首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex   总被引:4,自引:0,他引:4  
We compared the spatial sensitivity of neural responses in three areas of cat auditory cortex: primary auditory cortex (A1), the posterior auditory field (PAF), and the dorsal zone (DZ). Stimuli were 80-ms pure tones or broadband noise bursts varying in free-field azimuth (in the horizontal plane) or elevation (in the vertical median plane), presented at levels 20-40 dB above units' thresholds. We recorded extracellular spike activity simultaneously from 16 to 32 sites in one or two areas of alpha-chloralose-anesthetized cats. We examined the dependence of spike counts and response latencies on stimulus location as well as the information transmission by neural spike patterns. Compared with units in A1, DZ units exhibited more complex frequency tuning, longer-latency responses, increased prevalence and degree of nonmonotonic rate-level functions, and weaker responses to noise than to tonal stimulation. DZ responses also showed sharper tuning for stimulus azimuth, stronger azimuthal modulation of first-spike latency, and enhanced spatial information transmission by spike patterns, compared with A1. Each of these findings was similar to differences observed between PAF and A1. Compared with PAF, DZ responses were of shorter overall latency, and more DZ units preferred stimulation from ipsilateral azimuths, but the majority of analyses suggest strong similarity between PAF and DZ responses. These results suggest that DZ and A1 are physiologically distinct cortical fields and that fields like PAF and DZ might constitute a "belt" region of auditory cortex exhibiting enhanced spatial sensitivity and temporal coding of stimulus features.  相似文献   

2.
Previous studies have demonstrated that the spike patterns of cortical neurons vary systematically as a function of sound-source location such that the response of a single neuron can signal the location of a sound source throughout 360 degrees of azimuth. The present study examined specific features of spike patterns that might transmit information related to sound-source location. Analysis was based on responses of well-isolated single units recorded from cortical area A2 in alpha-chloralose-anesthetized cats. Stimuli were 80-ms noise bursts presented from loudspeakers in the horizontal plane; source azimuths ranged through 360 degrees in 20 degrees steps. Spike patterns were averaged across samples of eight trials. A competitive artificial neural network (ANN) identified sound-source locations by recognizing spike patterns; the ANN was trained using the learning vector quantization learning rule. The information about stimulus location that was transmitted by spike patterns was computed from joint stimulus-response probability matrices. Spike patterns were manipulated in various ways to isolate particular features. Full-spike patterns, which contained all spike-count information and spike timing with 100-micros precision, transmitted the most stimulus-related information. Transmitted information was sensitive to disruption of spike timing on a scale of more than approximately 4 ms and was reduced by an average of approximately 35% when spike-timing information was obliterated entirely. In a condition in which all but the first spike in each pattern were eliminated, transmitted information decreased by an average of only approximately 11%. In many cases, that condition showed essentially no loss of transmitted information. Three unidimensional features were extracted from spike patterns. Of those features, spike latency transmitted approximately 60% more information than that transmitted either by spike count or by a measure of latency dispersion. Information transmission by spike patterns recorded on single trials was substantially reduced compared with the information transmitted by averages of eight trials. In a comparison of averaged and nonaveraged responses, however, the information transmitted by latencies was reduced by only approximately 29%, whereas information transmitted by spike counts was reduced by 79%. Spike counts clearly are sensitive to sound-source location and could transmit information about sound-source locations. Nevertheless, the present results demonstrate that the timing of the first poststimulus spike carries a substantial amount, probably the majority, of the location-related information present in spike patterns. The results indicate that any complete model of the cortical representation of auditory space must incorporate the temporal characteristics of neuronal response patterns.  相似文献   

3.
We recorded unit activity in the auditory cortex (fields A1, A2, and PAF) of anesthetized cats while presenting paired clicks with variable locations and interstimulus delays (ISDs). In human listeners, such sounds elicit the precedence effect, in which localization of the lagging sound is impaired at ISDs less, similar10 ms. In the present study, neurons typically responded to the leading stimulus with a brief burst of spikes, followed by suppression lasting 100-200 ms. At an ISD of 20 ms, at which listeners report a distinct lagging sound, only 12% of units showed discrete lagging responses. Long-lasting suppression was found in all sampled cortical fields, for all leading and lagging locations, and at all sound levels. Recordings from awake cats confirmed this long-lasting suppression in the absence of anesthesia, although recovery from suppression was faster in the awake state. Despite the lack of discrete lagging responses at delays of 1-20 ms, the spike patterns of 40% of units varied systematically with ISD, suggesting that many neurons represent lagging sounds implicitly in their temporal firing patterns rather than explicitly in discrete responses. We estimated the amount of location-related information transmitted by spike patterns at delays of 1-16 ms under conditions in which we varied only the leading location or only the lagging location. Consistent with human psychophysical results, transmission of information about the leading location was high at all ISDs. Unlike listeners, however, transmission of information about the lagging location remained low, even at ISDs of 12-16 ms.  相似文献   

4.
Summary The responses of 157 neural units in the magnocellular (mc) and parvocellular (pc) components of the medial geniculate nucleus (MG) and other nuclei of the posterior (PO) thalamic group were recorded and analyzed. Units were tested for a response to electrical stimulation of the vestibular nerve, natural auditory and electrical cochlear nerve stimulation, and natural stimulation of joint, muscle, and cutaneous receptors of the limbs, trunk, and neck (somatic stimulation). Only 45% of the units responded to these stimuli. Twenty-four percent of the responsive units were multimodal, responding to more than one stimulus. All multimodal units were activated by auditory stimuli. More units responding to vestibular stimulation were found in mcMG than in pcMG or other components of the PO group. Potentials evoked by vestibular nerve stimulation were recorded in all 3 regions with latencies of 5–25 msec. No evidence was found for a thalamic relay from vestibular nerve to cortex in the area investigated, since the recorded latency for activity from vestibular nerve stimulation was longer than the latency of responses recorded in the cortex. This region of the thalamus appears to be important for reception of auditory information and integration with vestibular and somatic modalities.This investigation was supported in part by USPHS Grant NS 11307  相似文献   

5.
The excitatory and inhibitory frequency/intensity response areas (FRAs) and spectrotemporal receptive fields (STRFs) of posterior auditory cortical field (PAF) single neurons were investigated in barbiturate anesthetized cats. PAF neurons' pure-tone excitatory FRAs (eFRAs) exhibited a diversity of shapes, including some with very broad frequency tuning and some with multiple distinct excitatory frequency ranges (i.e., multipeaked eFRAs). Excitatory FRAs were analyzed after selectively excluding spikes on the basis of spike response times relative to stimulus onset. This analysis indicated that spikes with shorter response times were confined to narrow regions of the eFRAs, while spikes with longer response times were more broadly distributed over the eFRA. First-spike latencies in higher threshold response peaks of multipeaked eFRAs were approximately 10 ms longer, on average, than latencies in lower threshold response peaks. STRFs were constructed to examine the dynamic frequency tuning of neurons. More than half of the neurons (51%) had STRFs with "sloped" response maxima, indicating that the excitatory frequency range shifted with time. A population analysis demonstrated that the median first-spike latency varied systematically as a function of frequency with a median slope of approximately 12 ms per octave. Inhibitory frequency response areas were determined by simultaneous two-tone stimulation. As in primary auditory cortex (A1), a diversity of inhibitory band structures was observed. The largest class of neurons (25%) had an inhibitory band flanking each eFRA edge, i.e., one lower and one upper inhibitory band in a "center-surround" organization. However, in comparison to a previous report of inhibitory structure in A1 neurons, PAF exhibited a higher incidence of neurons with more complex inhibitory band structure (for example, >2 inhibitory bands). As was the case with eFRAs, spikes with longer response times contributed to the complexity of inhibitory FRAs. These data indicate that PAF neurons integrate temporally varying excitatory and inhibitory inputs from a broad spectral extent and, compared with A1, may be suited to analyzing acoustic signals of greater spectrotemporal complexity than was previously thought.  相似文献   

6.
Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition‐suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound‐flash incongruence reduced accuracy in a same‐different location discrimination task (i.e., the ventriloquism effect) and reduced the location‐specific repetition‐suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information.  相似文献   

7.
The present study examined cortical parallels to psychophysical signal detection and sound localization in the presence of background noise. The activity of single units or of small clusters of units was recorded in cortical area A2 of chloralose-anesthetized cats. Signals were 80-ms click trains that varied in location in the horizontal plane around the animal. Maskers were continuous broadband noises. In the focal masker condition, a single masker source was tested at various azimuths. In the diffuse masker condition, uncorrelated noise was presented from two speakers at +/-90 degrees lateral to the animal. For about 2/3 of units ("type A"), the presence of the masker generally reduced neural sensitivity to signals, and the effects of the masker depended on the relative locations of signal and masker sources. For the remaining 1/3 of units ("type B"), the masker reduced spike rates at low signal levels but often augmented spike rates at higher signal levels. Increases in spike rates of type B units were most common for signal sources in front of the ear contralateral to the recording site but tended to be independent of masker source location. For type A units, masker effects could be modeled as a shift toward higher levels of spike-rate- and spike-latency-versus-level functions. For a focal masker, the shift size decreased with increasing separation of signal and masker. That result resembled psychophysical spatial unmasking, i.e., improved signal detection by spatial separation of the signal from the noise source. For the diffuse masker condition, the shift size generally was constant across signal locations. For type A units, we examined the effects of maskers on cortical signaling of sound-source location, using an artificial-neural-network (ANN) algorithm. First, an ANN was trained to estimate the signal location in the quiet condition by recognizing the spike patterns of single units. Then we tested ANN responses for spike patterns recorded under various masker conditions. Addition of a masker generally altered spike patterns and disrupted ANN identification of signal location. That disruption was smaller, however, for signal and masker configurations in which the masker did not severely reduce units' spike rates. That result compared well with the psychophysical observation that listeners maintain good localization performance as long as signals are clearly audible.  相似文献   

8.
The inferior colliculus (IC) is a well-established target of descending projections from the auditory cortex (AC). However, our understanding of these pathways has been limited by an incomplete picture of their functional influence within the three-dimensional space of the IC. Our goal was to study the properties and spatial representation of corticofugal input in the IC of guinea pigs with a high degree of spatial resolution. We systematically mapped neural activity in the IC using two types of silicon substrate probes that allow for simultaneous recording at multiple neural sites. One probe provided a high resolution in the dorsal-ventral plane and the other provided spatial resolution in the medial-lateral plane. Electrical stimulation of the ipsilateral AC produced excitatory responses in the IC with thresholds usually below 5–10 µA. First spike latencies were predominantly in the 6–20 ms range, although latencies from 3–5 ms were also observed. Broadly distributed unimodal spike patterns with modal latencies greater than 30 ms were occasionally seen. The excitatory responses to cortical stimulation were mostly unimodal and occasionally bimodal with a wide range of spike distribution patterns and response durations. Excitation was often followed by suppression of spontaneous activity. Suppression of acoustic responses was observed even when there was little or no response to electrical stimulation, suggesting spatial-temporal integration. A few of the responding neurons showed purely inhibitory responses to electrical stimulation, suggesting that there are disynaptic routes of corticocollicular inhibition. Detailed spatial mapping revealed that the response patterns and their durations had a characteristic spatial distribution in the IC.  相似文献   

9.
Neurons in the inferior colliculus (IC), one of the major integrative centers of the auditory system, process acoustic information converging from almost all nuclei of the auditory brain stem. During this integration, excitatory and inhibitory inputs arrive to auditory neurons at different time delays. Result of this integration determines timing of IC neuron firing. In the mammalian IC, the range of the first spike latencies is very large (5-50 ms). At present, a contribution of excitatory and inhibitory inputs in controlling neurons' firing in the IC is still under debate. In the present study we assess the role of excitation and inhibition in determining first spike response latency in the IC. Postsynaptic responses were recorded to pure tones presented at neuron's characteristic frequency or to downward frequency modulated sweeps in awake bats. There are three main results emerging from the present study: (1) the most common response pattern in the IC is hyperpolarization followed by depolarization followed by hyperpolarization, (2) latencies of depolarizing or hyperpolarizing responses to tonal stimuli are short (3-7 ms) whereas the first spike latencies may vary to a great extent (4-26 ms) from one neuron to another, and (3) high threshold hyperpolarization preceded long latency spikes in IC neurons exhibiting paradoxical latency shift. Our data also show that the onset hyperpolarizing potentials in the IC have very small jitter (<100 mus) across repeated stimulus presentations. The results of this study suggest that inhibition, arriving earlier than excitation, may play a role as a mechanism for delaying the first spike latency in IC neurons.  相似文献   

10.
Spiking activity was recorded from cat auditory cortex using multi-electrode arrays. Cross-correlograms were calculated for spikes recorded on separate microelectrodes. The pair-wise cross-correlation matrix was constructed for the peak values of the correlograms. Hierarchical clustering was performed on the cross-correlation matrix for six stimulus conditions. These were silence, three multi-tone stimulus ensembles with different spectral densities, low-pass amplitude-modulated noise, and Poisson-distributed click trains that each lasted 15 min. The resulting neuron clusters reflect patches in cortex of up to several mm(2) in size that expand and contract in response to different stimuli. Cluster positions and size were very similar for spontaneous activity and multi-tone stimulus-evoked activity but differed between those conditions and the noise and click stimuli. Cluster size was significantly larger in posterior auditory field (PAF) compared with primary auditory cortex (AI), whereas the fraction of common spikes (within a 10-ms window) across all electrode activity participating in a cluster was significantly higher in AI compared with PAF. Clusters crossed area boundaries in <5% of the cases were simultaneous recording were made in AI and PAF. Clusters are therefore similar to but not synonymous with the traditional view of neural assemblies. Common-spike spectrotemporal receptive fields (STRFs) were obtained for common-spike activity and all-spike activity within a cluster. Common-spike STRFs had higher signal-to-noise ratio than all-spike STRFs and showed generally spectral and temporal sharpening. The coincident and noncoincident output of the clusters could potentially act in parallel and may serve different modes of stimulus coding.  相似文献   

11.
In the auditory system, some ascending pathways preserve the precise timing information present in a temporal code of frequency. This can be measured by studying responses that are phase-locked to the stimulus waveform. At each stage along a pathway, there is a reduction in the upper frequency limit of the phase-locking and an increase in the steady-state latency. In the guinea pig, phase-locked responses to pure tones have been described at various levels from auditory nerve to neocortex but not in the inferior colliculus (IC). Therefore we made recordings from 161 single units in guinea pig IC. Of these single units, 68% (110/161) showed phase-locked responses. Cells that phase-locked were mainly located in the central nucleus but also occurred in the dorsal cortex and external nucleus. The upper limiting frequency of phase-locking varied greatly between units (80-1,034 Hz) and between anatomical divisions. The upper limits in the three divisions were central nucleus, >1,000 Hz; dorsal cortex, 700 Hz; external nucleus, 320 Hz. The mean latencies also varied and were central nucleus, 8.2 +/- 2.8 (SD) ms; dorsal cortex, 17.2 ms; external nucleus, 13.3 ms. We conclude that many cells in the central nucleus receive direct inputs from the brain stem, whereas cells in the external and dorsal divisions receive input from other structures that may include the forebrain.  相似文献   

12.
1. Extra- and intracellular responses of single units in the inferior olive following stimulation of the cerebellum, limb nerves, skin receptors, the caudate nucleus and cerebral cortex have been described.2. Responses following cerebellar stimulation were assumed to be antidromic spikes when they occurred after a latency of less than 4 msec and followed stimulus frequencies greater than 220/sec. Other responses with longer latencies were thought to be transynaptic. Evidence for recurrent inhibition of the Renshaw type is given.3. Following limb nerve stimulation two types of units have been observed; units responding after a short latency and to stimulation of one limb only and units responding with a long latency following stimulation of one or more of the limbs.4. Units responding to stimulation of the limb nerve after a short latency could often be excited by hair movement and/or light touch on the pads. Other units were excited by pinching and others could not be excited by a physiological stimulus. The receptive field of these units was small and there was no evidence of fringe inhibition.5. Most units observed represented the contralateral forelimb but there was a significant number of units representing the ipsilateral limbs.6. The caudato-olivary pathway has been shown to be excitatory. Short latency limb units do not receive afferents from the caudate nucleus.7. Afferents from the motor cortex excite units in the inferior olive. A remarkable correlation of latencies of responses from both the cerebral cortex and the limbs on to individual units has been described.8. The results suggest a complex organization of neurones within the inferior olive. A possible plan of the organization of neurones is given and discussed.  相似文献   

13.
We used simultaneous multi-site neural ensemble recordings to investigate the representation of tactile information in three areas of the primate somatosensory cortex (areas 3b, SII and 2). Small neural ensembles (30-40 neurons) of broadly tuned somatosensory neurons were able to identify correctly the location of a single tactile stimulus on a single trial, almost simultaneously. Furthermore, each of these cortical areas could use different combinations of encoding strategies, such as mean firing rate (areas 3b and 2) or temporal patterns of ensemble firing (area SII), to represent the location of a tactile stimulus. Based on these results, we propose that ensembles of broadly tuned neurons, located in three distinct areas of the primate somatosensory cortex, obtain information about the location of a tactile stimulus almost concurrently.  相似文献   

14.
1. The activity of single units in the inferior colliculus of unanesthetized monkeys was recorded during performance in an auditory reaction time task. Stimulus intensity and frequency were varied. 2. Spontaneous rate of unit discharge varied from 0 to 78.2 discharges per second, with a mean of 14.7 discharges/sec. 3. Both broadly and narrowly tuned units were encountered in the central nucleus of the inferior colliculus. The temporal discharge pattern of most units varied with changes in stimulus frequency; onset bursts and/or sustained discharge suppression dominated the unit discharge at the edges of receptive fields. 4. Half of the units examined at several intensity levels displayed nonmonotonic relationships between evoked discharge rate and stimulus intensity, with most nonmonotonic units showing a distinct "best intensity". The temporal response pattern of almost all units varied with changes in stimulus intensity, with onset bursts and discharge suppression increasing in occurrence with increasing intensity. 5. Units recorded in the external nucleus of the inferior colliculus displayed spontaneous rates which were similar to those of central nucleus units, and were affected by variation in stimulus intensity in the same fashion. However, the average initial latency of such units to intense stimuli was no longer than the latency of central nucleus units. 6. Variations in unit discharge with changes in stimulus frequency and intensity are consistent with an interaction of excitatory and inhibitory inputs with different initial latencies, dynamic ranges and receptive fields. In particular, our data suggest that inhibitory inputs have longer initial latencies and higher thresholds. Inhibition is stronger at the edges of a unit's receptive field, and dominates at high frequencies in units with low characteristic frequency. 7. Our data are not consistent with previous reports that single units in the unanesthetized animal display uniformly monotonic intensity functions and uniformly broad frequency responses.  相似文献   

15.
Recent findings suggest that neural representations in early auditory cortex reflect not only the physical properties of a stimulus, but also high-level, top-down, and even cross-modal information. However, the nature of cross-modal information in auditory cortex remains poorly understood. Here, we used pattern analyses of fMRI data to ask whether early auditory cortex contains information about the visual environment. Our data show that 1) early auditory cortex contained information about a visual stimulus when there was no bottom-up auditory signal, and that 2) no influence of visual stimulation was observed in auditory cortex when visual stimuli did not provide a context relevant to audition. Our findings attest to the capacity of auditory cortex to reflect high-level, top-down, and cross-modal information and indicate that the spatial patterns of activation in auditory cortex reflect contextual/implied auditory information but not visual information per se.  相似文献   

16.
Extracellular single-unit recordings were made from auditory neurons in the superior colliculus of ferrets anesthetized with either a neuroleptic or a combination of barbiturate with paralysis. The response properties of these neurons were studied using white-noise bursts presented under free-field conditions in an anechoic chamber. Auditory neurons were found throughout the intermediate and deep layers of the superior colliculus. All neurons were spontaneously active, the rates of discharge varying from 0.1 to 61.1 spikes X s-1. Although the spontaneous discharge interspike-interval histograms for many units approximated to exponential distributions, the histograms of 44% had clear secondary peaks, indicating more than one preferred interval, and could not be modeled by a simple process. Most neurons (50%) responded only at stimulus onset, whereas 12% exhibited sustained discharges and 38% gave onset responses followed by a period of silence or reduced activity and then a period of elevated discharge, which was not apparently related to stimulus offset. Neurons with multipeaked response patterns were concentrated in the stratum griseum profundum. The latencies from arrival of the stimulus at the ear to the onset of neural activity ranged from 6 to 49 ms and decreased with increasing stimulus intensity. Although responsive to sounds over a large region of space, most neurons had clearly defined best positions at which the strongest response was obtained. The response declined as the speaker was moved away from this position, and nearly all units had peaked response profiles. The spatial tuning varied between different neurons, but most were more sharply tuned in elevation than in azimuth. Increasing the stimulus intensity did not, in general, alter the best positions of these neurons, but usually resulted in a broadening of the receptive fields, although other units became more sharply tuned. The best positions of auditory neurons varied systematically in azimuth from 20 degrees into the ipsilateral hemifield to 130 degrees into the contralateral hemifield as the electrode was moved from the rostrolateral to the caudomedial end of the superior colliculus. The best positions shifted in elevation along a rostromedial to caudolateral axis from 60 degrees above to 50 degrees below the visuoaural plane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The distribution of neuronal characteristic frequencies over the area of primary auditory cortex (AI) roughly reflects the tonotopic organization of the cochlea. However, because the area of AI activated by any given sound frequency increases erratically with sound level, it has generally been proposed that frequency is represented in AI not with a rate-place code but with some more complex, distributed code. Here, on the basis of both spike and local field potential (LFP) recordings in the anesthetized cat, we show that the tonotopic representation in AI is much more level tolerant when mapped with spectrotemporally dense tone pip ensembles rather than with individually presented tone pips. That is, we show that the tuning properties of individual unit and LFP responses are less variable with sound level under dense compared with sparse stimulation, and that the spatial frequency resolution achieved by the AI neural population at moderate stimulus levels (65 dB SPL) is better with densely than with sparsely presented sounds. This implies that nonlinear processing in the central auditory system can compensate (in part) for the level-dependent coding of sound frequency in the cochlea, and suggests that there may be a functional role for the cortical tonotopic map in the representation of complex sounds.  相似文献   

18.
Attending to a visual or auditory stimulus often requires irrelevant information to be filtered out, both within the modality attended and in other modalities. For example, attentively listening to a phone conversation can diminish our ability to detect visual events. We used functional magnetic resonance imaging (fMRI) to examine brain responses to visual and auditory stimuli while subjects attended visual or auditory information. Although early cortical areas are traditionally considered unimodal, we found that brain responses to the same ignored information depended on the modality attended. In early visual area V1, responses to ignored visual stimuli were weaker when attending to another visual stimulus, compared with attending to an auditory stimulus. The opposite was true in more central visual area MT+, where responses to ignored visual stimuli were weaker when attending to an auditory stimulus. Furthermore, fMRI responses to the same ignored visual information depended on the location of the auditory stimulus, with stronger responses when the attended auditory stimulus shared the same side of space as the ignored visual stimulus. In early auditory cortex, responses to ignored auditory stimuli were weaker when attending a visual stimulus. A simple parameterization of our data can describe the effects of redirecting attention across space within the same modality (spatial attention) or across modalities (cross-modal attention), and the influence of spatial attention across modalities (cross-modal spatial attention). Our results suggest that the representation of unattended information depends on whether attention is directed to another stimulus in the same modality or the same region of space.  相似文献   

19.
We analyzed the receptive field information conveyed by interspike intervals (ISIs) in the auditory cortex. In the visual system, different ISIs may both code for different visual features and convey differing amounts of stimulus information. To determine their potential role in auditory signal processing, we obtained extracellular recordings in the primary auditory cortex (AI) of the cat while presenting a dynamic moving ripple stimulus and then used the responses to construct spectrotemporal receptive fields (STRFs). For each neuron, we constructed three STRFs, one for short-ISI events (ISI < 15 ms); one for isolated, long-ISI events (ISI > 15 ms); and one including all events. To characterize stimulus encoding, we calculated the feature selectivity and event information for each of the STRFs. Short-ISI spikes were more feature selective and conveyed information more efficiently. The different ISI regimens of AI neurons did not represent different stimulus features, but short-ISI spike events did contribute over-proportionately to the full spike train STRF information. Thus short-ISIs constitute a robust representation of auditory features, and they are particularly effective at driving postsynaptic activity. This suggests that short-ISI events are especially suited to provide noise immunity and high-fidelity information transmission in AI.  相似文献   

20.
This study examines patterns of auditory cortical activity elicited by single-pulse cochlear implant stimuli that vary in electrode configuration, cochlear place of stimulation, and stimulus level. Recordings were made from the primary auditory cortex (area A1) of ketamine-anesthetized guinea pigs. The spatiotemporal pattern of neural spike activity was measured simultaneously across 16 cortical locations spanning approximately 2-3 octaves of the tonotopic axis. Such a pattern, averaged over 40 presentations of any particular stimulus, was defined as the "cortical image" of that stimulus. Acutely deafened guinea pigs were implanted with a 6-electrode animal version of the 22-electrode Nucleus banded electrode array (Cochlear). Cochlear electrode configurations consisted of monopolar (MP), bipolar (BP + N) with N inactive electrodes between the active and return electrodes (0 < or = N < or = 4), tripolar (TP) with one active electrode and two flanking return electrodes, and common ground (CG) with one active electrode and as many as five return electrodes. Cortical images typically showed a focus of maximum spike probability and minimum latency. Spike probabilities tended to decrease, and latencies tended to increase, with increasing cortical distance from that focus. Cortical images of TP stimuli were the most spatially compact, followed by BP + N images, and then MP images, which were the broadest. Images of CG stimuli were rather variable across animals and stimulus channels. The locations of cortical images shifted systematically from caudal to rostral as the cochlear place of stimulation changed from basal to apical. At the most sensitive cortical site for each condition, the dynamic ranges over which spike rates increased with increased current level were restricted to about 1-2 dB, regardless of configuration. Dynamic ranges tended to increase with increasing cortical distance from the most sensitive site. Electrode configurations that produced compact cortical images (e.g., TP and BP + 0) showed the greatest range of thresholds within each cortical image and the largest dynamic range at cortical sites removed from the most sensitive site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号