首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of IFN-gamma-inducible chemokines in inclusion body myositis   总被引:3,自引:0,他引:3  
Because IFN-gamma-inducible chemokines, Mig (CXCL9), IP-10 (CXCL10), I-TAC (CXCL11) and their receptor, CXCR3, are critical molecules in T cell trafficking and generation of effector T cells, we examined their expression in the muscle biopsies of patients with sporadic inclusion body myositis (s-IBM) and disease controls. The functional role of these molecules was also studied by examining the effect and time kinetics of IFN-gamma in inducing Mig and IP-10 expression in human myotubes in vitro. We found significantly high levels of Mig and IP-10 mRNA expression in s-IBM muscles compared to controls. IFN-gamma upregulated the mRNA expression of Mig and IP-10 by human myotubes in a dose-dependent manner. By double-label immunohistochemistry, Mig was expressed on a subset of CD8(+) cells and the areas of the muscle fiber in contact or contiguous to the T cells; CXCR3 was expressed only on a subset of the autoinvasive CD8(+) T cells but not the myofibers. IP-10 and I-TAC were not detected by immunocytochemistry. The findings indicate that in s-IBM, IFN-gamma is involved in the upregulation and in situ production of proinflammatory chemokines, which, in turn, participate in the recruitment of activated T cells and contribute to the self-sustaining nature of endomysial inflammation.  相似文献   

2.
T-cell accumulation in the central nervous system (CNS) is considered crucial to the pathogenesis of multiple sclerosis (MS). We found that the majority of T cells within the cerebrospinal fluid (CSF) compartment expressed the CXC chemokine receptor 3 (CXCR), independent of CNS inflammation. Quantitative immunohistochemistry revealed continuous accumulation of CXCR3+ T cells during MS lesion formation. The expression of one CXCR3 ligand, interferon (IFN)-gamma-inducible protein of 10 kDa (IP-10)/CXC chemokine ligand (CXCL) 10 was elevated in MS CSF, spatially associated with demyelination in CNS tissue sections and correlated tightly with CXCR3 expression. These data suggest a critical role for CXCL10 and CXCR3 in the accumulation of T cells in the CNS of MS patients.  相似文献   

3.
Inflammatory mediators have been implicated in the pathophysiology of neurodegenerative diseases. Here we report the presence of the chemokine receptor CXCR3 and its ligand, IP-10, in normal and Alzheimer's disease (AD) brains. CXCR3 was detected constitutively on neurons and neuronal processes in various cortical and subcortical regions; IP-10 was observed in a subpopulation of astrocytes in normal brain, and was markedly elevated in astrocytes in AD brains. Many IP-10(+) astrocytes were associated with senile plaques and had an apparently coordinated upregulation of MIP-1beta. Moreover, we showed that CXCR3 ligands, IP-10 and Mig, were able to activate ERK1/2 pathway in mouse cortical neurons, suggesting a novel mechanism of neuronal-glial interaction.  相似文献   

4.
Theiler's murine encephalomyelitis virus (TMEV) causes demyelination with inflammation of the central nervous system (CNS) in mice and is used as an animal model for multiple sclerosis (MS). Interferon-gamma inducible protein-10 kDa (IP-10) is a CXC chemokine and a chemoattractant for CXCR3+ T cells. IP-10 mRNA is expressed in the CNS during TMEV infection. However, administration of anti-IP-10 serum caused no difference in clinical signs, inflammation, demyelination, virus persistence or anti-virus antibody response in TMEV infection, while levels of virus specific and autoreactive lymphoproliferation increased. This likely reflects a difference in the pathogenesis of TMEV infection from that of two other animal models for MS, mouse hepatitis virus infection and experimental allergic encephalomyelitis (EAE), where blocking of IP-10 resulted in clinical and histological improvement with suppression of antigen specific lymphoproliferation. In this review, we compare and contrast the roles of IP-10 between the three animal models for MS, and discuss the relevance to MS patients with different clinical courses.  相似文献   

5.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system (CNS) considered to be an animal model for multiple sclerosis (MS). The detailed mechanism that specifies accumulation of inflammatory cells within the CNS in these conditions remains a subject of active investigation. Chemokines including IP-10, GRO-alpha, MCP-1 are produced in EAE tissues selectively by parenchymal astrocytes, but the regulatory stimuli that govern this expression remain undetermined. The unexpected occurrence of increased EAE susceptibility in Balb/c GKO mice (lacking IFN-gamma) offered an opportunity to examine the spectrum of chemokine expression during immune-mediated inflammation in the absence of a single regulatory cytokine. We found that chemokines MCP-1 and GRO-alpha were upregulated in the CNS of mice with EAE despite the GKO genotype. IP-10, which is highly expressed in the CNS of mice with an intact IFN-gamma gene and EAE, was strikingly absent. In vitro experiments confirmed that IFNgamma selectively stimulates astrocytes for IP-10 expression. These results indicate that IP-10 is dependent upon IFN-gamma for its upregulation during this model disease, and document directly that astrocyte expression of chemokines during EAE is governed by pro-inflammatory cytokines.  相似文献   

6.
Regulation of chemokine receptor expression in human microglia and astrocytes   总被引:12,自引:0,他引:12  
It has been proposed that the positioning of mobile cells within a tissue is determined by their overall profile of chemokine receptors. This study examines the profiles of chemokine receptors expressed on resting and activated adult human microglial cells, astrocytes and a microglial cell line, CHME3. Microglia express highest levels of CXCR1, CXCR3 and CCR3. Astrocytes also have moderate levels of CXCR1 and CXCR3, and some CCR3, while both cell types also expressed CCR4, CCR5, CCR6, CXCR2, CXCR4 and CXCR5 at lower levels. Activation of the cells with the inflammatory cytokine tumour necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma) increased the expression of some but not all receptors over a period of 24 h. Microglia showed moderate enhancement of receptor expression, while astrocytes responded particularly strongly to TNFalpha with enhanced CXCR3, CCR3 and CXCR1. However, the migratory and proliferative responses of the microglia and astrocytes to the same chemokine were different, with microglia migrating and astrocytes proliferating in response to CXCL10. The data indicates a mechanism by which activated microglia and astrocytes become selectively more sensitive to inflammatory chemokines during CNS disease, and the paper discusses which of the many chemokines present in CNS would have priority of action on microglia and astrocytes.  相似文献   

7.
Chemokines play specific roles in directing the recruitment of leukocyte subsets into inflammatory foci within the central nervous system (CNS). The involvement of these cytokines as mediators of inflammation is widely accepted. Recently, it has become evident that cells of the CNS (astrocytes, microglia, and neurons) not only synthesize, but also respond functionally or chemotactically to chemokines. We previously reported developmental events associated with colonization of the human fetal CNS by mononuclear phagocytes (microglial precursors), which essentially takes place within the first two trimesters of life. As part of the array of signals driving colonization, we noted specific anatomical distribution of chemokines and chemokine receptors expressed during this period. In order to further characterize expression of these molecules, we have isolated and cultured material from human fetal CNS. We demonstrate that unstimulated subconfluent human fetal glial cultures express high levels of CCR2 and CXCR4 receptors in cytoplasmic vesicles. Type I astrocytes, and associated ameboid microglia in particular, express high levels of surface and cytoplasmic CXCR4. Of the chemokines tested (MIP-1alpha, MIP-1beta, MCP-1, MCP-3, RANTES, SDF-1, IL-8, IP-10), only MIP-1alpha, detected specifically on microglia, was expressed both constitutively and consistently. Low variable levels of MCP-1, MIP-1alpha, and RANTES were also noted in unstimulated glial cultures. Recombinant human chemokines rhMCP-1 and rhMIP-1alpha also displayed proliferative effects on glial cultures at [10 ng/ml], but displayed variable effects on CCR2 levels on these cells. rhMCP-1 specifically upregulated CCR2 expression on cultured glia at [50 ng/ml]. It is gradually becoming evident that chemokines are important in embryonic development. The observation that human fetal glial cells and their progenitors express specific receptors for chemokines and can be stimulated to produce MCP-1, as well as proliferate in response to chemokines, supports a role for these cytokines as regulatory factors during development.  相似文献   

8.
Park C  Lee S  Cho IH  Lee HK  Kim D  Choi SY  Oh SB  Park K  Kim JS  Lee SJ 《Glia》2006,53(3):248-256
Viral infection is one of the leading causes of brain encephalitis and meningitis. Recently, it was reported that Toll-like receptor-3 (TLR3) induces a double-stranded RNA (dsRNA)-mediated inflammatory signal in the cells of the innate immune system, and studies suggested that dsRNA may induce inflammation in the central nervous system (CNS) by activating the CNS-resident glial cells. To explore further the connection between dsRNA and inflammation in the CNS, we have studied the effects of dsRNA stimulation in astrocytes. Our results show that the injection of polyinosinic-polycytidylic acid (poly(I:C)), a synthetic dsRNA, into the striatum of the mouse brain induces the activation of astrocytes and the expression of TNF-alpha, IFN-beta, and IP-10. Stimulation with poly(I:C) also induces the expression of these proinflammatory genes in primary astrocytes and in CRT-MG, a human astrocyte cell line. Furthermore, our studies on the intracellular signaling pathways reveal that poly(I:C) stimulation activates IkappaB kinase (IKK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in CRT-MG. Pharmacological inhibitors of nuclear factor-kappaB (NF-kappaB), JNK, ERK, glycogen synthase kinase-3beta (GSK-3beta), and dsRNA-activated protein kinase (PKR) inhibit the expression of IL-8 and IP-10 in astrocytes, indicating that the activation of these signaling molecules is required for the TLR3-mediated chemokine gene induction. Interestingly, the inhibition of PI3 kinase suppressed the expression of IP-10, but upregulated the expression of IL-8, suggesting differential roles for PI3 kinase, depending on the target genes. These data suggest that the TLR3 expressed on astrocytes may initiate an inflammatory response upon viral infection in the CNS.  相似文献   

9.
The pathological hallmarks of secondary progressive (SP) multiple sclerosis (MS) include slowly expanding demyelination and axonal damage with less inflammation. To elucidate the pathomechanisms of secondary progressive (SP) multiple sclerosis (MS), we have investigated the expression of chemokines, chemokine receptors, matrix metalloproteinase-9 (MMP-9) and immunoglobulins in the demyelinating plaques. Immunohistochemical analysis revealed that numerous hypertrophic astrocytes were observed at the rim, but not in the center, of the chronic active lesions. Microglia/macrophages phagocytosing myelin debris were also found at the lesion border. In contrast, T cell infiltration was minimal in these plaques. Characteristically, at the rim of the lesions, there were abundant immunoreactivities for monocyte chemoattractant protein-1 (MCP-1)/CCL2 and interferon-γ inducible protein-10 (IP-10)/CXCL10 and their receptors, CCR2 and CXCR3, while these immunoreactivities were weak in the center, thus forming a chemokine gradient. Double immunofluorescense staining demonstrated that cellular sources of MCP-1/CCL2 and IP-10/CXCL10 were hypertrophic astrocytes and that both astrocytes and microglia/macrophages expressed CCR2 and CXCR3. MMP-9 was also present at the rim of the lesions. These results suggest that MCP-1/CCL2 and IP-10/CXCL10 produced by astrocytes may activate astrocytes in an autocrine or paracrine manner and direct reactive gliosis followed by migration and activation of microglia/macrophages as effector cells in demyelinating lesions. Targeting chemokines in SPMS may therefore be a powerful therapeutic approach to inhibit lesional expansion.  相似文献   

10.
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, and the fourth leading cause of death in the United States. Its pathological changes include amyloid beta deposits, neurofibrillary tangles and a variety of 'inflammatory' phenomenon such as activation of microglia and astrocytes. The pathological significance of inflammatory responses elicited by resident central nervous system (CNS) cells has drawn considerable attention in recent years. Chemokines belongs to a rapidly expanding family of cytokines, the primary function of which is control of the correct positioning of cells in tissues and recruitment of leukocytes to the site of inflammation. Study of this very important class of inflammatory cytokines may greatly help our understanding of inflammation in the progress of AD, as well as other neurodegenerative diseases. So far, immunoreactivity for a number of chemokines (including IL-8, IP-10, MIP-1beta, MIPalpha and MCP-1) and chemokine receptors (including CXCR2, CXCR3, CXCR4, CCR3, CCR5 and Duffy antigen) have been demonstrated in resident cells of the CNS, and upregulation of some of the chemokines and receptors are found associated with AD pathological changes. In this review, we summarize findings regarding the expression of chemokines and their receptors by CNS cells under physiological and pathological conditions. Although little is known about the potential pathophysiological roles of chemokines in CNS, we have put forward hypotheses on how chemokines may be involved in AD.  相似文献   

11.
The CXCR3 chemokine receptor, expressed on activated T lymphocytes, is seen within the central nervous system (CNS) in inflammatory conditions where a T-cell response is prominent. However, the distribution of CXCR3 in parenchymal CNS cells is unknown. Using a monoclonal antibody against CXCR3 and post-mortem tissue of patients with and without CNS pathology, we have determined its expression pattern. CXCR3 was found in subpopulations of cells morphologically consistent with astrocytes, particularly reactive astrocytes, and in cerebellar Purkinje cells. It was also detected in arterial endothelial and smooth muscle cells, particularly in areas associated with atherosclerotic plaques. CXCR3-positive astrocytes were particularly prominent in the CNS of HIV-positive patients, in patients with Multiple Sclerosis (MS), in ischaemic infarcts and in astrocytic neoplasms. Immunofluorescence studies of mixed adult primary glial cultures and fetal glial cultures also showed expression of CXCR3 in astrocytes. CXCR3 mRNA was detected in Purkinje cells by in situ hybridization with a CXCR3-specific probe. Thus, the predominant expression of CXCR3 in reactive astrocytes may indicate that it plays a role in the development of reactive gliosis in a variety of infectious, inflammatory, vascular and neoplastic processes in the CNS. The relationship between CXCR3 expression in astrocytes to its expression in Purkinje cells, endothelial cells and smooth muscle cells is yet to be determined.  相似文献   

12.
Chemokines are key mediators of the selective migration of leukocytes that occurs in neurodegenerative diseases and related inflammatory processes. Astrocytes, the most abundant cell type in the CNS, have an active role in brain inflammation. To ascertain the role of astrocytes during neuropathological processes, we have investigated in two models of primary cells (human fetal and simian adult astrocytes) the repertoire of chemokines and their receptors expressed in response to inflammatory stimuli. We demonstrated that, in the absence of any stimulation, human fetal and simian adult astrocytes express mRNA for receptors APJ, BOB/GPR15, Bonzo/CXCR6, CCR2, CCR3, CCR5, CCR8, ChemR23, CXCR3/GPR9, CXCR4, GPR1, and V28/CX3CR1. Moreover, TNFalpha and IL-1beta significantly increase BOB/GPR15, CCR2, and V28/CX3CR1 mRNA levels in both models. Furthermore, TNFalpha and IFNgamma act synergistically to induce expression of the major coreceptors for HIV infection, CXCR4 and CCR5, at both the mRNA and protein levels in human and simian astrocytes, whereas CCR3 expression was not affected by cytokine treatment. Finally, TNFalpha/IFNgamma was the most significant cytokine combination in leading to a pronounced upregulation in a comparable, time-dependent manner of the production of chemokines IP-10/CXCL10, RANTES/CCL5, MIG/CXCL9, MCP-1/CCL2, and IL-8/CXCL8. In summary, these data suggest that astrocytes serve as an important source of chemokines under the dependence of a complex cytokine regulation, and TNFalpha and IFNgamma are important modulators of chemokines and chemokine receptor expression in human as well as simian astrocytes. Finally, with the conditions we used, there was no difference between species or age of tissue.  相似文献   

13.
14.
Based on our previous demonstration of CXCR7 as the major mediator of CXCL12 signaling in cultured astrocytes, we have now compared astrocytic expression of the CXCL12 receptors, CXCR7 and CXCR4, during CNS development and disease. In addition, we asked whether disease-associated conditions/factors affect expression of CXCL12 receptors in astrocytes. In the late embryonic rat brain, CXCR7+/GFAP+ cells were restricted to the ventricular/subventricular zone while CXCR4 was widely absent from GFAP-positive cells. In the early postnatal and adult brain, CXCR7 and CXCR4 were almost exclusively expressed by GFAP-immunoreactive astrocytes forming the superficial glia limitans. Contrasting the situation in the intact CNS, a striking increase in astrocytic CXCR7 expression was detectable in the cortex of rats with experimental brain infarcts, in the spinal cord of rats with experimental autoimmune encephalomyelitis (EAE) and after mechanical compression, as well as in the in infarcted human cerebral cortex and in the hippocampus of Alzheimer's disease patients. None of these pathologies was associated with substantial increases in astrocytic CXCR4 expression. Screening of various disease-associated factors/conditions further revealed that CXCR7 expression of cultured cortical astrocytes increases with IFNγ as well as under hypoxic conditions whereas CXCR7 expression is attenuated following treatment with IFNβ. Again, none of the treatments affected CXCR4 expression in cultured astrocytes. Together, these findings support the hypothesis of a crucial role of astrocytic CXCR7 in the progression of various CNS pathologies.  相似文献   

15.
16.
In contrast to other tissues, the central nervous system (CNS) is essentially devoid of MHC expression and shielded from antibodies by the blood-brain barrier. Therefore, a rapid local innate immune response by resident brain cells is required to effectively fight infectious agents. This study analyzed the expression and function of Toll-like receptors (TLRs) in cultured human astrocytes. Quantitative PCR for TLRs 1 to 10 showed a basal expression of TLR3 that could be enhanced by IFN-gamma, IL-1beta, and IFN-beta. The other TLRs were barely detectable and not inducible by the same cytokines. IFN-gamma-activated astrocytes responded to TLR3 ligand poly (I:C) engagement with IL-6 production, while ligands of other TLRs, like LPS, lipoteichoic acid, peptidoglycan, flagellin, and CpG, had no effect. Poly (I:C) also triggered astrocyte production of TNF-alpha and the chemokines CCL2/MCP-1, CCL5/RANTES, CCL20/MIP-3alpha, and CXCL10/IP-10. The adapter molecules MyD88 (full length and short isoform), TIRAP/Mal, and TICAM-1/TRIF, which are required for TLR signaling, were all expressed by astrocytes. Thus, resting and activated human astrocytes express preferentially TLR3 and, upon TLR3 engagement, produce IL-6 and chemokines active on T cells, B cells, monocytes, and dendritic cells. These data indicate that astrocytes function as sentinels for viral infections in the CNS.  相似文献   

17.
Rasley A  Tranguch SL  Rati DM  Marriott I 《Glia》2006,53(6):583-592
There is growing appreciation that resident glial cells can initiate and/or regulate inflammation following trauma or infection in the central nervous system (CNS). We have previously demonstrated the ability of microglia and astrocytes, resident glial cells of the CNS, to respond to bacterial pathogens by rapid production of inflammatory mediators. However, inflammation within the brain parenchyma is notably absent during some chronic bacterial infections in humans and nonhuman primates. In the present study, we demonstrate the ability of the immunosuppressive cytokine, interleukin-10 (IL-10), to inhibit inflammatory immune responses of primary microglia and astrocytes to B. burgdorferi and N. meningitidis, two disparate gram negative bacterial species that can cross the blood-brain barrier in humans. Importantly, we demonstrate that these organisms induce the delayed production of significant quantities of IL-10 by both microglia and astrocytes. Furthermore, we demonstrate that such production occurs independent of the actions of bacterial lipopolysaccharide and is secondary to the autocrine or paracrine actions of other glia-derived soluble mediators. The late onset of IL-10 production by resident glia following activation, the previously documented expression of specific receptors for this cytokine on microglia and astrocytes, and the ability of IL-10 to inhibit bacterially induced immune responses by these cells, suggest a mechanism by which resident glial cells can limit potentially damaging inflammation within the CNS in response to invading pathogens, and could explain the suppression of inflammation seen within the brain parenchyma during chronic bacterial infections.  相似文献   

18.
Human immunodeficiency virus (HIV) infection of the central nervous system (CNS) affects primarily microglial cells and astrocytes. Infection of these latter cells occurs independently of CD4 and is characterised by preferential accumulation of 2 Kb mRNA, encoding mostly Nef, and by low levels of 4.5 and 9 Kb RNAs. We have investigated the potential role of chronic HIV infection of human astrocytic cells on the expression of pro-inflammatory cytokines, chemokines and their receptors by comparing the infected TH4-7-5 with its parental uninfected 85HG66 cell lines. Upregulated levels of tumour necrosis factor-alpha (TNF-alpha) and of certain chemokines, namely interleukin-8 (IL-8) and regulated upon activation normal T cell expressed and secreted (RANTES), were observed in the infected versus uninfected cells, whereas monocyte chemotactic protein-1 (MCP-1) was comparably expressed in both cell lines. This pattern of expression was confirmed in primary foetal astrocytes transiently transfected with HIV. In addition, CXCR1, CXCR2 and CCR2b, receptors for IL-8 and MCP-1, respectively, were also found to be upregulated in TH4-7-5 versus 85HG66. CXCR4, the receptor of stromal cell derived factor-1 (SDF-1) and co-receptor for syncytium inducing HIVs, was comparably expressed in infected and uninfected astrocytic cells, whereas CCR5 was not detected in either cell line. Furthermore, treatment of TH4-7-5 cells with TNF-alpha or IL-1beta stimulated RNA and protein secretion of IL-8, MCP-1, and RANTES as well as HIV expression. Thus, our findings suggest that HIV infection of astrocytic cells can contribute to the establishment of a chronic inflammatory state in the CNS, eventually resulting in HIV encephalitis, by increasing the secretion of pro-inflammatory cytokines, such as TNF-alpha and several chemokines. Overexpression of chemokine receptors including CCR2b, CXCR1 and CXCR2 in infected astrocytic cells may contribute to HIV-induced damage of the CNS via autocrine/paracrine activation of astrocytes.  相似文献   

19.
Hua LL  Lee SC 《Glia》2000,30(1):74-81
Interferon-gamma-inducible 10 kd protein (IP-10) is an ELR (Glu-Leu-Arg)(-) alpha chemokine with known chemotactic effects on T cells and monocytes, as well as anti-viral, anti-angiogenic, and anti-tumor effects. Previous studies have demonstrated that in cultured rat astrocytes and microglia, stimulation with LPS or virus can induce the expression of IP-10. In this study, we determined the pattern of IP-10 gene induction in primary human microglia and astrocytes by cytokines and LPS using ribonuclease protection assay. The expression of IP-10 mRNA was compared with that of other alpha (IL-8) and beta chemokines. The results showed that in human microglia, IP-10 expression was induced equally potently by LPS, IFNbeta or IFNgamma. "Proinflammatory" cytokines IL-1beta or TNFalpha also induced small amounts of IP-10 mRNA. "Anti-inflammatory" cytokines IL-4, IL-10 and TGFbeta were ineffective in inducing IP-10 in microglia. In human astrocytes, induction of IP-10 mRNA by cytokines was similar to that in microglia. LPS, however, was ineffective in inducing IP-10 in human astrocytes. The monocyte chemoattractant beta-chemokine I-309 mRNA was induced in human astrocytes and microglia by IFNbeta or IFNgamma, or by LPS in microglia, showing a tight co-regulation with IP-10 mRNA expression. In contrast to the potent induction of IP-10 and I-309 by IFNs in human glia, the ELR(+) alpha chemokine IL-8 mRNA was induced by IL-1beta and TNFalpha, and to a lesser extent by IFNbeta in microglia. IFNbeta but not IFNgamma was effective in inducing the expression of beta chemokines MIP-1alpha and MIP-1beta in human microglia, with the levels of mRNA similar to those induced by IL-1beta or TNFalpha. Neither MIP-1alpha nor MIP-1beta mRNAs were induced by any stimulation in human astrocytes. The induction of RANTES mRNA in microglia by IFNbeta, IL-1beta or TNFalpha was variable, showing no to low level expression depending on the case, whereas LPS provided a consistent inducing signal. In astrocytes, only cytokine combinations (IFN + IL-1beta) effectively induced the RANTES mRNA. These results demonstrate that distinct sets of chemokine genes are induced in human glial cells by cytokines and interferons. These results may have wide implications for inflammatory, vascular and neoplastic diseases of the CNS.  相似文献   

20.
CCL21 is a homeostatic chemokine that is expressed constitutively in secondary lymph nodes and attracts immune cells via chemokine receptor CCR7. In the brain however, CCL21 is inducibly expressed in damaged neurons both in vitro and in vivo and has been shown to activate microglia in vitro, albeit not through CCR7 but through chemokine receptor CXCR3. Therefore, a role for CCL21 in CXCR3-mediated neuron-microglia signaling has been proposed. It is well established that human and mouse astrocytes, like microglia, express CXCR3. However, effects of CCL21 on astrocytes have not been investigated yet. In this study, we have examined the effects of CCL21 on calcium transients and proliferation in primary mouse astrocytes. We show that similar to CXCR3-ligand CXCL10, CCL21 (10?9 M and 10?8 M) induced calcium transients in astrocytes, which were mediated through CXCR3. However, in response to high concentrations of CCL21 (10?7 M) calcium transients persisted in CXCR3-deficient astrocytes, whereas CXCL10 did not have any effect in these cells. Furthermore, prolonged exposure to CXCL10 or CCL21 promoted proliferation of wild type astrocytes. Although CXCL10-induced proliferation was absent in CXCR3-deficient astrocytes, CCL21-induced proliferation of these cells did not significantly differ from wild type conditions. It is therefore suggested that primary mouse astrocytes express an additional (chemokine-) receptor, which is activated at high CCL21 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号