured and calculated for different field sizes, depths, and source to surface distances. In addition, the ability of the linac in accurate dose delivery of several treatment plans, including intensity modulated radiation therapy (IMRT), performed on phantom and patients was determined. Ionization chamber, photon diode detector, films, several solid water phantoms, and a water tank were used for the measurements. The MLC leaf positioning to any particular point in the maximum aperture was accurate with a standard deviation of 0.29 mm. Maximum and average leakages were 1.7% and 1.1% for the reference field of 10.4 x 9.6 cm2. Measured penumbra widths (80%-20%) for this field at source axis distance (SAD) of 100 cm at a depth of 1.5 cm (dmax) were 3.2 and 4 mm for the leaf-sides and leaf-ends, respectively. The corresponding results at 10 cm depth and SAD =100 cm were 5.4 and 6.3 mm. Monte Carlo results generally agreed with the measurements to within 1% and or 1 mm, with respective uncertainties of 0.5% and 0.2 mm. The linac accuracy in delivering non-IMRT treatment plans was better than 1%. Ionization chamber dosimetry results for a phantom IMRT plan in the high dose and low dose regions were -0.5% and +3.6%, respectively. Dosimetry results at isocenter for three patients' IMRT plans were measured to be within 3% of their corresponding treatment plans. Film dosimetry was also used to compare dose distributions of IMRT treatment plans and delivered cumulative doses at different cross sectional planes.  相似文献   

11.
目的:在调强放射治疗“end to end”质量核查中,探讨应用针尖电离室对调强放射治疗小野照射进行绝对剂量测量的研究。方法:选择3省20家医院,将放有热释光剂量计TLD(距模体表面距离约7.5 cm)和胶片的国际原子能机构(IAEA)模体进行CT扫描,图像导入放射治疗计划系统(TPS)中,设计治疗计划,进行7野等中心调强照射,MLC照射野大小>2 cm×2 cm且<4 cm×4 cm。同时针尖电离室(0.015 cc)放在固体水模体距模体表面7.5 cm下进行点剂量绝对剂量验证:(1)将治疗计划中射野角度归零平移到固体水模体中进行剂量验证;(2)治疗计划射野角度不归零时为实际治疗照射方向,平移到固体水模体中进行绝对剂量验证。结果:在调强放射治疗多叶光栅小野照射的固体水模体中,用针尖电离室测量的绝对剂量与TPS计算得到的绝对剂量比较,7野照射方向归为零度时,比较偏差<5%;实际照射方向时,比较偏差<5%。验证后的计划,在IAEA模体上进行实际7野调强治疗,模体中的高剂量靶区胶片(Gafchromic EBT3 film)绝对剂量通过率均≥90%(Gamma分析:3%, 3 mm),TLD偏差<7%。均符合IAEA提出的标准。结论:在调强放射治疗多叶光栅小野照射时,可以应用针尖电离室作为绝对剂量验证的一个方法。  相似文献   

12.
The purpose of this investigation is to study the feasibility of using an alternative method to commission stereotactic radiosurgery beams shaped by micro multi-leaf collimators by using Monte Carlo simulations to obtain beam characteristics of small photon beams, such as incident beam particle fluence and energy distributions, scatter ratios, depth-dose curves and dose profiles where measurements are impossible or difficult. Ionization chambers and diode detectors with different sensitive volumes were used in the measurements in a water phantom and the Monte Carlo codes BEAMnrc/DOSXYZnrc were used in the simulation. The Monte Carlo calculated data were benchmarked against measured data for photon beams with energies of 6 MV and 10 MV produced from a Varian Trilogy accelerator. The measured scatter ratios and cross-beam dose profiles for very small fields are shown to be not only dependent on the size of the sensitive volume of the detector used but also on the type of detectors. It is known that the response of some detectors changes at small field sizes. Excellent agreement was seen between scatter ratios measured with a small ion chamber and those calculated from Monte Carlo simulations. The values of scatter ratios, for field sizes from 6 x 6 mm2 to 98 x 98 mm2, range from 0.67 to 1.0 and from 0.59 to 1.0 for 6 and 10 MV, respectively. The Monte Carlo calculations predicted that the incident beam particle fluence is strongly affected by the X-Y-jaw openings, especially for small fields due to the finite size of the radiation source. Our measurement confirmed this prediction. This study demonstrates that Monte Carlo calculations not only provide accurate dose distributions for small fields where measurements are difficult but also provide additional beam characteristics that cannot be obtained from experimental methods. Detailed beam characteristics such as incident photon fluence distribution, energy spectra, including composition of primary and scattered photons, can be independently used in dose calculation models and to improve the accuracy of measurements with detectors with an energy-dependent response. Furthermore, when there are discrepancies between results measured with different detectors, the Monte Carlo calculated values can indicate the most correct result. The data set presented in this study can be used as a reference in commissioning stereotactic radiosurgery beams shaped by a BrainLAB m3 on a Varian 2100EX or 600C accelerator.  相似文献   

13.
The dosimetric effects from the jaw positioned close to the small field (0.5 x 0.5, 1 x 1, and 2 x 2 cm2) side-edge generated by a single-focused multileaf collimator (MLC) were measured and studied. The measurement is important in intensity modulated radiotherapy (IMRT) because generally the jaw cannot perfectly cover all the leaf-ends in a segment of irregular field. This leads to additional dose contributed by (1) the end surface of the jaw, (2) the leaf-end, and (3) the inter- and intraleaf leakage/transmissions during the dosimetric measurement. Moreover, most of the conventional treatment planning systems ignore these effects in the dose calculation. In this study, measurements were made using a Varian 21 EX linear accelerator with 6 MV photon beam through a MLC containing 120 leaves. Percentage depth dose, beam profile, and output for small fields were measured by varying the jaw at different positions away from the leaf-ends in the field side-edge. Moving the jaw away from the leaf-ends increases the output and penumbra width for the small fields. Such increase is particularly significant when the field size is small (0.5 x 0.5 cm2) and the degree of increase changes quickly when the jaw-end is at about 1-2 cm from the leaf-end. It is suggested that measurements should be carried out in the IMRT commissioning to provide information to physicists in reviewing the treatment planning system's accuracy regarding leaf leakage/transmission and jaw effects.  相似文献   

14.
RapidArc? has become the treatment of choice for an increasing number of treatment sites in many clinics. The extensive use of multiple subfields in RapidArc? treatments presents unique challenges, especially for small targets treated in few fractions. In this work, very small static fields and subsequently RapidArc? and conventional plans for two targets (0.4 and 9.9 cm(3)) were investigated. Doses from static fields 1-4 MLC leaves (0.25-1.00 cm) wide, and larger fields with 1-4 MLC leaves closed in their centres, were measured using the portal dosimeter-based QA system EPIQA (v?1.3) and gafchromic film. RapidArc and conventional plans for two tumours were then measured using EPIQA, gafchromic EBT2 film and the phantom-based QA system Delta4. Eclipse 8.6 and 8.9, grid spacings of 1.25 and 2.50 mm and a Varian HD linac were used. For static fields one MLC leaf wide, the dose was underestimated by Eclipse by as much as 53% (v?8.6, 2.5 mm grid). Eclipse underestimated the dose downstream from a few MLC leaves closed in the centre of a large MLC field by as much as 30%. Eclipse consistently overestimated the width of the penumbra by about 100%. For the conventional plans, there was good agreement between the calculated and measured dose for the 9.9 cm(3) PTV, but a 10% underdose was observed for the 0.4 cm(3) PTV. For the RapidArc? plans, the measured dose for the 9.9 cm(3) PTV was in good agreement with the calculated one. However, for the 0.4 cm(3) PTV about 10% overdosing was detected (Eclipse v 8.6, 2.5 mm grid spacing). EPIQA data indicated that the measured dose profiles were overmodulated compared to the calculated one. The use of small subfields, typically a few MLC leaves wide, or larger fields with one or a few MLC leaves closed in its centre can result in significant errors in the dose calculation. The detector systems used vary in their ability to detect the discrepancies. Using a smaller grid size and newer version of Eclipse reduces the discrepancies observed in this work but does not eliminate them.  相似文献   

15.
Intensity modulated radiotherapy (IMRT) requires extensive knowledge of multileaf collimator (MLC) leaf positioning accuracy, precision, and long-term reproducibility. We have developed a technique to efficiently measure the absolute position of each MLC leaf, over the range of leaf positions utilized in IMRT, based on dosimetric information. A single radiographic film was exposed to 6 MV x-rays for twelve exposures: one open field with a radio-opaque marker tray present, and eleven fields (1 x 28 cm strips via 1 cm gaps between opposed leaf pairs) separated by 2 cm center to center. The process was repeated while varying direction of leaf travel; each film was digitized using a commercial film dosimetry system. The digital images were manipulated to remove translation and rotation of the film data with respect to the collimator coordinate system by extraction of radiation dose profiles perpendicular to the MLC leaf motion and measuring the center of the x-ray leakage between leaves. Radiation dose profiles in the direction of leaf motion were acquired through the center of each leaf pair (leaves 2-28), which provided leaf position information every 2 cm with 0.2 mm precision. Nine separate leaf reproducibility studies over a 90 day period which evaluated 600 measurement points on each film show 0.3 mm precision for 95% confidence, while hysteresis studies show 0.5 mm precision. Absolute leaf position error measurements demonstrated a radial dependence, with a maximum of 1.5 mm at 16.4 cm from central axis, due to rotational error at calibration. Recalibration of the MLC leaves based utilizing this tool yields absolute leaf position measurements where 91.5% of all leaves/positions were within 0.5 mm, with a mean error of 0.1 mm and a maximum error less than 1.0 mm.  相似文献   

16.
Secondary neutron doses from the delivery of 18 MV conventional and intensity modulated radiation therapy (IMRT) treatment plans were compared. IMRT was delivered using dynamic multileaf collimation (MLC). Additional measurements were made with static MLC using a primary collimated field size of 10 x 10 cm2 and MLC field sizes of 0 x 0, 5 x 5, and 10 x 10 cm2. Neutron spectra were measured and effective doses calculated. The IMRT treatment resulted in a higher neutron fluence and higher dose equivalent. These increases were approximately the ratio of the monitor units. The static MLC measurements were compared to Monte Carlo calculations. The actual component dimensions and materials for the Varian Clinac 2100/2300C including the MLC were modeled with MCNPX to compute the neutron fluence due to neutron production in and around the treatment head. There is excellent agreement between the calculated and measured neutron fluence for the collimated field size of 10 x 10 cm2 with the 0 x 0 cm2 MLC field. Most of the neutrons at the detector location for this geometry are directly from the accelerator head with a small contribution from room scatter. Future studies are needed to investigate the effect of different beam energies used in IMRT incorporating the effects of scattered photon dose as well as secondary neutron dose.  相似文献   

17.
Laub WU  Wong T 《Medical physics》2003,30(3):341-347
In this study we investigate the effect of detector size in the dosimetry of small fields and steep dose gradients with a particular emphasis on IMRT measurements. Comparisons of calculated and measured cross-profiles and absolute dose values of IMRT treatment plans are presented. As a consequence of the finite size of the detector that was used for the commissioning of the IMRT tool, local discrepancies of more than 10% are found between calculated cross-profiles of intensity modulated beams and intensity modulated profiles measured with film. Absolute dose measurements of intensity modulated fields with a 0.6 cm3 Farmer chamber show significant differences of more than 6% between calculated and measured dose values at the isocenter of an IMRT treatment plan. Differences of not more than 2% are found in the same experiment for dose values measured with a 0.015 cm3 pinpoint ion chamber. A method to correct for the spatial response of finite-sized detectors and to obtain the "real" penumbra width of cross-profiles from measurements is introduced. Output factor measurements are performed with different detectors and are presented as a function of detector size for a 1 x 1 cm2 field. Because of its high spatial resolution and water equivalence, a diamond detector is found to be suitable as an alternative to other detectors used for small field dosimetry as there are photographic and photochromic film, TLDs, or water-equivalent scintillation detectors.  相似文献   

18.
Vahc YW  Chung WK  Park KR  Lee JY  Lee YH  Kwon O  Kim S 《Medical physics》2001,28(3):303-309
Accurate dosimetry of small-field photon beams tends to be difficult to perform due to the presence of lateral electronic disequilibrium and steep dose gradients. In stereotactic radiosurgery (SRS), small fields of 6-30 mm in diameter are used. Generally thermoluminescence dosimetry chips, Farmer, Thimble ion chamber, and film dosimetry are not adequate to measure dose in SRS beams. These techniques generally do not provide the required precision due to their energy dependence and/or poor resolution. It is necessary to construct a small, accurate detector with high spatial resolution for the small fields used in SRS. The ultramicrocylindrical ionization chamber (UCIC) with a gold wall of 2.2 mm in diameter and 4.0 mm in length has dual sensitive volumes of air (8.0 mm3) and borosilicate (2.6 mm3) cavity. Reproducibility, linearity, and radiation damage with respect to absorbed dose, beam profile of small beam, and independence of dose rate of the UCIC are tested by the dose measurements in high energy photon (5, 15 MV) and electron (9 MeV) beams. The UCIC with a unique supporting system in the polystyrene phantom is demonstrated to be a suitable detector for the dose measurements in a small beam size.  相似文献   

19.
Accurate small-field dosimetry has become important with the use of multiple small fields in modern radiotherapy treatments such as IMRT and stereotactic radiosurgery. In this study, we investigate the response of a set of prototype plane-parallel ionization chambers, based upon the Exradin T11 chamber, with active volume diameters of 2, 4, 10, and 20 mm, exposed to 6 MV stereotactic radiotherapy x-ray fields. Our goal was to assess their usefulness for accurate small x-ray field dose measurements. The relative ionization response was measured in circular fields (0.5 to 4 cm diameter) as compared to a 10 x 10 cm2 reference field. A large discrepancy (approximately 40%) was found between the relative response in the smallest plane-parallel chamber and other small volume dosimeters (radiochromic film, micro-metal-oxide-semiconductor field-effect transistor and diode) used for comparison. Monte Carlo BEAMnrc simulations were used to simulate the experimental setup in order to investigate the cause of the under-response and to calculate appropriate correction factors that could be applied to experimental measurements. It was found that in small fields, the air cavity of these custom-made research chambers perturbed the secondary electron fluence profile significantly, resulting in decreased fluence within the active volume, which in turn produces a chamber under-response. It is demonstrated that a large correction to the p(fl) correction factor would be required to improve dosimetric accuracy in small fields, and that these factors could be derived using Monte Carlo simulations.  相似文献   

20.
In intensity modulated radiotherapy (IMRT), the use of small fields where electronic equilibrium does not exist is becoming more common and presents difficulties for both the measurement and calculation of dose to such fields. Pinnacle(3) (Version 6.2b) allows the user to specify a total minimum open area for each IMRT segment, which can result in sub-segments with widths of only a few millimetres. The dose for 6 MV narrow MLC defined fields between 0.1 and 3 cm in width was investigated using Kodak extended dose range film (EDR2), ionization chamber and MOSFET dosimeters and BEAMnrc Monte Carlo calculations, and these results were used to determine the accuracy of Pinnacle(3) dose calculation for narrow MLC segments. The incident fluences calculated by Pinnacle(3) and BEAMnrc were also compared. Results show that if a fluence and dose grid resolution of 0.1 cm is used, Pinnacle(3) dose agrees with the EDR2 and BEAMnrc to within 5% for field widths between 0.5 and 3.0 cm. However, Pinnacle(3) will underestimate the dose by up to 45% for the 0.1 and 0.3 cm wide fields. It is shown that the source size in the Pinnacle(3) beam model and both the fluence and dose grid resolutions have a significant effect on the accuracy of dose calculation for field widths of 1.0 cm and less. For single segment fields, Pinnacle(3) agrees with EDR2 and BEAMnrc to within 0.1 cm at the field edges and underestimates the penumbra width by up to 0.08 cm. Results for multiple segment fields showed that an MLC transmission of 1.7% and a 0.06 cm inward shift of MLCs prior to beam delivery gave the closest agreement between Pinnacle(3) and measurement. The multiple segment fields also revealed a pattern of low dose troughs of up to 7% in the Pinnacle(3) dose profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号